Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Compound Poisson process

From Wikipedia, the free encyclopedia
Random process in probability theory
icon
This articledoes notcite anysources. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged andremoved.
Find sources: "Compound Poisson process" – news ·newspapers ·books ·scholar ·JSTOR
(October 2025) (Learn how and when to remove this message)

Acompound Poisson process is a continuous-timestochastic process with jumps. The jumps arrive randomly according to aPoisson process and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rateλ>0{\displaystyle \lambda >0} and jump size distributionG, is a process{Y(t):t0}{\displaystyle \{\,Y(t):t\geq 0\,\}} given by

Y(t)=i=1N(t)Di{\displaystyle Y(t)=\sum _{i=1}^{N(t)}D_{i}}

where,{N(t):t0}{\displaystyle \{\,N(t):t\geq 0\,\}} is the counting variable of aPoisson process with rateλ{\displaystyle \lambda }, and{Di:i1}{\displaystyle \{\,D_{i}:i\geq 1\,\}} are independent and identically distributed random variables, with distribution functionG, which are also independent of{N(t):t0}.{\displaystyle \{\,N(t):t\geq 0\,\}.\,}

WhenDi{\displaystyle D_{i}} are non-negative integer-valued random variables, then this compound Poisson process is known as astuttering Poisson process.[citation needed]

Properties of the compound Poisson process

[edit]

Theexpected value of a compound Poisson process can be calculated using a result known asWald's equation as:

E(Y(t))=E(D1++DN(t))=E(N(t))E(D1)=E(N(t))E(D)=λtE(D).{\displaystyle \operatorname {E} (Y(t))=\operatorname {E} (D_{1}+\cdots +D_{N(t)})=\operatorname {E} (N(t))\operatorname {E} (D_{1})=\operatorname {E} (N(t))\operatorname {E} (D)=\lambda t\operatorname {E} (D).}

Making similar use of thelaw of total variance, thevariance can be calculated as:

var(Y(t))=E(var(Y(t)N(t)))+var(E(Y(t)N(t)))=E(N(t)var(D))+var(N(t)E(D))=var(D)E(N(t))+E(D)2var(N(t))=var(D)λt+E(D)2λt=λt(var(D)+E(D)2)=λtE(D2).{\displaystyle {\begin{aligned}\operatorname {var} (Y(t))&=\operatorname {E} (\operatorname {var} (Y(t)\mid N(t)))+\operatorname {var} (\operatorname {E} (Y(t)\mid N(t)))\\[5pt]&=\operatorname {E} (N(t)\operatorname {var} (D))+\operatorname {var} (N(t)\operatorname {E} (D))\\[5pt]&=\operatorname {var} (D)\operatorname {E} (N(t))+\operatorname {E} (D)^{2}\operatorname {var} (N(t))\\[5pt]&=\operatorname {var} (D)\lambda t+\operatorname {E} (D)^{2}\lambda t\\[5pt]&=\lambda t(\operatorname {var} (D)+\operatorname {E} (D)^{2})\\[5pt]&=\lambda t\operatorname {E} (D^{2}).\end{aligned}}}

Lastly, using thelaw of total probability, themoment generating function can be given as follows:

Pr(Y(t)=i)=nPr(Y(t)=iN(t)=n)Pr(N(t)=n){\displaystyle \Pr(Y(t)=i)=\sum _{n}\Pr(Y(t)=i\mid N(t)=n)\Pr(N(t)=n)}
E(esY)=iesiPr(Y(t)=i)=iesinPr(Y(t)=iN(t)=n)Pr(N(t)=n)=nPr(N(t)=n)iesiPr(Y(t)=iN(t)=n)=nPr(N(t)=n)iesiPr(D1+D2++Dn=i)=nPr(N(t)=n)MD(s)n=nPr(N(t)=n)enln(MD(s))=MN(t)(ln(MD(s)))=eλt(MD(s)1).{\displaystyle {\begin{aligned}\operatorname {E} (e^{sY})&=\sum _{i}e^{si}\Pr(Y(t)=i)\\[5pt]&=\sum _{i}e^{si}\sum _{n}\Pr(Y(t)=i\mid N(t)=n)\Pr(N(t)=n)\\[5pt]&=\sum _{n}\Pr(N(t)=n)\sum _{i}e^{si}\Pr(Y(t)=i\mid N(t)=n)\\[5pt]&=\sum _{n}\Pr(N(t)=n)\sum _{i}e^{si}\Pr(D_{1}+D_{2}+\cdots +D_{n}=i)\\[5pt]&=\sum _{n}\Pr(N(t)=n)M_{D}(s)^{n}\\[5pt]&=\sum _{n}\Pr(N(t)=n)e^{n\ln(M_{D}(s))}\\[5pt]&=M_{N(t)}(\ln(M_{D}(s)))\\[5pt]&=e^{\lambda t\left(M_{D}(s)-1\right)}.\end{aligned}}}

Exponentiation of measures

[edit]

LetN,Y, andD be as above. Letμ be the probability measure according to whichD is distributed, i.e.

μ(A)=Pr(DA).{\displaystyle \mu (A)=\Pr(D\in A).\,}

Letδ0 be the trivial probability distribution putting all of the mass at zero. Then theprobability distribution ofY(t) is the measure

exp(λt(μδ0)){\displaystyle \exp(\lambda t(\mu -\delta _{0}))\,}

where the exponential exp(ν) of a finite measureν onBorel subsets of thereal line is defined by

exp(ν)=n=0νnn!{\displaystyle \exp(\nu )=\sum _{n=0}^{\infty }{\nu ^{*n} \over n!}}

and

νn=ννn factors{\displaystyle \nu ^{*n}=\underbrace {\nu *\cdots *\nu } _{n{\text{ factors}}}}

is aconvolution of measures, and the series convergesweakly.

See also

[edit]
Discrete time
Continuous time
Both
Fields and other
Time series models
Financial models
Actuarial models
Queueing models
Properties
Limit theorems
Inequalities
Tools
Disciplines
Retrieved from "https://en.wikipedia.org/w/index.php?title=Compound_Poisson_process&oldid=1316004883"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp