Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Convolution theorem

From Wikipedia, the free encyclopedia
Theorem in mathematics

Inmathematics, theconvolution theorem states that under suitable conditions theFourier transform of aconvolution of two functions (orsignals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g.,time domain) equals point-wise multiplication in the other domain (e.g.,frequency domain). Other versions of the convolution theorem are applicable to variousFourier-related transforms.

Functions of a continuous variable

[edit]

Consider two functionsu(x){\displaystyle u(x)} andv(x){\displaystyle v(x)} withFourier transformsU{\displaystyle U} andV{\displaystyle V}:

U(f)F{u}(f)=u(x)ei2πfxdx,fRV(f)F{v}(f)=v(x)ei2πfxdx,fR{\displaystyle {\begin{aligned}U(f)&\triangleq {\mathcal {F}}\{u\}(f)=\int _{-\infty }^{\infty }u(x)e^{-i2\pi fx}\,dx,\quad f\in \mathbb {R} \\V(f)&\triangleq {\mathcal {F}}\{v\}(f)=\int _{-\infty }^{\infty }v(x)e^{-i2\pi fx}\,dx,\quad f\in \mathbb {R} \end{aligned}}}

whereF{\displaystyle {\mathcal {F}}} denotes theFourier transformoperator. The transform may be normalized in other ways, in which case constant scaling factors (typically2π{\displaystyle 2\pi } or2π{\displaystyle {\sqrt {2\pi }}}) will appear in the convolution theorem below. The convolution ofu{\displaystyle u} andv{\displaystyle v} is defined by:

r(x)={uv}(x)u(τ)v(xτ)dτ=u(xτ)v(τ)dτ.{\displaystyle r(x)=\{u*v\}(x)\triangleq \int _{-\infty }^{\infty }u(\tau )v(x-\tau )\,d\tau =\int _{-\infty }^{\infty }u(x-\tau )v(\tau )\,d\tau .}

In this context theasterisk denotes convolution, instead of standard multiplication. Thetensor product symbol{\displaystyle \otimes } is sometimes used instead.

Theconvolution theorem states that:[1][2]: eq.8 

R(f)F{r}(f)=U(f)V(f).fR{\displaystyle R(f)\triangleq {\mathcal {F}}\{r\}(f)=U(f)V(f).\quad f\in \mathbb {R} }    

Eq.1a

Applying the inverse Fourier transformF1,{\displaystyle {\mathcal {F}}^{-1},} produces the corollary:[2]: eqs.7, 10 

Convolution theorem

r(x)={uv}(x)=F1{UV}.{\displaystyle r(x)=\{u*v\}(x)={\mathcal {F}}^{-1}\{U\cdot V\}.}    

Eq.1b

The theorem also generally applies to multi-dimensional functions.

Multi-dimensional derivation of Eq.1

Consider functionsu,v{\displaystyle u,v} inLp-spaceL1(Rn),{\displaystyle L^{1}(\mathbb {R} ^{n}),} with Fourier transformsU,V{\displaystyle U,V}:

U(f)F{u}(f)=Rnu(x)ei2πfxdx,fRnV(f)F{v}(f)=Rnv(x)ei2πfxdx,{\displaystyle {\begin{aligned}U(f)&\triangleq {\mathcal {F}}\{u\}(f)=\int _{\mathbb {R} ^{n}}u(x)e^{-i2\pi f\cdot x}\,dx,\quad f\in \mathbb {R} ^{n}\\V(f)&\triangleq {\mathcal {F}}\{v\}(f)=\int _{\mathbb {R} ^{n}}v(x)e^{-i2\pi f\cdot x}\,dx,\end{aligned}}}

wherefx{\displaystyle f\cdot x} indicates theinner product ofRn{\displaystyle \mathbb {R} ^{n}}:  fx=j=1nfjxj,{\displaystyle f\cdot x=\sum _{j=1}^{n}{f}_{j}x_{j},}   and  dx=j=1ndxj.{\displaystyle dx=\prod _{j=1}^{n}dx_{j}.}

Theconvolution ofu{\displaystyle u} andv{\displaystyle v} is defined by:

r(x)Rnu(τ)v(xτ)dτ.{\displaystyle r(x)\triangleq \int _{\mathbb {R} ^{n}}u(\tau )v(x-\tau )\,d\tau .}

Also:

|u(τ)v(xτ)|dxdτ=(|u(τ)||v(xτ)|dx)dτ=|u(τ)|v1dτ=u1v1.{\displaystyle \iint |u(\tau )v(x-\tau )|\,dx\,d\tau =\int \left(|u(\tau )|\int |v(x-\tau )|\,dx\right)\,d\tau =\int |u(\tau )|\,\|v\|_{1}\,d\tau =\|u\|_{1}\|v\|_{1}.}

Hence byFubini's theorem we have thatrL1(Rn){\displaystyle r\in L^{1}(\mathbb {R} ^{n})} so its Fourier transformR{\displaystyle R} is defined by the integral formula:

R(f)F{r}(f)=Rnr(x)ei2πfxdx=Rn(Rnu(τ)v(xτ)dτ)ei2πfxdx.{\displaystyle {\begin{aligned}R(f)\triangleq {\mathcal {F}}\{r\}(f)&=\int _{\mathbb {R} ^{n}}r(x)e^{-i2\pi f\cdot x}\,dx\\&=\int _{\mathbb {R} ^{n}}\left(\int _{\mathbb {R} ^{n}}u(\tau )v(x-\tau )\,d\tau \right)\,e^{-i2\pi f\cdot x}\,dx.\end{aligned}}}

Note that|u(τ)v(xτ)ei2πfx|=|u(τ)v(xτ)|,{\displaystyle |u(\tau )v(x-\tau )e^{-i2\pi f\cdot x}|=|u(\tau )v(x-\tau )|,}  Hence by the argument above we may apply Fubini's theorem again (i.e. interchange the order of integration):

R(f)=Rnu(τ)(Rnv(xτ) ei2πfxdx)V(f) ei2πfτdτ=(Rnu(τ) ei2πfτdτ)U(f) V(f).{\displaystyle {\begin{aligned}R(f)&=\int _{\mathbb {R} ^{n}}u(\tau )\underbrace {\left(\int _{\mathbb {R} ^{n}}v(x-\tau )\ e^{-i2\pi f\cdot x}\,dx\right)} _{V(f)\ e^{-i2\pi f\cdot \tau }}\,d\tau \\&=\underbrace {\left(\int _{\mathbb {R} ^{n}}u(\tau )\ e^{-i2\pi f\cdot \tau }\,d\tau \right)} _{U(f)}\ V(f).\end{aligned}}}

This theorem also holds for theLaplace transform, thetwo-sided Laplace transform and, when suitably modified, for theMellin transform andHartley transform (seeMellin inversion theorem). It can be extended to the Fourier transform ofabstract harmonic analysis defined overlocally compact abelian groups.

Periodic convolution (Fourier series coefficients)

[edit]

ConsiderP{\displaystyle P}-periodic functionsuP{\displaystyle u_{_{P}}}   and  vP,{\displaystyle v_{_{P}},} which can be expressed asperiodic summations:

uP(x) m=u(xmP){\displaystyle u_{_{P}}(x)\ \triangleq \sum _{m=-\infty }^{\infty }u(x-mP)}   and  vP(x) m=v(xmP).{\displaystyle v_{_{P}}(x)\ \triangleq \sum _{m=-\infty }^{\infty }v(x-mP).}

In practice the non-zero portion of componentsu{\displaystyle u} andv{\displaystyle v} are often limited to durationP,{\displaystyle P,} but nothing in the theorem requires that.

TheFourier series coefficients are:

U[k]F{uP}[k]=1PPuP(x)ei2πkx/Pdx,kZ;integration over any interval of length PV[k]F{vP}[k]=1PPvP(x)ei2πkx/Pdx,kZ{\displaystyle {\begin{aligned}U[k]&\triangleq {\mathcal {F}}\{u_{_{P}}\}[k]={\frac {1}{P}}\int _{P}u_{_{P}}(x)e^{-i2\pi kx/P}\,dx,\quad k\in \mathbb {Z} ;\quad \quad \scriptstyle {\text{integration over any interval of length }}P\\V[k]&\triangleq {\mathcal {F}}\{v_{_{P}}\}[k]={\frac {1}{P}}\int _{P}v_{_{P}}(x)e^{-i2\pi kx/P}\,dx,\quad k\in \mathbb {Z} \end{aligned}}}

whereF{\displaystyle {\mathcal {F}}} denotes theFourier series integral.

F{uPvP}[k]={UV}[k].{\displaystyle {\mathcal {F}}\{u_{_{P}}\cdot v_{_{P}}\}[k]=\{U*V\}[k].}
  • The convolution:
{uPv}(x) uP(xτ)v(τ) dτPuP(xτ)vP(τ) dτ;integration over any interval of length P{\displaystyle {\begin{aligned}\{u_{_{P}}*v\}(x)\ &\triangleq \int _{-\infty }^{\infty }u_{_{P}}(x-\tau )\cdot v(\tau )\ d\tau \\&\equiv \int _{P}u_{_{P}}(x-\tau )\cdot v_{_{P}}(\tau )\ d\tau ;\quad \quad \scriptstyle {\text{integration over any interval of length }}P\end{aligned}}}

is alsoP{\displaystyle P}-periodic, and is called aperiodic convolution.

Derivation of periodic convolution
uP(xτ)v(τ)dτ=k=[xo+kPxo+(k+1)PuP(xτ)v(τ) dτ]x0 is an arbitrary parameter=k=[xoxo+PuP(xτkP)uP(xτ), by periodicityv(τ+kP) dτ]substituting ττ+kP=xoxo+PuP(xτ)[k=v(τ+kP)] vP(τ) dτ{\displaystyle {\begin{aligned}\int _{-\infty }^{\infty }u_{_{P}}(x-\tau )\cdot v(\tau )\,d\tau &=\sum _{k=-\infty }^{\infty }\left[\int _{x_{o}+kP}^{x_{o}+(k+1)P}u_{_{P}}(x-\tau )\cdot v(\tau )\ d\tau \right]\quad x_{0}{\text{ is an arbitrary parameter}}\\&=\sum _{k=-\infty }^{\infty }\left[\int _{x_{o}}^{x_{o}+P}\underbrace {u_{_{P}}(x-\tau -kP)} _{u_{_{P}}(x-\tau ),{\text{ by periodicity}}}\cdot v(\tau +kP)\ d\tau \right]\quad {\text{substituting }}\tau \rightarrow \tau +kP\\&=\int _{x_{o}}^{x_{o}+P}u_{_{P}}(x-\tau )\cdot \underbrace {\left[\sum _{k=-\infty }^{\infty }v(\tau +kP)\right]} _{\triangleq \ v_{_{P}}(\tau )}\ d\tau \end{aligned}}}

The corresponding convolution theorem is:

F{uPv}[k]= PU[k] V[k].{\displaystyle {\mathcal {F}}\{u_{_{P}}*v\}[k]=\ P\cdot U[k]\ V[k].}    

Eq.2
Derivation of Eq.2
F{uPv}[k]1PP(PuP(τ)vP(xτ) dτ)ei2πkx/Pdx=PuP(τ)(1PPvP(xτ) ei2πkx/Pdx)dτ=PuP(τ) ei2πkτ/P(1PPvP(xτ) ei2πk(xτ)/Pdx)V[k],due to periodicitydτ=(P uP(τ) ei2πkτ/Pdτ)PU[k] V[k].{\displaystyle {\begin{aligned}{\mathcal {F}}\{u_{_{P}}*v\}[k]&\triangleq {\frac {1}{P}}\int _{P}\left(\int _{P}u_{_{P}}(\tau )\cdot v_{_{P}}(x-\tau )\ d\tau \right)e^{-i2\pi kx/P}\,dx\\&=\int _{P}u_{_{P}}(\tau )\left({\frac {1}{P}}\int _{P}v_{_{P}}(x-\tau )\ e^{-i2\pi kx/P}dx\right)\,d\tau \\&=\int _{P}u_{_{P}}(\tau )\ e^{-i2\pi k\tau /P}\underbrace {\left({\frac {1}{P}}\int _{P}v_{_{P}}(x-\tau )\ e^{-i2\pi k(x-\tau )/P}dx\right)} _{V[k],\quad {\text{due to periodicity}}}\,d\tau \\&=\underbrace {\left(\int _{P}\ u_{_{P}}(\tau )\ e^{-i2\pi k\tau /P}d\tau \right)} _{P\cdot U[k]}\ V[k].\end{aligned}}}

Functions of a discrete variable (sequences)

[edit]

By a derivation similar to Eq.1, there is an analogous theorem for sequences, such as samples of two continuous functions, where nowF{\displaystyle {\mathcal {F}}} denotes thediscrete-time Fourier transform (DTFT) operator. Consider two sequencesu[n]{\displaystyle u[n]} andv[n]{\displaystyle v[n]} with transformsU{\displaystyle U} andV{\displaystyle V}:

U(f)F{u}(f)=n=u[n]ei2πfn,fR,V(f)F{v}(f)=n=v[n]ei2πfn,fR.{\displaystyle {\begin{aligned}U(f)&\triangleq {\mathcal {F}}\{u\}(f)=\sum _{n=-\infty }^{\infty }u[n]\cdot e^{-i2\pi fn}\;,\quad f\in \mathbb {R} ,\\V(f)&\triangleq {\mathcal {F}}\{v\}(f)=\sum _{n=-\infty }^{\infty }v[n]\cdot e^{-i2\pi fn}\;,\quad f\in \mathbb {R} .\end{aligned}}}

The§ Discrete convolution ofu{\displaystyle u} andv{\displaystyle v} is defined by:

r[n](uv)[n]=m=u[m]v[nm]=m=u[nm]v[m].{\displaystyle r[n]\triangleq (u*v)[n]=\sum _{m=-\infty }^{\infty }u[m]\cdot v[n-m]=\sum _{m=-\infty }^{\infty }u[n-m]\cdot v[m].}

Theconvolution theorem for discrete sequences is:[3][4]: p.60 (2.169) 

R(f)=F{uv}(f)= U(f)V(f).{\displaystyle R(f)={\mathcal {F}}\{u*v\}(f)=\ U(f)V(f).}    

Eq.3

Periodic convolution

[edit]

U(f){\displaystyle U(f)} andV(f),{\displaystyle V(f),} as defined above, are periodic, with a period of 1. ConsiderN{\displaystyle N}-periodic sequencesuN{\displaystyle u_{_{N}}} andvN{\displaystyle v_{_{N}}}:

uN[n] m=u[nmN]{\displaystyle u_{_{N}}[n]\ \triangleq \sum _{m=-\infty }^{\infty }u[n-mN]}   and  vN[n] m=v[nmN],nZ.{\displaystyle v_{_{N}}[n]\ \triangleq \sum _{m=-\infty }^{\infty }v[n-mN],\quad n\in \mathbb {Z} .}

These functions occur as the result of samplingU{\displaystyle U} andV{\displaystyle V} at intervals of1/N{\displaystyle 1/N} and performing an inversediscrete Fourier transform (DFT) onN{\displaystyle N} samples (see§ Sampling the DTFT). The discrete convolution:

{uNv}[n] m=uN[m]v[nm]m=0N1uN[m]vN[nm]{\displaystyle \{u_{_{N}}*v\}[n]\ \triangleq \sum _{m=-\infty }^{\infty }u_{_{N}}[m]\cdot v[n-m]\equiv \sum _{m=0}^{N-1}u_{_{N}}[m]\cdot v_{_{N}}[n-m]}

is alsoN{\displaystyle N}-periodic, and is called aperiodic convolution. Redefining theF{\displaystyle {\mathcal {F}}} operator as theN{\displaystyle N}-length DFT, the corresponding theorem is:[5][4]: p. 548 

F{uNv}[k]= F{uN}[k]U(k/N)F{vN}[k]V(k/N),kZ.{\displaystyle {\mathcal {F}}\{u_{_{N}}*v\}[k]=\ \underbrace {{\mathcal {F}}\{u_{_{N}}\}[k]} _{U(k/N)}\cdot \underbrace {{\mathcal {F}}\{v_{_{N}}\}[k]} _{V(k/N)},\quad k\in \mathbb {Z} .}    

Eq.4a

And therefore:

{uNv}[n]= F1{F{uN}F{vN}}.{\displaystyle \{u_{_{N}}*v\}[n]=\ {\mathcal {F}}^{-1}\{{\mathcal {F}}\{u_{_{N}}\}\cdot {\mathcal {F}}\{v_{_{N}}\}\}.}    

Eq.4b

Under the right conditions, it is possible for thisN{\displaystyle N}-length sequence to contain a distortion-free segment of auv{\displaystyle u*v} convolution. But when the non-zero portion of theu(n){\displaystyle u(n)} orv(n){\displaystyle v(n)} sequence is equal or longer thanN,{\displaystyle N,} some distortion is inevitable.  Such is the case when theV(k/N){\displaystyle V(k/N)} sequence is obtained by directly sampling the DTFT of the infinitely long§ Discrete Hilbert transformimpulse response.[A]

Foru{\displaystyle u} andv{\displaystyle v} sequences whose non-zero duration is less than or equal toN,{\displaystyle N,} a final simplification is:

Circular convolution

{uNv}[n]= F1{F{u}F{v}}.{\displaystyle \{u_{_{N}}*v\}[n]=\ {\mathcal {F}}^{-1}\{{\mathcal {F}}\{u\}\cdot {\mathcal {F}}\{v\}\}.}    

Eq.4c

This form is often used to efficiently implement numerical convolution bycomputer. (see§ Fast convolution algorithms and§ Example)

As a partial reciprocal, it has been shown[6]that any linear transform that turns convolution into a product is the DFT (up to a permutation of coefficients).

Derivations of Eq.4

A time-domain derivation proceeds as follows:

DFT{uNv}[k]n=0N1(m=0N1uN[m]vN[nm])ei2πkn/N=m=0N1uN[m](n=0N1vN[nm]ei2πkn/N)=m=0N1uN[m]ei2πkm/N(n=0N1vN[nm]ei2πk(nm)/N)DFT{vN}[k]due to periodicity=(m=0N1uN[m]ei2πkm/N)DFT{uN}[k](DFT{vN}[k]).{\displaystyle {\begin{aligned}\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}*v\}[k]&\triangleq \sum _{n=0}^{N-1}\left(\sum _{m=0}^{N-1}u_{_{N}}[m]\cdot v_{_{N}}[n-m]\right)e^{-i2\pi kn/N}\\&=\sum _{m=0}^{N-1}u_{_{N}}[m]\left(\sum _{n=0}^{N-1}v_{_{N}}[n-m]\cdot e^{-i2\pi kn/N}\right)\\&=\sum _{m=0}^{N-1}u_{_{N}}[m]\cdot e^{-i2\pi km/N}\underbrace {\left(\sum _{n=0}^{N-1}v_{_{N}}[n-m]\cdot e^{-i2\pi k(n-m)/N}\right)} _{\scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}[k]\quad \scriptstyle {\text{due to periodicity}}}\\&=\underbrace {\left(\sum _{m=0}^{N-1}u_{_{N}}[m]\cdot e^{-i2\pi km/N}\right)} _{\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]}\left(\scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}[k]\right).\end{aligned}}}

A frequency-domain derivation follows from§ Periodic data, which indicates that the DTFTs can be written as:

F{uNv}(f)=1Nk=(DFT{uNv}[k])δ(fk/N).(Eq.5a){\displaystyle {\mathcal {F}}\{u_{_{N}}*v\}(f)={\frac {1}{N}}\sum _{k=-\infty }^{\infty }\left(\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}*v\}[k]\right)\cdot \delta \left(f-k/N\right).\quad \scriptstyle {\mathsf {(Eq.5a)}}}
F{uN}(f)=1Nk=(DFT{uN}[k])δ(fk/N).{\displaystyle {\mathcal {F}}\{u_{_{N}}\}(f)={\frac {1}{N}}\sum _{k=-\infty }^{\infty }\left(\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]\right)\cdot \delta \left(f-k/N\right).}

The product withV(f){\displaystyle V(f)} is thereby reduced to a discrete-frequency function:

F{uNv}(f)=GN(f)V(f)=1Nk=(DFT{uN}[k])V(f)δ(fk/N)=1Nk=(DFT{uN}[k])V(k/N)δ(fk/N)=1Nk=(DFT{uN}[k])(DFT{vN}[k])δ(fk/N),(Eq.5b){\displaystyle {\begin{aligned}{\mathcal {F}}\{u_{_{N}}*v\}(f)&=G_{_{N}}(f)V(f)\\&={\frac {1}{N}}\sum _{k=-\infty }^{\infty }\left(\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]\right)\cdot V(f)\cdot \delta \left(f-k/N\right)\\&={\frac {1}{N}}\sum _{k=-\infty }^{\infty }\left(\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]\right)\cdot V(k/N)\cdot \delta \left(f-k/N\right)\\&={\frac {1}{N}}\sum _{k=-\infty }^{\infty }\left(\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]\right)\cdot \left(\scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}[k]\right)\cdot \delta \left(f-k/N\right),\quad \scriptstyle {\mathsf {(Eq.5b)}}\end{aligned}}}

where the equivalence ofV(k/N){\displaystyle V(k/N)} and(DFT{vN}[k]){\displaystyle \left(\scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}[k]\right)} follows from§ Sampling the DTFT. Therefore, the equivalence of (5a) and (5b) requires:

DFT{uNv}[k]=(DFT{uN}[k])(DFT{vN}[k]).{\displaystyle \scriptstyle {\rm {DFT}}\displaystyle {\{u_{_{N}}*v\}[k]}=\left(\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]\right)\cdot \left(\scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}[k]\right).}


We can also verify the inverse DTFT of (5b):

(uNv)[n]=01(1Nk=DFT{uN}[k]DFT{vN}[k]δ(fk/N))ei2πfndf=1Nk=DFT{uN}[k]DFT{vN}[k](01δ(fk/N)ei2πfndf)0, for k  [0, N)=1Nk=0N1(DFT{uN}[k]DFT{vN}[k])ei2πnNk= DFT1(DFT{uN}DFT{vN}).{\displaystyle {\begin{aligned}(u_{_{N}}*v)[n]&=\int _{0}^{1}\left({\frac {1}{N}}\sum _{k=-\infty }^{\infty }\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]\cdot \scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}[k]\cdot \delta \left(f-k/N\right)\right)\cdot e^{i2\pi fn}df\\&={\frac {1}{N}}\sum _{k=-\infty }^{\infty }\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]\cdot \scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}[k]\cdot \underbrace {\left(\int _{0}^{1}\delta \left(f-k/N\right)\cdot e^{i2\pi fn}df\right)} _{{\text{0, for}}\ k\ \notin \ [0,\ N)}\\&={\frac {1}{N}}\sum _{k=0}^{N-1}{\bigg (}\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}[k]\cdot \scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}[k]{\bigg )}\cdot e^{i2\pi {\frac {n}{N}}k}\\&=\ \scriptstyle {\rm {DFT}}^{-1}\displaystyle {\bigg (}\scriptstyle {\rm {DFT}}\displaystyle \{u_{_{N}}\}\cdot \scriptstyle {\rm {DFT}}\displaystyle \{v_{_{N}}\}{\bigg )}.\end{aligned}}}

Convolution theorem for inverse Fourier transform

[edit]

There is also a convolution theorem for the inverse Fourier transform:

Here, "{\displaystyle \cdot }" represents theHadamard product, and "{\displaystyle *}" represents a convolution between the two matrices.

F{uv}=F{u}F{v}F{uv}=F{u}F{v}{\displaystyle {\begin{aligned}&{\mathcal {F}}\{u*v\}={\mathcal {F}}\{u\}\cdot {\mathcal {F}}\{v\}\\&{\mathcal {F}}\{u\cdot v\}={\mathcal {F}}\{u\}*{\mathcal {F}}\{v\}\end{aligned}}}

so that

uv=F1{F{u}F{v}}uv=F1{F{u}F{v}}{\displaystyle {\begin{aligned}&u*v={\mathcal {F}}^{-1}\left\{{\mathcal {F}}\{u\}\cdot {\mathcal {F}}\{v\}\right\}\\&u\cdot v={\mathcal {F}}^{-1}\left\{{\mathcal {F}}\{u\}*{\mathcal {F}}\{v\}\right\}\end{aligned}}}

Convolution theorem for tempered distributions

[edit]

The convolution theorem extends totempered distributions. Here,v{\displaystyle v} is an arbitrary tempered distribution:

F{uv}=F{u}F{v}F{αv}=F{α}F{v}.{\displaystyle {\begin{aligned}&{\mathcal {F}}\{u*v\}={\mathcal {F}}\{u\}\cdot {\mathcal {F}}\{v\}\\&{\mathcal {F}}\{\alpha \cdot v\}={\mathcal {F}}\{\alpha \}*{\mathcal {F}}\{v\}.\end{aligned}}}

Butu=F{α}{\displaystyle u=F\{\alpha \}} must be "rapidly decreasing" towards{\displaystyle -\infty } and+{\displaystyle +\infty } in order to guarantee the existence of both, convolution and multiplication product. Equivalently, ifα=F1{u}{\displaystyle \alpha =F^{-1}\{u\}} is a smooth "slowly growing" ordinary function, it guarantees the existence of both, multiplication and convolution product.[7][8][9]

In particular, every compactly supported tempered distribution, such as theDirac delta, is "rapidly decreasing". Equivalently,bandlimited functions, such as the function that is constantly1{\displaystyle 1} are smooth "slowly growing" ordinary functions. If, for example,vШ{\displaystyle v\equiv \operatorname {\text{Ш}} } is theDirac comb both equations yield thePoisson summation formula and if, furthermore,uδ{\displaystyle u\equiv \delta } is the Dirac delta thenα1{\displaystyle \alpha \equiv 1} is constantly one and these equations yield theDirac comb identity.

See also

[edit]

Notes

[edit]
  1. ^An example is theMATLAB function,hilbert(u,N).

References

[edit]
  1. ^McGillem, Clare D.; Cooper, George R. (1984).Continuous and Discrete Signal and System Analysis (2 ed.). Holt, Rinehart and Winston. p. 118 (3–102).ISBN 0-03-061703-0.
  2. ^abWeisstein, Eric W."Convolution Theorem".From MathWorld--A Wolfram Web Resource. Retrieved8 February 2021.
  3. ^Proakis, John G.; Manolakis, Dimitri G. (1996),Digital Signal Processing: Principles, Algorithms and Applications (3 ed.), New Jersey: Prentice-Hall International, p. 297,Bibcode:1996dspp.book.....P,ISBN 9780133942897, sAcfAQAAIAAJ
  4. ^abOppenheim, Alan V.;Schafer, Ronald W.; Buck, John R. (1999).Discrete-time signal processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall.ISBN 0-13-754920-2.
  5. ^Rabiner, Lawrence R.; Gold, Bernard (1975).Theory and application of digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, Inc. p. 59 (2.163).ISBN 978-0139141010.
  6. ^Amiot, Emmanuel (2016).Music through Fourier Space. Computational Music Science. Zürich: Springer. p. 8.doi:10.1007/978-3-319-45581-5.ISBN 978-3-319-45581-5.S2CID 6224021.
  7. ^Horváth, John (1966).Topological Vector Spaces and Distributions. Reading, MA: Addison-Wesley Publishing Company.
  8. ^Barros-Neto, José (1973).An Introduction to the Theory of Distributions. New York, NY: Dekker.
  9. ^Petersen, Bent E. (1983).Introduction to the Fourier Transform and Pseudo-Differential Operators. Boston, MA: Pitman Publishing.

Further reading

[edit]
  • Katznelson, Yitzhak (1976),An introduction to Harmonic Analysis, Dover,ISBN 0-486-63331-4
  • Li, Bing; Babu, G. Jogesh (2019), "Convolution Theorem and Asymptotic Efficiency",A Graduate Course on Statistical Inference, New York: Springer, pp. 295–327,ISBN 978-1-4939-9759-6
  • Crutchfield, Steve (October 9, 2010),"The Joy of Convolution",Johns Hopkins University, retrievedNovember 19, 2010

Additional resources

[edit]

For a visual representation of the use of the convolution theorem insignal processing, see:

Retrieved from "https://en.wikipedia.org/w/index.php?title=Convolution_theorem&oldid=1279575786"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp