Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Convergence in measure

From Wikipedia, the free encyclopedia
Concepts in probability mathematics
Not to be confused withConvergence of measures.

Convergence in measure is either of two distinct mathematical concepts both of which generalizethe concept ofconvergence in probability.

Definitions

[edit]

Letf,fn (nN):XR{\displaystyle f,f_{n}\ (n\in \mathbb {N} ):X\to \mathbb {R} } bemeasurable functions on ameasure space(X,Σ,μ).{\displaystyle (X,\Sigma ,\mu ).} The sequencefn{\displaystyle f_{n}} is said toconverge globally in measure tof{\displaystyle f} if for everyε>0,{\displaystyle \varepsilon >0,}limnμ({xX:|f(x)fn(x)|ε})=0,{\displaystyle \lim _{n\to \infty }\mu (\{x\in X:|f(x)-f_{n}(x)|\geq \varepsilon \})=0,}and toconverge locally in measure tof{\displaystyle f} if for everyε>0{\displaystyle \varepsilon >0} and everyFΣ{\displaystyle F\in \Sigma } withμ(F)<,{\displaystyle \mu (F)<\infty ,}limnμ({xF:|f(x)fn(x)|ε})=0.{\displaystyle \lim _{n\to \infty }\mu (\{x\in F:|f(x)-f_{n}(x)|\geq \varepsilon \})=0.}

On a finite measure space, both notions are equivalent. Otherwise, convergence in measure can refer to either global convergence in measure[1]: 2.2.3  or local convergence in measure, depending on the author.

Properties

[edit]

Throughout,f{\displaystyle f} andfn{\displaystyle f_{n}} (nN{\displaystyle n\in \mathbb {N} }) are measurable functionsXR{\displaystyle X\to \mathbb {R} }.

Counterexamples

[edit]

LetX=R{\displaystyle X=\mathbb {R} },μ{\displaystyle \mu } be Lebesgue measure, andf{\displaystyle f} the constant function with value zero.

fn=χ[j2k,j+12k],{\displaystyle f_{n}=\chi _{\left[{\frac {j}{2^{k}}},{\frac {j+1}{2^{k}}}\right]},}
wherek=log2n{\displaystyle k=\lfloor \log _{2}n\rfloor } andj=n2k{\displaystyle j=n-2^{k}}, the first five terms of which are
χ[0,1],χ[0,12],χ[12,1],χ[0,14],χ[14,12],{\displaystyle \chi _{\left[0,1\right]},\;\chi _{\left[0,{\frac {1}{2}}\right]},\;\chi _{\left[{\frac {1}{2}},1\right]},\;\chi _{\left[0,{\frac {1}{4}}\right]},\;\chi _{\left[{\frac {1}{4}},{\frac {1}{2}}\right]},}
converges to0{\displaystyle 0} globally in measure; but for nox{\displaystyle x} doesfn(x){\displaystyle f_{n}(x)} converge to zero. Hence(fn){\displaystyle (f_{n})} fails to converge tof{\displaystyle f} almost everywhere.[1]: 2.2.4 
  • The sequence
fn=nχ[0,1n]{\displaystyle f_{n}=n\chi _{\left[0,{\frac {1}{n}}\right]}}
converges tof{\displaystyle f} almost everywhere and globally in measure, but not in thep{\displaystyle p}-norm for anyp1{\displaystyle p\geq 1}.

Topology

[edit]

There is atopology, called thetopology of (local) convergence in measure, on the collection of measurable functions fromX such that local convergence in measure corresponds to convergence on that topology.This topology is defined by the family ofpseudometrics{ρF:FΣ, μ(F)<},{\displaystyle \{\rho _{F}:F\in \Sigma ,\ \mu (F)<\infty \},}whereρF(f,g)=Fmin{|fg|,1}dμ.{\displaystyle \rho _{F}(f,g)=\int _{F}\min\{|f-g|,1\}\,d\mu .}In general, one may restrict oneself to some subfamily of setsF (instead of all possible subsets of finite measure). It suffices that for eachGX{\displaystyle G\subset X} of finite measure andε>0{\displaystyle \varepsilon >0} there existsF in the family such thatμ(GF)<ε.{\displaystyle \mu (G\setminus F)<\varepsilon .} Whenμ(X)<{\displaystyle \mu (X)<\infty }, we may consider only one metricρX{\displaystyle \rho _{X}}, so the topology of convergence in finite measure is metrizable. Ifμ{\displaystyle \mu } is an arbitrary measure finite or not, thend(f,g):=infδ>0μ({|fg|δ})+δ{\displaystyle d(f,g):=\inf \limits _{\delta >0}\mu (\{|f-g|\geq \delta \})+\delta }still defines a metric that generates the global convergence in measure.[2]

Because this topology is generated by a family of pseudometrics, it isuniformizable.Working with uniform structures instead of topologies allows us to formulateuniform properties such asCauchyness.

See also

[edit]

References

[edit]
  1. ^abcdBogachev, Vladimir Igorevich (2007).Measure theory. Berlin New York: Springer.ISBN 978-3-540-34514-5.
  2. ^Vladimir I. Bogachev, Measure Theory Vol. I, Springer Science & Business Media, 2007
  • D.H. Fremlin, 2000.Measure Theory. Torres Fremlin.
  • H.L. Royden, 1988.Real Analysis. Prentice Hall.
  • G. B. Folland 1999, Section 2.4. Real Analysis. John Wiley & Sons.
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Basic concepts
L1 spaces
L2 spaces
L{\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Convergence_in_measure&oldid=1289526781"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp