Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Continuous Bernoulli distribution

From Wikipedia, the free encyclopedia
Probability distribution
Not to be confused withBernoulli distribution.
Continuous Bernoulli distribution
Probability density function
Probability density function of the continuous Bernoulli distribution
Parametersλ=1/(1+eθ)(0,1){\displaystyle \lambda =1/(1+e^{-\theta })\in (0,1)}θR{\displaystyle \theta \in \mathbb {R} },natural parameter
Supportx[0,1]{\displaystyle x\in [0,1]}x[0,1]{\displaystyle x\in [0,1]}
PDFC(λ)λx(1λ)1x{\displaystyle C(\lambda )\lambda ^{x}(1-\lambda )^{1-x}\!}
whereC(λ)={2if λ=122tanh1(12λ)12λ otherwise{\displaystyle C(\lambda )={\begin{cases}2&{\text{if }}\lambda ={\frac {1}{2}}\\{\frac {2\tanh ^{-1}(1-2\lambda )}{1-2\lambda }}&{\text{ otherwise}}\end{cases}}}
f(xθ)={1θ=0exp(xθlog{(eθ1)/θ})θ0{\displaystyle f(x\mid \theta )={\begin{cases}1&\theta =0\\\exp(x\theta -\log\{(e^{\theta }-1)/\theta \})&\theta \neq 0\end{cases}}}
CDFF(xλ)={x,λ=12λx(1λ)1x+λ12λ1,otherwise{\displaystyle F(x\mid \lambda )={\begin{cases}x,&\lambda ={\tfrac {1}{2}}\\[6pt]{\dfrac {\lambda ^{x}(1-\lambda )^{1-x}+\lambda -1}{2\lambda -1}},&{\text{otherwise}}\end{cases}}}F(xθ)={xθ=0(eθx1)/(eθ1)θ0{\displaystyle F(x\mid \theta )={\begin{cases}x&\theta =0\\(e^{\theta x}-1)/(e^{\theta }-1)&\theta \neq 0\end{cases}}}
MeanE[X]={12λ=12λ2λ1+12tanh1(12λ),otherwise{\displaystyle \operatorname {E} [X]={\begin{cases}{\tfrac {1}{2}}&\lambda ={\tfrac {1}{2}}\\[6pt]{\dfrac {\lambda }{2\lambda -1}}+{\dfrac {1}{2\tanh ^{-1}(1-2\lambda )}},&{\text{otherwise}}\end{cases}}}E[X]={1/2θ=0eθ/(eθ1)θ1θ0{\displaystyle \operatorname {E} [X]={\begin{cases}1/2&\theta =0\\e^{\theta }/(e^{\theta }-1)-\theta ^{-1}&\theta \neq 0\end{cases}}}
VarianceVar(X)={112,λ=12λ(1λ)(12λ)2+1(2tanh1(12λ))2,otherwise{\displaystyle \operatorname {Var} (X)={\begin{cases}{\tfrac {1}{12}},&\lambda ={\tfrac {1}{2}}\\[6pt]-{\dfrac {\lambda (1-\lambda )}{(1-2\lambda )^{2}}}+{\dfrac {1}{(2\tanh ^{-1}(1-2\lambda ))^{2}}},&{\text{otherwise}}\end{cases}}}Var(X)={1/12θ=0(2eθeθ)1+θ2θ0{\displaystyle \operatorname {Var} (X)={\begin{cases}1/12&\theta =0\\(2-e^{\theta }-e^{-\theta })^{-1}+\theta ^{2}&\theta \neq 0\end{cases}}}

Inprobability theory,statistics, andmachine learning, thecontinuous Bernoulli distribution[1][2][3] is a family of continuousprobability distributions parameterized by a singleshape parameterλ(0,1){\displaystyle \lambda \in (0,1)}, defined on the unit intervalx[0,1]{\displaystyle x\in [0,1]}, by:

p(x|λ)λx(1λ)1x.{\displaystyle p(x|\lambda )\propto \lambda ^{x}(1-\lambda )^{1-x}.}

The continuous Bernoulli distribution arises indeep learning andcomputer vision, specifically in the context ofvariational autoencoders,[4][5] for modeling the pixel intensities of natural images. As such, it defines a proper probabilistic counterpart for the commonly used binarycross entropy loss, which is often applied to continuous,[0,1]{\displaystyle [0,1]}-valued data.[6][7][8][9] This practice amounts to ignoring the normalizing constant of the continuous Bernoulli distribution, since the binary cross entropy loss only defines a true log-likelihood for discrete,{0,1}{\displaystyle \{0,1\}}-valued data.

The continuous Bernoulli also defines anexponential family of distributions. Writingθ=log(λ/(1λ)){\displaystyle \theta =\log \left(\lambda /(1-\lambda )\right)} for thenatural parameter, the density can be rewritten in canonical form:p(x|θ)exp(θx){\displaystyle p(x|\theta )\propto \exp(\theta x)}.[10]

Statistical inference

[edit]

Given an independent sample ofn{\displaystyle n} pointsx1,,xn{\displaystyle x_{1},\dots ,x_{n}} withxi[0,1]i{\displaystyle x_{i}\in [0,1]\,\forall i} from continuous Bernoulli, the log-likelihood of the natural parameterθ{\displaystyle \theta } is

L(θ)=θi=1nxinlog{(eθ1)/θ}{\displaystyle {\mathcal {L}}(\theta )=\theta \sum _{i=1}^{n}x_{i}-n\log\{(e^{\theta }-1)/\theta \}}

and themaximum likelihood estimator of the natural parameterθ{\displaystyle \theta } is the solution ofL(θ)=0{\displaystyle {\mathcal {L}}'(\theta )=0}, that is,θ^{\displaystyle {\hat {\theta }}} satisfies

eθ^eθ^11θ^=1ni=1nxi{\displaystyle {\frac {e^{\hat {\theta }}}{e^{\hat {\theta }}-1}}-{\frac {1}{\hat {\theta }}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}}

where the left hand sideeθ^/(eθ^1)θ^1{\displaystyle e^{\hat {\theta }}/(e^{\hat {\theta }}-1)-{\hat {\theta }}^{-1}} is the expected value of continuous Bernoulli with parameterθ^{\displaystyle {\hat {\theta }}}. Althoughθ^{\displaystyle {\hat {\theta }}} does not admit a closed-form expression, it can be easily calculated with numerical inversion.


Further properties

[edit]

The entropy of a continuous Bernoulli distribution is

H[X]={0 if λ=12λlog(λ)(1λ)log(1λ)12λlog(2tanh1(12λ)e(12λ)) otherwise{\displaystyle \operatorname {H} [X]={\begin{cases}0&{\text{ if }}\lambda ={\frac {1}{2}}\\{\frac {\lambda \log \left(\lambda \right)-\left(1-\lambda \right)\log \left(1-\lambda \right)}{1-2\lambda }}-\log \left({\frac {2\tanh ^{-1}\left(1-2\lambda \right)}{e\left(1-2\lambda \right)}}\right)&{\text{ otherwise}}\end{cases}}\!}

Related distributions

[edit]

Bernoulli distribution

[edit]

The continuous Bernoulli can be thought of as a continuous relaxation of theBernoulli distribution, which is defined on the discrete set{0,1}{\displaystyle \{0,1\}} by theprobability mass function:

p(x)=px(1p)1x,{\displaystyle p(x)=p^{x}(1-p)^{1-x},}

wherep{\displaystyle p} is a scalar parameter between 0 and 1. Applying this same functional form on the continuous interval[0,1]{\displaystyle [0,1]} results in the continuous Bernoulliprobability density function, up to a normalizing constant.

Uniform distribution

[edit]

TheUniform distribution between the unit interval [0,1] is a special case of continuous Bernoulli whenλ=1/2{\displaystyle \lambda =1/2} orθ=0{\displaystyle \theta =0}.

Exponential distribution

[edit]

Anexponential distribution with rateΛ{\displaystyle \Lambda } restricted to the unit interval [0,1] corresponds to a continuous Bernoulli distribution with natural parameterθ=Λ<0{\displaystyle \theta =-\Lambda <0}.

Continuous categorical distribution

[edit]

The multivariate generalization of the continuous Bernoulli is called thecontinuous-categorical.[11]

References

[edit]
  1. ^Loaiza-Ganem, G., & Cunningham, J. P. (2019). The continuous Bernoulli: fixing a pervasive error in variational autoencoders. In Advances in Neural Information Processing Systems (pp. 13266-13276).
  2. ^PyTorch Distributions.https://pytorch.org/docs/stable/distributions.html#continuousbernoulli
  3. ^Tensorflow Probability.https://www.tensorflow.org/probability/api_docs/python/tfp/edward2/ContinuousBernoulliArchived 2020-11-25 at theWayback Machine
  4. ^Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
  5. ^Kingma, D. P., & Welling, M. (2014, April). Stochastic gradient VB and the variational auto-encoder. In Second International Conference on Learning Representations, ICLR (Vol. 19).
  6. ^Larsen, A. B. L., Sønderby, S. K., Larochelle, H., & Winther, O. (2016, June). Autoencoding beyond pixels using a learned similarity metric. In International conference on machine learning (pp. 1558-1566).
  7. ^Jiang, Z., Zheng, Y., Tan, H., Tang, B., & Zhou, H. (2017, August). Variational deep embedding: an unsupervised and generative approach to clustering. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 1965-1972).
  8. ^PyTorch VAE tutorial:https://github.com/pytorch/examples/tree/master/vae.
  9. ^Keras VAE tutorial:https://blog.keras.io/building-autoencoders-in-keras.html.
  10. ^Lee, C. J.; Dahl, B. K.; Ovaskainen, O.; Dunson, D. B. (2025).Scalable and robust regression models for continuous proportional data. arXiv preprint arXiv:2504.15269.https://arxiv.org/abs/2504.15269
  11. ^Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family. In 36th International Conference on Machine Learning, ICML 2020. International Machine Learning Society (IMLS).
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Continuous_Bernoulli_distribution&oldid=1325540731"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp