Random process in probability theory
Acompound Poisson process is a continuous-timestochastic process with jumps. The jumps arrive randomly according to aPoisson process and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rate
and jump size distributionG, is a process
given by

where,
is the counting variable of aPoisson process with rate
, and
are independent and identically distributed random variables, with distribution functionG, which are also independent of
When
are non-negative integer-valued random variables, then this compound Poisson process is known as astuttering Poisson process.[citation needed]
Properties of the compound Poisson process
[edit]Theexpected value of a compound Poisson process can be calculated using a result known asWald's equation as:

Making similar use of thelaw of total variance, thevariance can be calculated as:
![{\displaystyle {\begin{aligned}\operatorname {var} (Y(t))&=\operatorname {E} (\operatorname {var} (Y(t)\mid N(t)))+\operatorname {var} (\operatorname {E} (Y(t)\mid N(t)))\\[5pt]&=\operatorname {E} (N(t)\operatorname {var} (D))+\operatorname {var} (N(t)\operatorname {E} (D))\\[5pt]&=\operatorname {var} (D)\operatorname {E} (N(t))+\operatorname {E} (D)^{2}\operatorname {var} (N(t))\\[5pt]&=\operatorname {var} (D)\lambda t+\operatorname {E} (D)^{2}\lambda t\\[5pt]&=\lambda t(\operatorname {var} (D)+\operatorname {E} (D)^{2})\\[5pt]&=\lambda t\operatorname {E} (D^{2}).\end{aligned}}}](/image.pl?url=https%3a%2f%2fwikimedia.org%2fapi%2frest_v1%2fmedia%2fmath%2frender%2fsvg%2f5a818cc242b7003a3d5f043f431fdf57801e9734&f=jpg&w=240)
Lastly, using thelaw of total probability, themoment generating function can be given as follows:

![{\displaystyle {\begin{aligned}\operatorname {E} (e^{sY})&=\sum _{i}e^{si}\Pr(Y(t)=i)\\[5pt]&=\sum _{i}e^{si}\sum _{n}\Pr(Y(t)=i\mid N(t)=n)\Pr(N(t)=n)\\[5pt]&=\sum _{n}\Pr(N(t)=n)\sum _{i}e^{si}\Pr(Y(t)=i\mid N(t)=n)\\[5pt]&=\sum _{n}\Pr(N(t)=n)\sum _{i}e^{si}\Pr(D_{1}+D_{2}+\cdots +D_{n}=i)\\[5pt]&=\sum _{n}\Pr(N(t)=n)M_{D}(s)^{n}\\[5pt]&=\sum _{n}\Pr(N(t)=n)e^{n\ln(M_{D}(s))}\\[5pt]&=M_{N(t)}(\ln(M_{D}(s)))\\[5pt]&=e^{\lambda t\left(M_{D}(s)-1\right)}.\end{aligned}}}](/image.pl?url=https%3a%2f%2fwikimedia.org%2fapi%2frest_v1%2fmedia%2fmath%2frender%2fsvg%2f5b8480ad2cecd8cd45d38ad108824ed88fda17cc&f=jpg&w=240)
Exponentiation of measures
[edit]LetN,Y, andD be as above. Letμ be the probability measure according to whichD is distributed, i.e.

Letδ0 be the trivial probability distribution putting all of the mass at zero. Then theprobability distribution ofY(t) is the measure

where the exponential exp(ν) of a finite measureν onBorel subsets of thereal line is defined by

and

is aconvolution of measures, and the series convergesweakly.