Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Copper(I) chloride

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia
Copper(I) chloride
Sample of copper(I) chloride
Sample of copper(I) chloride
Unit cell of nantokite
Unit cell of nantokite
Names
IUPAC name
Copper(I) chloride
Other names
Cuprous chloride
Identifiers
3D model (JSmol)
8127933
ChEBI
ChemSpider
DrugBank
ECHA InfoCard100.028.948Edit this at Wikidata
EC Number
  • 231-842-9
13676
RTECS number
  • GL6990000
UNII
  • InChI=1S/ClH.Cu/h1H;/q;+1/p-1 checkY
    Key: OXBLHERUFWYNTN-UHFFFAOYSA-M checkY
  • InChI=1/ClH.Cu/h1H;/q;+1/p-1
    Key: OXBLHERUFWYNTN-REWHXWOFAC
  • Cl[Cu]
Properties
CuCl
Molar mass98.999 g/mol[1]
Appearancewhite powder, slightly green from oxidized impurities
Density4.14 g/cm3[1]
Melting point423 °C (793 °F; 696 K)[1]
Boiling point1,490 °C (2,710 °F; 1,760 K) (decomposes)[1]
0.047 g/L (20 °C)[1]
1.72×10−7
Solubilityinsoluble inethanol,
acetone;[1] soluble in concentratedHCl,NH4OH
Band gap3.25 eV (300 K, direct)[2]
−40.0·10−6 cm3/mol[3]
1.930[4]
Structure
Zincblende,cF20
F43m, No. 216[5]
a = 0.54202 nm
0.1592 nm3
4
Hazards
GHS labelling:
GHS07: Exclamation markGHS09: Environmental hazard
Warning
H302,H410
P264,P270,P273,P301+P312,P330,P391,P501
NFPA 704 (fire diamond)
Flash pointNon-flammable
Lethal dose or concentration (LD, LC):
140 mg/kg
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 mg/m3 (as Cu)[6]
REL (Recommended)
TWA 1 mg/m3 (as Cu)[6]
IDLH (Immediate danger)
TWA 100 mg/m3 (as Cu)[6]
Safety data sheet (SDS)JT Baker
Related compounds
Otheranions
Copper(I) fluoride
Copper(I) bromide
Copper(I) iodide
Othercations
Silver(I) chloride
Gold(I) chloride
Related compounds
Copper(II) chloride
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound
IR absorption spectrum of copper(I) chloride

Copper(I) chloride, commonly calledcuprous chloride, is the lowerchloride ofcopper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentratedhydrochloric acid. Impure samples appear green due to the presence ofcopper(II) chloride (CuCl2).

History

[edit]

Copper(I) chloride was first prepared byRobert Boyle and designatedrosin of copper in the mid-seventeenth century frommercury(II) chloride ("Venetian sublimate") and copper metal:[7]

HgCl2 + 2 Cu → 2 CuCl + Hg

In 1799,Joseph Proust first differentiated two different chlorides of copper. He prepared CuCl (which he calledwhite muriate of copper) by heating CuCl2 at red heat in the absence of air, causing it to lose half of its combined chlorine followed by removing residual CuCl2 by washing with water.[8]

An acidic solution of CuCl was formerly used to analyze carbon monoxide content in gases, for example in Hempel's gas apparatus where the CuCl absorbs the carbon monoxide.[9] This application was significant during the nineteenth and early twentieth centuries whencoal gas was widely used for heating and lighting.[10]

Synthesis

[edit]

Copper(I) chloride is produced industrially by the direct combination of copper metal and chlorine at 450–900 °C:[11][12]

2 Cu + Cl2 → 2 CuCl

Copper(I) chloride can also be prepared byreducing copper(II) chloride withsulfur dioxide, or with ascorbic acid (vitamin C) that acts as areducing sugar:[13][14]

2 CuCl2 + SO2 + 2 H2O → 2 CuCl + H2SO4 + 2 HCl
2 CuCl2 + C6H8O6 → 2CuCl + 2HCl + C6H6O6

Many other reducing agents can be used.[12]

  • White copper(I) chloride crystals on copper wire
    White copper(I) chloride crystals on copper wire
  • Copper(I) chloride partially oxidized in air
    Copper(I) chloride partially oxidized in air

Properties

[edit]

Copper(I) chloride has the cubiczincblende crystal structure at ambient conditions. Upon heating to 408 °C the structure changes to hexagonal. Several other crystalline forms of CuCl appear at high pressures (several GPa).[5]

Upon contact withwater, copper(I) chloride slowly undergoesdisproportionation:[15]

2 CuCl → Cu + CuCl2

In part for this reason, samples in air assume a green coloration.[16]

Copper(I) chloride is aLewis acid. It is classified as soft according to thehard-soft acid-base concept. Thus, it forms a series ofcomplexes with softLewis bases such astriphenylphosphine:

CuCl + 1 P(C6H5)3 → 1/4 {CuCl[P(C6H5)3]}4
CuCl + 2 P(C6H5)3 → CuCl[P(C6H5)3)]2
CuCl + 3 P(C6H5)3 → CuCl[P(C6H5)3)]3

CuCl also forms complexes withhalides. For exampleH3O+ CuCl2 forms in concentratedhydrochloric acid.[17] Chloride is displaced byCN andS2O32−.[12]

Solutions of CuCl inHCl absorbcarbon monoxide to form colourless complexes such as the chloride-bridged dimer [CuCl(CO)]2. The same hydrochloric acid solutions also react withacetylene gas to form [CuCl(C2H2)].Ammoniacal solutions of CuCl react with acetylenes to form the explosivecopper(I) acetylide, Cu2C2.Alkene complexes of CuCl can be prepared by reduction ofCuCl2 bysulfur dioxide in the presence of the alkene inalcohol solution. Complexes withdienes such as1,5-cyclooctadiene are particularly stable:[18]

Structure of COD complex of CuCl

Uses

[edit]

The main use of copper(I) chloride is as a precursor to thefungicidecopper oxychloride. For this purpose aqueous copper(I) chloride is generated bycomproportionation and then air-oxidized:[12]

Cu + CuCl2 → 2 CuCl
4 CuCl + O2 + 2 H2O → Cu3Cl2(OH)4 + CuCl2

Copper(I) chloride catalyzes a variety oforganic reactions, as discussed above. Its affinity forcarbon monoxide in the presence ofaluminium chloride is exploited in the COPureSM process.[19]

In organic synthesis

[edit]

CuCl is used as a co-catalyst withcarbon monoxide, aluminium chloride, andhydrogen chloride in theGatterman-Koch reaction to form benzaldehydes.[20]

In theSandmeyer reaction, the treatment of anarenediazonium salt with CuCl leads to an aryl chloride. For example:[21][22]

(Example Sandmeyer reaction using CuCl)

The reaction has wide scope and usually gives good yields.[22]

Early investigators observed that copper(I) halides catalyse 1,4-addition ofGrignard reagents to alpha,beta-unsaturated ketones[23] led to the development oforganocuprate reagents that are widely used today inorganic synthesis:[24]

(Addition of RMgX to C=C-C=O mediated by CuCl)

This finding led to the development oforganocopper chemistry. For example, CuCl reacts withmethyllithium (CH3Li) to form "Gilman reagents" such as (CH3)2CuLi, which find use inorganic synthesis.Grignard reagents form similar organocopper compounds. Although other copper(I) compounds such ascopper(I) iodide are now more often used for these types of reactions, copper(I) chloride is still recommended in some cases:[25]

(Alkylation of sorbate ester at 4-position mediated by CuCl)

Cuprous chloride also catalyzes thedimerization ofacetylene tovinylacetylene, once used as a precursor to various polymers such aneoprene.[26]

Niche uses

[edit]

CuCl is used as a catalyst inatom transfer radical polymerization (ATRP). It is also used inpyrotechnics as a blue/green coloring agent. In aflame test, copper chlorides, like all copper compounds, emit green-blue.[27]

Natural occurrence

[edit]

Natural form of CuCl is the rare mineralnantokite.[28][29]

References

[edit]
  1. ^abcdefHaynes, William M., ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida:CRC Press. p. 4.61.ISBN 1-4398-5511-0.
  2. ^Garro, Núria; Cantarero, Andrés; Cardona, Manuel; Ruf, Tobias; Göbel, Andreas; Lin, Chengtian; Reimann, Klaus; Rübenacke, Stefan; Steube, Markus (1996). "Electron-phonon interaction at the direct gap of the copper halides".Solid State Communications.98 (1):27–30.Bibcode:1996SSCom..98...27G.doi:10.1016/0038-1098(96)00020-8.
  3. ^Haynes, William M., ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida:CRC Press. p. 4.132.ISBN 1-4398-5511-0.
  4. ^Patnaik, Pradyot (2002)Handbook of Inorganic Chemicals. McGraw-Hill,ISBN 0-07-049439-8
  5. ^abHull, S.; Keen, D. A. (1994). "High-pressure polymorphism of the copper(I) halides: A neutron-diffraction study to ~10 GPa".Physical Review B.50 (9):5868–5885.Bibcode:1994PhRvB..50.5868H.doi:10.1103/PhysRevB.50.5868.PMID 9976955.
  6. ^abcNIOSH Pocket Guide to Chemical Hazards."#0150".National Institute for Occupational Safety and Health (NIOSH).
  7. ^Boyle, Robert (1666).Considerations and experiments about the origin of forms and qualities. Oxford. pp. 286–288.
  8. ^Proust, J. L. (1799)."Recherches sur le Cuivre".Annales de chimie.32:26–54.
  9. ^Martin, Geoffrey (1922).Industrial and Manufacturing Chemistry (Part 1, Organic ed.). London: Crosby Lockwood. p. 408.
  10. ^Lewes, Vivian H. (1891)."The Analysis of Illuminationg Gases".Journal of the Society of Chemical Industry.10:407–413.
  11. ^Richardson, H. W. (2003). "Copper Compounds".Kirk-Othmer Encyclopedia of Chemical Technology.doi:10.1002/0471238961.0315161618090308.a01.pub2.ISBN 0471238961.
  12. ^abcdZhang, J.; Richardson, H. W. (2016). "Copper Compounds".Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–31.doi:10.1002/14356007.a07_567.pub2.ISBN 978-3-527-30673-2.
  13. ^Glemser, O.; Sauer, H. (1963). "Copper(I) Chloride". In Brauer, G. (ed.).Handbook of Preparative Inorganic Chemistry. Vol. 1 (2nd ed.). New York: Academic Press. p. 1005.
  14. ^Tuğba Akbıyık; İnci Sönmezoğlu; Kubilay Güçlü; İzzet Tor; Reşat Apak (2012). "Protection of Ascorbic Acid from Copper(II)−Catalyzed Oxidative Degradation in the Presence of Fruit Acids: Citric, Oxalic, Tartaric, Malic, Malonic, and Fumaric Acids".International Journal of Food Properties.15 (2):398–411.doi:10.1080/10942912.2010.487630.S2CID 85408826.
  15. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann. p. 1185.doi:10.1016/C2009-0-30414-6.ISBN 978-0-08-037941-8.
  16. ^Pastor, Antonio C. (1986)U.S. patent 4,582,579 "Method of preparing cupric ion free cuprous chloride" Section 2, lines 4–41.
  17. ^J. J. Fritz (1980). "Chloride complexes of copper(I) chloride in aqueous solution".J. Phys. Chem.84 (18):2241–2246.doi:10.1021/j100455a006.
  18. ^Nicholls, D. (1973)Complexes and First-Row Transition Elements, Macmillan Press, London.
  19. ^Xiaozhou Ma; Jelco Albertsma; Dieke Gabriels; Rens Horst; Sevgi Polat; Casper Snoeks; Freek Kapteijn; Hüseyin Burak Eral; David A. Vermaas; Bastian Mei; Sissi de Beer; Monique Ann van der Veen (2023)."Carbon monoxide separation: past, present and future".Chemical Society Reviews.52 (11):3741–3777.doi:10.1039/D3CS00147D.PMC 10243283.PMID 37083229.
  20. ^Dilke, M. H.; Eley, D. D. (1949)."550. The Gattermann–Koch reaction. Part II. Reaction kinetics".J. Chem. Soc.:2613–2620.doi:10.1039/JR9490002613.ISSN 0368-1769.
  21. ^Wade, L. G. (2003)Organic Chemistry, 5th ed., Prentice Hall, Upper Saddle River, New Jersey, p. 871.ISBN 013033832X.
  22. ^abMarch, J. (1992)Advanced Organic Chemistry, 4th ed., Wiley, New York. p. 723.ISBN 978-0-470-46259-1
  23. ^Kharasch, M. S.; Tawney, P. O. (1941). "Factors Determining the Course and Mechanisms of Grignard Reactions. II. The Effect of Metallic Compounds on the Reaction between Isophorone and Methylmagnesium Bromide".J. Am. Chem. Soc.63 (9): 2308.doi:10.1021/ja01854a005.
  24. ^Jasrzebski, J. T. B. H.; van Koten, G. (2002)Modern Organocopper Chemistry, N. Krause (ed.). Wiley-VCH, Weinheim, Germany. p. 1.doi:10.1002/3527600086.ch1ISBN 9783527600083.
  25. ^Bertz, S. H.; Fairchild, E. H. (1999)Handbook of Reagents for Organic Synthesis, Volume 1: Reagents, Auxiliaries and Catalysts for C-C Bond Formation, R. M. Coates, S. E. Denmark (eds.). Wiley, New York. pp. 220–3.ISBN 978-0-471-97924-1.
  26. ^Trotuş, Ioan-Teodor; Zimmermann, Tobias; Schüth, Ferdi (2014)."Catalytic Reactions of Acetylene: A Feedstock for the Chemical Industry Revisited".Chemical Reviews.114 (3):1761–1782.doi:10.1021/cr400357r.PMID 24228942.
  27. ^Barrow, R F; Caldin, E F (1949-01-01)."Some Spectroscopic Observations on Pyrotechnic Flames".Proceedings of the Physical Society. Section B.62 (1):32–39.doi:10.1088/0370-1301/62/1/305.ISSN 0370-1301.
  28. ^"Nantokite".
  29. ^"List of Minerals". 21 March 2011.

External links

[edit]
Wikimedia Commons has media related toCopper(I) chloride.
Cu(0,I)
Cu(I)
Cu(I,II)
Cu(II)
Cu(III)
Cu(IV)
Salts and covalent derivatives of thechloride ion
HClHe
LiClBeCl2B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaClMgCl2AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2Ar
KClCaCl
CaCl2
ScCl3TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2CuCl
CuCl2
ZnCl2GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrClKr
RbClSrCl2YCl3ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3PdCl2AgClCdCl2InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsClBaCl2*LuCl3
177LuCl3
HfCl4TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
PtCl2−6
AuCl
(Au[AuCl4])2
AuCl3
AuCl4
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3PoCl2
PoCl4
AtClRn
FrClRaCl2**LrCl3RfCl4DbCl5SgO2Cl2BhO3ClHsMtDsRgCnNhFlMcLvTsOg
 
*LaCl3CeCl3PrCl3NdCl2
NdCl3
PmCl3SmCl2
SmCl3
EuCl2
EuCl3
GdCl3TbCl3DyCl2
DyCl3
HoCl3ErCl3TmCl2
TmCl3
YbCl2
YbCl3
**AcCl3ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3
NpCl4
PuCl3
PuCl4
PuCl2−6
AmCl2
AmCl3
CmCl3BkCl3CfCl3
CfCl2
EsCl2
EsCl3
FmCl2MdCl2NoCl2

Retrieved from "https://en.wikipedia.org/w/index.php?title=Copper(I)_chloride&oldid=1332234636"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp