Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Conway–Maxwell–Poisson distribution

From Wikipedia, the free encyclopedia
Probability distribution
Conway–Maxwell–Poisson
Probability mass function
CMP PMF
Cumulative distribution function
CMP CDF
Parametersλ>0,ν0{\displaystyle \lambda >0,\nu \geq 0}
Supportx{0,1,2,}{\displaystyle x\in \{0,1,2,\dots \}}
PMFλx(x!)ν1Z(λ,ν){\displaystyle {\frac {\lambda ^{x}}{(x!)^{\nu }}}{\frac {1}{Z(\lambda ,\nu )}}}
CDFi=0xPr(X=i){\displaystyle \sum _{i=0}^{x}\Pr(X=i)}
Meanj=0jλj(j!)νZ(λ,ν){\displaystyle \sum _{j=0}^{\infty }{\frac {j\lambda ^{j}}{(j!)^{\nu }Z(\lambda ,\nu )}}}
MedianNo closed form
ModeSee text
Variancej=0j2λj(j!)νZ(λ,ν)mean2{\displaystyle \sum _{j=0}^{\infty }{\frac {j^{2}\lambda ^{j}}{(j!)^{\nu }Z(\lambda ,\nu )}}-\operatorname {mean} ^{2}}
SkewnessNot listed
Excess kurtosisNot listed
EntropyNot listed
MGFZ(etλ,ν)Z(λ,ν){\displaystyle {\frac {Z(e^{t}\lambda ,\nu )}{Z(\lambda ,\nu )}}}
CFZ(eitλ,ν)Z(λ,ν){\displaystyle {\frac {Z(e^{it}\lambda ,\nu )}{Z(\lambda ,\nu )}}}
PGFZ(tλ,ν)Z(λ,ν){\displaystyle {\frac {Z(t\lambda ,\nu )}{Z(\lambda ,\nu )}}}

Inprobability theory andstatistics, theConway–Maxwell–Poisson (CMP or COM–Poisson) distribution is adiscrete probability distribution named afterRichard W. Conway,William L. Maxwell, andSiméon Denis Poisson that generalizes thePoisson distribution by adding a parameter to modeloverdispersion andunderdispersion. It is a member of theexponential family,[1] has the Poisson distribution andgeometric distribution asspecial cases and theBernoulli distribution as alimiting case.[2]

Background

[edit]

The CMP distribution was originally proposed by Conway and Maxwell in 1962[3] as a solution to handlingqueueing systems with state-dependent service rates. The CMP distribution was introduced into the statistics literature by Boatwright et al. 2003[4] and Shmueli et al. (2005).[2] The first detailed investigation into theprobabilistic and statistical properties of the distribution was published by Shmueli et al. (2005).[2] Some theoretical probability results of COM-Poisson distribution is studied and reviewed by Li et al. (2019),[5] especially the characterizations of COM-Poisson distribution.

Probability mass function and basic properties

[edit]

The CMP distribution is defined to be the distribution withprobability mass function

P(X=x)=f(x;λ,ν)=λx(x!)ν1Z(λ,ν).{\displaystyle P(X=x)=f(x;\lambda ,\nu )={\frac {\lambda ^{x}}{(x!)^{\nu }}}{\frac {1}{Z(\lambda ,\nu )}}.}

where :

Z(λ,ν)=j=0λj(j!)ν.{\displaystyle Z(\lambda ,\nu )=\sum _{j=0}^{\infty }{\frac {\lambda ^{j}}{(j!)^{\nu }}}.}

The functionZ(λ,ν){\displaystyle Z(\lambda ,\nu )} serves as anormalization constant so the probability mass function sums to one. Note thatZ(λ,ν){\displaystyle Z(\lambda ,\nu )} does not have a closed form.

The domain of admissible parameters isλ,ν>0{\displaystyle \lambda ,\nu >0}, and0<λ<1{\displaystyle 0<\lambda <1},ν=0{\displaystyle \nu =0}.

The additional parameterν{\displaystyle \nu } which does not appear in thePoisson distribution allows for adjustment of the rate of decay. This rate of decay is a non-linear decrease in ratios of successive probabilities, specifically

P(X=x1)P(X=x)=xνλ.{\displaystyle {\frac {P(X=x-1)}{P(X=x)}}={\frac {x^{\nu }}{\lambda }}.}

Whenν=1{\displaystyle \nu =1}, the CMP distribution becomes the standardPoisson distribution and asν{\displaystyle \nu \to \infty }, the distribution approaches aBernoulli distribution with parameterλ/(1+λ){\displaystyle \lambda /(1+\lambda )}. Whenν=0{\displaystyle \nu =0} the CMP distribution reduces to ageometric distribution with probability of success1λ{\displaystyle 1-\lambda } providedλ<1{\displaystyle \lambda <1}.[2]

For the CMP distribution, moments can be found through the recursive formula[2]

E[Xr+1]={λE[X+1]1νif r=0λddλE[Xr]+E[X]E[Xr]if r>0.{\displaystyle \operatorname {E} [X^{r+1}]={\begin{cases}\lambda \,\operatorname {E} [X+1]^{1-\nu }&{\text{if }}r=0\\\lambda \,{\frac {d}{d\lambda }}\operatorname {E} [X^{r}]+\operatorname {E} [X]\operatorname {E} [X^{r}]&{\text{if }}r>0.\\\end{cases}}}

Cumulative distribution function

[edit]

For generalν{\displaystyle \nu }, there does not exist a closed form formula for thecumulative distribution function ofXCMP(λ,ν){\displaystyle X\sim \mathrm {CMP} (\lambda ,\nu )}. Ifν1{\displaystyle \nu \geq 1} is an integer, we can, however, obtain the following formula in terms of thegeneralized hypergeometric function:[6]

F(n)=P(Xn)=11Fν1(;n+2,,n+2;λ){(n+1)!}ν10Fν1(;1,,1;λ).{\displaystyle F(n)=P(X\leq n)=1-{\frac {_{1}F_{\nu -1}(;n+2,\ldots ,n+2;\lambda )}{{\{(n+1)!\}^{\nu -1}}_{0}F_{\nu -1}(;1,\ldots ,1;\lambda )}}.}

The normalizing constant

[edit]

Many important summary statistics, such as moments and cumulants, of the CMP distribution can be expressed in terms of the normalizing constantZ(λ,ν){\displaystyle Z(\lambda ,\nu )}.[2][7] Indeed, Theprobability generating function isEsX=Z(sλ,ν)/Z(λ,ν){\displaystyle \operatorname {E} s^{X}=Z(s\lambda ,\nu )/Z(\lambda ,\nu )}, and themean andvariance are given by

EX=λddλ{ln(Z(λ,ν))},{\displaystyle \operatorname {E} X=\lambda {\frac {d}{d\lambda }}{\big \{}\ln(Z(\lambda ,\nu )){\big \}},}
var(X)=λddλEX.{\displaystyle \operatorname {var} (X)=\lambda {\frac {d}{d\lambda }}\operatorname {E} X.}

Thecumulant generating function is

g(t)=ln(E[etX])=ln(Z(λet,ν))ln(Z(λ,ν)),{\displaystyle g(t)=\ln(\operatorname {E} [e^{tX}])=\ln(Z(\lambda e^{t},\nu ))-\ln(Z(\lambda ,\nu )),}

and thecumulants are given by

κn=g(n)(0)=ntnln(Z(λet,ν))|t=0,n1.{\displaystyle \kappa _{n}=g^{(n)}(0)={\frac {\partial ^{n}}{\partial t^{n}}}\ln(Z(\lambda e^{t},\nu )){\bigg |}_{t=0},\quad n\geq 1.}

Whilst the normalizing constantZ(λ,ν)=i=0λi(i!)ν{\displaystyle Z(\lambda ,\nu )=\sum _{i=0}^{\infty }{\frac {\lambda ^{i}}{(i!)^{\nu }}}} does not in general have a closed form, there are some noteworthy special cases:

Because the normalizing constant does not in general have a closed form, the followingasymptotic expansion is of interest. Fixν>0{\displaystyle \nu >0}. Then, asλ{\displaystyle \lambda \rightarrow \infty },[8]

Z(λ,ν)=exp{νλ1/ν}λ(ν1)/2ν(2π)(ν1)/2νk=0ck(νλ1/ν)k,{\displaystyle Z(\lambda ,\nu )={\frac {\exp \left\{\nu \lambda ^{1/\nu }\right\}}{\lambda ^{(\nu -1)/2\nu }(2\pi )^{(\nu -1)/2}{\sqrt {\nu }}}}\sum _{k=0}^{\infty }c_{k}{\big (}\nu \lambda ^{1/\nu }{\big )}^{-k},}

where thecj{\displaystyle c_{j}} are uniquely determined by the expansion

(Γ(t+1))ν=νν(t+1/2)(2π)(ν1)/2j=0cjΓ(νt+(1+ν)/2+j).{\displaystyle \left(\Gamma (t+1)\right)^{-\nu }={\frac {\nu ^{\nu (t+1/2)}}{\left(2\pi \right)^{(\nu -1)/2}}}\sum _{j=0}^{\infty }{\frac {c_{j}}{\Gamma (\nu t+(1+\nu )/2+j)}}.}

In particular,c0=1{\displaystyle c_{0}=1},c1=ν2124{\displaystyle c_{1}={\frac {\nu ^{2}-1}{24}}},c2=ν211152(ν2+23){\displaystyle c_{2}={\frac {\nu ^{2}-1}{1152}}\left(\nu ^{2}+23\right)}. Furthercoefficients are given in.[8]

Moments, cumulants and related results

[edit]

For general values ofν{\displaystyle \nu }, there does not exist closed form formulas for the mean, variance and moments of the CMP distribution. We do, however, have the following neat formula.[7] Let(j)r=j(j1)(jr+1){\displaystyle (j)_{r}=j(j-1)\cdots (j-r+1)} denote thefalling factorial. LetXCMP(λ,ν){\displaystyle X\sim \mathrm {CMP} (\lambda ,\nu )},λ,ν>0{\displaystyle \lambda ,\nu >0}. Then

E[((X)r)ν]=λr,{\displaystyle \operatorname {E} [((X)_{r})^{\nu }]=\lambda ^{r},}

forrN{\displaystyle r\in \mathbb {N} }.

Since in general closed form formulas are not available for moments and cumulants of the CMP distribution, the following asymptotic formulas are of interest. LetXCMP(λ,ν){\displaystyle X\sim \mathrm {CMP} (\lambda ,\nu )}, whereν>0{\displaystyle \nu >0}. Denote theskewnessγ1=κ3σ3{\displaystyle \gamma _{1}={\frac {\kappa _{3}}{\sigma ^{3}}}} andexcess kurtosisγ2=κ4σ4{\displaystyle \gamma _{2}={\frac {\kappa _{4}}{\sigma ^{4}}}}, whereσ2=Var(X){\displaystyle \sigma ^{2}=\mathrm {Var} (X)}. Then, asλ{\displaystyle \lambda \rightarrow \infty },[8]

EX=λ1/ν(1ν12νλ1/νν2124ν2λ2/νν2124ν3λ3/ν+O(λ4/ν)),{\displaystyle \operatorname {E} X=\lambda ^{1/\nu }\left(1-{\frac {\nu -1}{2\nu }}\lambda ^{-1/\nu }-{\frac {\nu ^{2}-1}{24\nu ^{2}}}\lambda ^{-2/\nu }-{\frac {\nu ^{2}-1}{24\nu ^{3}}}\lambda ^{-3/\nu }+{\mathcal {O}}(\lambda ^{-4/\nu })\right),}
Var(X)=λ1/νν(1+ν2124ν2λ2/ν+ν2112ν3λ3/ν+O(λ4/ν)),{\displaystyle \mathrm {Var} (X)={\frac {\lambda ^{1/\nu }}{\nu }}{\bigg (}1+{\frac {\nu ^{2}-1}{24\nu ^{2}}}\lambda ^{-2/\nu }+{\frac {\nu ^{2}-1}{12\nu ^{3}}}\lambda ^{-3/\nu }+{\mathcal {O}}(\lambda ^{-4/\nu }){\bigg )},}
κn=λ1/ννn1(1+(1)n(ν21)24ν2λ2/ν+(2)n(ν21)48ν3λ3/ν+O(λ4/ν)),{\displaystyle \kappa _{n}={\frac {\lambda ^{1/\nu }}{\nu ^{n-1}}}{\bigg (}1+{\frac {(-1)^{n}(\nu ^{2}-1)}{24\nu ^{2}}}\lambda ^{-2/\nu }+{\frac {(-2)^{n}(\nu ^{2}-1)}{48\nu ^{3}}}\lambda ^{-3/\nu }+{\mathcal {O}}(\lambda ^{-4/\nu }){\bigg )},}
γ1=λ1/2νν(15(ν21)48ν2λ2/ν7(ν21)24ν3λ3/ν+O(λ4/ν)),{\displaystyle \gamma _{1}={\frac {\lambda ^{-1/2\nu }}{\sqrt {\nu }}}{\bigg (}1-{\frac {5(\nu ^{2}-1)}{48\nu ^{2}}}\lambda ^{-2/\nu }-{\frac {7(\nu ^{2}-1)}{24\nu ^{3}}}\lambda ^{-3/\nu }+{\mathcal {O}}(\lambda ^{-4/\nu }){\bigg )},}
γ2=λ1/νν(1(ν21)24ν2λ2/ν+(ν21)6ν3λ3/ν+O(λ4/ν)),{\displaystyle \gamma _{2}={\frac {\lambda ^{-1/\nu }}{\nu }}{\bigg (}1-{\frac {(\nu ^{2}-1)}{24\nu ^{2}}}\lambda ^{-2/\nu }+{\frac {(\nu ^{2}-1)}{6\nu ^{3}}}\lambda ^{-3/\nu }+{\mathcal {O}}(\lambda ^{-4/\nu }){\bigg )},}
E[Xn]=λn/ν(1+n(nν)2νλ1/ν+a2λ2/ν+O(λ3/ν)),{\displaystyle \operatorname {E} [X^{n}]=\lambda ^{n/\nu }{\bigg (}1+{\frac {n(n-\nu )}{2\nu }}\lambda ^{-1/\nu }+a_{2}\lambda ^{-2/\nu }+{\mathcal {O}}(\lambda ^{-3/\nu }){\bigg )},}

where

a2=n(ν1)(6nν23nν15n+4ν+10)24ν2+1ν2{(n3)+3(n4)}.{\displaystyle a_{2}=-{\frac {n(\nu -1)(6n\nu ^{2}-3n\nu -15n+4\nu +10)}{24\nu ^{2}}}+{\frac {1}{\nu ^{2}}}{\bigg \{}{\binom {n}{3}}+3{\binom {n}{4}}{\bigg \}}.}

The asymptotic series forκn{\displaystyle \kappa _{n}} holds for alln2{\displaystyle n\geq 2}, andκ1=EX{\displaystyle \kappa _{1}=\operatorname {E} X}.

Moments for the case of integerν{\displaystyle \nu }

[edit]

Whenν{\displaystyle \nu } is an integer explicit formulas formoments can be obtained. The caseν=1{\displaystyle \nu =1} corresponds to the Poisson distribution. Suppose now thatν=2{\displaystyle \nu =2}. FormN{\displaystyle m\in \mathbb {N} },[7]

E[(X)m]=λm/2Im(2λ)I0(2λ),{\displaystyle \operatorname {E} [(X)_{m}]={\frac {\lambda ^{m/2}I_{m}(2{\sqrt {\lambda }})}{I_{0}(2{\sqrt {\lambda }})}},}

whereIr(x){\displaystyle I_{r}(x)} is themodified Bessel function of the first kind.

Using the connecting formula for moments and factorial moments gives

EXm=k=1m{mk}λk/2Ik(2λ)I0(2λ).{\displaystyle \operatorname {E} X^{m}=\sum _{k=1}^{m}\left\{{m \atop k}\right\}{\frac {\lambda ^{k/2}I_{k}(2{\sqrt {\lambda }})}{I_{0}(2{\sqrt {\lambda }})}}.}

In particular, the mean ofX{\displaystyle X} is given by

EX=λI1(2λ)I0(2λ).{\displaystyle \operatorname {E} X={\frac {{\sqrt {\lambda }}I_{1}(2{\sqrt {\lambda }})}{I_{0}(2{\sqrt {\lambda }})}}.}

Also, sinceEX2=λ{\displaystyle \operatorname {E} X^{2}=\lambda }, the variance is given by

Var(X)=λ(1I1(2λ)2I0(2λ)2).{\displaystyle \mathrm {Var} (X)=\lambda \left(1-{\frac {I_{1}(2{\sqrt {\lambda }})^{2}}{I_{0}(2{\sqrt {\lambda }})^{2}}}\right).}

Suppose now thatν1{\displaystyle \nu \geq 1} is an integer. Then[6]

E[(X)m]=λm(m!)ν10Fν1(;m+1,,m+1;λ)0Fν1(;1,,1;λ).{\displaystyle \operatorname {E} [(X)_{m}]={\frac {\lambda ^{m}}{(m!)^{\nu -1}}}{\frac {_{0}F_{\nu -1}(;m+1,\ldots ,m+1;\lambda )}{_{0}F_{\nu -1}(;1,\ldots ,1;\lambda )}}.}

In particular,

E[X]=λ0Fν1(;2,,2;λ)0Fν1(;1,,1;λ),{\displaystyle \operatorname {E} [X]=\lambda {\frac {_{0}F_{\nu -1}(;2,\ldots ,2;\lambda )}{_{0}F_{\nu -1}(;1,\ldots ,1;\lambda )}},}

and

Var(X)=λ22ν10Fν1(;3,,3;λ)0Fν1(;1,,1;λ)+E[X](E[X])2.{\displaystyle \mathrm {Var} (X)={\frac {\lambda ^{2}}{2^{\nu -1}}}{\frac {_{0}F_{\nu -1}(;3,\ldots ,3;\lambda )}{_{0}F_{\nu -1}(;1,\ldots ,1;\lambda )}}+\operatorname {E} [X]-(\operatorname {E} [X])^{2}.}

Median, mode and mean deviation

[edit]

LetXCMP(λ,ν){\displaystyle X\sim \mathrm {CMP} (\lambda ,\nu )}. Then themode ofX{\displaystyle X} isλ1/ν{\displaystyle \lfloor \lambda ^{1/\nu }\rfloor } ifλ1/ν<m{\displaystyle \lambda ^{1/\nu }<m} is not an integer. Otherwise, the modes ofX{\displaystyle X} areλ1/ν{\displaystyle \lambda ^{1/\nu }} andλ1/ν1{\displaystyle \lambda ^{1/\nu }-1}.[7]

The mean deviation ofXν{\displaystyle X^{\nu }} about its meanλ{\displaystyle \lambda } is given by[7]

E|Xνλ|=2Z(λ,ν)1λλ1/ν+1λ1/ν!.{\displaystyle \operatorname {E} |X^{\nu }-\lambda |=2Z(\lambda ,\nu )^{-1}{\frac {\lambda ^{\lfloor \lambda ^{1/\nu }\rfloor +1}}{\lfloor \lambda ^{1/\nu }\rfloor !}}.}

No explicit formula is known for themedian ofX{\displaystyle X}, but the following asymptotic result is available.[7] Letm{\displaystyle m} be the median ofXCMP(λ,ν){\displaystyle X\sim {\mbox{CMP}}(\lambda ,\nu )}. Then

m=λ1/ν+O(λ1/2ν),{\displaystyle m=\lambda ^{1/\nu }+{\mathcal {O}}\left(\lambda ^{1/2\nu }\right),}

asλ{\displaystyle \lambda \rightarrow \infty }.

Stein characterisation

[edit]

LetXCMP(λ,ν){\displaystyle X\sim {\mbox{CMP}}(\lambda ,\nu )}, and suppose thatf:Z+R{\displaystyle f:\mathbb {Z} ^{+}\mapsto \mathbb {R} } is such thatE|f(X+1)|<{\displaystyle \operatorname {E} |f(X+1)|<\infty } andE|Xνf(X)|<{\displaystyle \operatorname {E} |X^{\nu }f(X)|<\infty }. Then

E[λf(X+1)Xνf(X)]=0.{\displaystyle \operatorname {E} [\lambda f(X+1)-X^{\nu }f(X)]=0.}

Conversely, suppose now thatW{\displaystyle W} is a real-valued random variable supported onZ+{\displaystyle \mathbb {Z} ^{+}} such thatE[λf(W+1)Wνf(W)]=0{\displaystyle \operatorname {E} [\lambda f(W+1)-W^{\nu }f(W)]=0} for all boundedf:Z+R{\displaystyle f:\mathbb {Z} ^{+}\mapsto \mathbb {R} }. ThenWCMP(λ,ν){\displaystyle W\sim {\mbox{CMP}}(\lambda ,\nu )}.[7]

Use as a limiting distribution

[edit]

LetYn{\displaystyle Y_{n}} have theConway–Maxwell–binomial distribution with parametersn{\displaystyle n},p=λ/nν{\displaystyle p=\lambda /n^{\nu }} andν{\displaystyle \nu }. Fixλ>0{\displaystyle \lambda >0} andν>0{\displaystyle \nu >0}. Then,Yn{\displaystyle Y_{n}} converges in distribution to theCMP(λ,ν){\displaystyle \mathrm {CMP} (\lambda ,\nu )} distribution asn{\displaystyle n\rightarrow \infty }.[7] This result generalises the classical Poisson approximation of the binomial distribution. More generally, the CMP distribution arises as a limiting distribution of Conway–Maxwell–Poisson binomial distribution.[7] Apart from the fact that COM-binomial approximates to COM-Poisson, Zhang et al. (2018)[9] illustrates that COM-negative binomial distribution withprobability mass function

P(X=k)=(Γ(r+k)k!Γ(r))νpk(1p)ri=0(Γ(r+i)i!Γ(r))νpi(1p)r=(Γ(r+k)k!Γ(r))νpk(1p)r1C(r,ν,p),(k=0,1,2,),{\displaystyle \mathrm {P} (X=k)={\frac {{{({\frac {\Gamma (r+k)}{k!\Gamma (r)}})}^{\nu }}{p^{k}}{{(1-p)}^{r}}}{\sum \limits _{i=0}^{\infty }{{({\frac {\Gamma (r+i)}{i!\Gamma (r)}})}^{\nu }}{p^{i}}{{(1-p)}^{r}}}}={{\left({\frac {\Gamma (r+k)}{k!\Gamma (r)}}\right)}^{\nu }}{{p^{k}}{{(1-p)}^{r}}}{\frac {1}{C(r,\nu ,p)}},\quad (k=0,1,2,\ldots ),}

convergents to a limiting distribution which is the COM-Poisson, asr+{\displaystyle {r\to +\infty }} .

Related distributions

[edit]

Parameter estimation

[edit]

There are a few methods of estimating the parameters of the CMP distribution from the data. Two methods will be discussed: weighted least squares and maximum likelihood. The weighted least squares approach is simple and efficient but lacks precision. Maximum likelihood, on the other hand, is precise, but is more complex and computationally intensive.

Weighted least squares

[edit]

Theweighted least squares provides a simple, efficient method to derive rough estimates of the parameters of the CMP distribution and determine if the distribution would be an appropriate model. Following the use of this method, an alternative method should be employed to compute more accurate estimates of the parameters if the model is deemed appropriate.

This method uses the relationship of successive probabilities as discussed above. By taking logarithms of both sides of this equation, the following linear relationship arises

logpx1px=logλ+νlogx{\displaystyle \log {\frac {p_{x-1}}{p_{x}}}=-\log \lambda +\nu \log x}

wherepx{\displaystyle p_{x}} denotesPr(X=x){\displaystyle \Pr(X=x)}. When estimating the parameters, the probabilities can be replaced by therelative frequencies ofx{\displaystyle x} andx1{\displaystyle x-1}. To determine if the CMP distribution is an appropriate model, these values should be plotted againstlogx{\displaystyle \log x} for all ratios without zero counts. If the data appear to be linear, then the model is likely to be a good fit.

Once the appropriateness of the model is determined, the parameters can be estimated by fitting a regression oflog(p^x1/p^x){\displaystyle \log({\hat {p}}_{x-1}/{\hat {p}}_{x})} onlogx{\displaystyle \log x}. However, the basic assumption ofhomoscedasticity is violated, so aweighted least squares regression must be used. The inverse weight matrix will have the variances of each ratio on the diagonal with the one-step covariances on the first off-diagonal, both given below.

var[logp^x1p^x]1npx+1npx1{\displaystyle \operatorname {var} \left[\log {\frac {{\hat {p}}_{x-1}}{{\hat {p}}_{x}}}\right]\approx {\frac {1}{np_{x}}}+{\frac {1}{np_{x-1}}}}
cov(logp^x1p^x,logp^xp^x+1)1npx{\displaystyle {\text{cov}}\left(\log {\frac {{\hat {p}}_{x-1}}{{\hat {p}}_{x}}},\log {\frac {{\hat {p}}_{x}}{{\hat {p}}_{x+1}}}\right)\approx -{\frac {1}{np_{x}}}}

Maximum likelihood

[edit]

The CMPlikelihood function is

L(λ,νx1,,xn)=λS1exp(νS2)Zn(λ,ν){\displaystyle {\mathcal {L}}(\lambda ,\nu \mid x_{1},\dots ,x_{n})=\lambda ^{S_{1}}\exp(-\nu S_{2})Z^{-n}(\lambda ,\nu )}

whereS1=i=1nxi{\displaystyle S_{1}=\sum _{i=1}^{n}x_{i}} andS2=i=1nlogxi!{\displaystyle S_{2}=\sum _{i=1}^{n}\log x_{i}!}. Maximizing the likelihood yields the following two equations

E[X]=X¯{\displaystyle \operatorname {E} [X]={\bar {X}}}
E[logX!]=logX!¯{\displaystyle \operatorname {E} [\log X!]={\overline {\log X!}}}

which do not have an analytic solution.

Instead, themaximum likelihood estimates are approximated numerically by theNewton–Raphson method. In each iteration, the expectations, variances, and covariance ofX{\displaystyle X} andlogX!{\displaystyle \log X!} are approximated by using the estimates forλ{\displaystyle \lambda } andν{\displaystyle \nu } from the previous iteration in the expression

E[f(x)]=j=0f(j)λj(j!)νZ(λ,ν).{\displaystyle \operatorname {E} [f(x)]=\sum _{j=0}^{\infty }f(j){\frac {\lambda ^{j}}{(j!)^{\nu }Z(\lambda ,\nu )}}.}

This is continued until convergence ofλ^{\displaystyle {\hat {\lambda }}} andν^{\displaystyle {\hat {\nu }}}.

Generalized linear model

[edit]

The basic CMP distribution discussed above has also been used as the basis for ageneralized linear model (GLM) using a Bayesian formulation. A dual-link GLM based on the CMP distribution has been developed,[10]and this model has been used to evaluate traffic accident data.[11][12] The CMP GLM developed by Guikema and Coffelt (2008) is based on a reformulation of the CMP distribution above, replacingλ{\displaystyle \lambda } withμ=λ1/ν{\displaystyle \mu =\lambda ^{1/\nu }}. The integral part ofμ{\displaystyle \mu } is then the mode of the distribution. A full Bayesian estimation approach has been used withMCMC sampling implemented inWinBugs withnon-informative priors for the regression parameters.[10][11] This approach is computationally expensive, but it yields the full posterior distributions for the regression parameters and allows expert knowledge to be incorporated through the use of informative priors.

A classical GLM formulation for a CMP regression has been developed which generalizesPoisson regression andlogistic regression.[13] This takes advantage of theexponential family properties of the CMP distribution to obtain elegant model estimation (viamaximum likelihood), inference, diagnostics, and interpretation. This approach requires substantially less computational time than the Bayesian approach, at the cost of not allowing expert knowledge to be incorporated into the model.[13] In addition it yields standard errors for the regression parameters (via the Fisher Information matrix) compared to the full posterior distributions obtainable via the Bayesian formulation. It also provides astatistical test for the level of dispersion compared to a Poisson model. Code for fitting a CMP regression, testing for dispersion, and evaluating fit is available.[14]

The two GLM frameworks developed for the CMP distribution significantly extend the usefulness of this distribution for data analysis problems.

References

[edit]
  1. ^"Conway–Maxwell–Poisson Regression".SAS Support. SAS Institute, Inc. Retrieved2 March 2015.
  2. ^abcdefShmueli G., Minka T., Kadane J.B., Borle S., and Boatwright, P.B. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution."Journal of the Royal Statistical Society: Series C (Applied Statistics) 54.1 (2005): 127–142.[1]
  3. ^Conway, R. W.; Maxwell, W. L. (1962), "A queuing model with state dependent service rates",Journal of Industrial Engineering,12:132–136
  4. ^Boatwright, P., Borle, S. and Kadane, J.B. "A model of the joint distribution of purchase quantity and timing."Journal of the American Statistical Association 98 (2003): 564–572.
  5. ^Li B., Zhang H., Jiao H. "Some Characterizations and Properties of COM-Poisson Random Variables."Communications in Statistics - Theory and Methods, (2019).[2]
  6. ^abcNadarajah, S. "Useful moment and CDF formulations for the COM–Poisson distribution." Statistical Papers 50 (2009): 617–622.
  7. ^abcdefghijDaly, F. and Gaunt, R.E. " The Conway–Maxwell–Poisson distribution: distributional theory and approximation." ALEA Latin American Journal of Probability and Mathematical Statistics 13 (2016): 635–658.
  8. ^abcGaunt, R.E., Iyengar, S., Olde Daalhuis, A.B. and Simsek, B. "An asymptotic expansion for the normalizing constant of the Conway–Maxwell–Poisson distribution." To appear in Annals of the Institute of Statistical Mathematics (2017+) DOI 10.1007/s10463-017-0629-6
  9. ^Zhang H., Tan K., Li B. "COM-negative binomial distribution: modeling overdispersion and ultrahigh zero-inflated count data." Frontiers of Mathematics in China, 2018, 13(4): 967–998.[3]
  10. ^abGuikema, S.D. and J.P. Coffelt (2008) "A Flexible Count Data Regression Model for Risk Analysis",Risk Analysis, 28 (1), 213–223.doi:10.1111/j.1539-6924.2008.01014.x
  11. ^abLord, D., S.D. Guikema, and S.R. Geedipally (2008) "Application of the Conway–Maxwell–Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes,"Accident Analysis & Prevention, 40 (3), 1123–1134.doi:10.1016/j.aap.2007.12.003
  12. ^Lord, D., S.R. Geedipally, and S.D. Guikema (2010) "Extension of the Application of Conway–Maxwell–Poisson Models: Analyzing Traffic Crash Data Exhibiting Under-Dispersion,"Risk Analysis, 30 (8), 1268–1276.doi:10.1111/j.1539-6924.2010.01417.x
  13. ^abSellers, K. S. and Shmueli, G. (2010),"A Flexible Regression Model for Count Data",Annals of Applied Statistics, 4 (2), 943–961
  14. ^Code for COM_Poisson modelling, Georgetown Univ.

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Conway–Maxwell–Poisson_distribution&oldid=1175105786"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp