Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Complex Wishart distribution

From Wikipedia, the free encyclopedia
Probability distribution on complex matrices
This article needs editing tocomply with Wikipedia'sManual of Style. In particular, it has problems withMOS:FORMULA - avoid mixing<math>...</math> and{{math}} in the same expression. Please helpimprove the content.(July 2025) (Learn how and when to remove this message)
Complex Wishart
NotationA ~CWp(Γ{\displaystyle \Gamma },n)
Parametersn >p − 1degrees of freedom (real)
Γ{\displaystyle \Gamma } > 0 (p ×pHermitianpos. def)
SupportA (p ×p)Hermitianpositive definite matrix
PDF

det(A)(np)etr(Γ1A)det(Γ)nCΓ~p(n){\displaystyle {\frac {\det \left(\mathbf {A} \right)^{(n-p)}e^{-\operatorname {tr} (\mathbf {\Gamma } ^{-1}\mathbf {A} )}}{\det \left(\mathbf {\Gamma } \right)^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}}}

MeanE[A]=nΓ{\displaystyle \operatorname {E} [A]=n\Gamma }
Mode(np)Γ{\displaystyle (n-p)\mathbf {\Gamma } } fornp + 1
CFdet(IpiΓΘ)n{\displaystyle \det \left(I_{p}-i\mathbf {\Gamma } \mathbf {\Theta } \right)^{-n}}

Instatistics, thecomplex Wishart distribution is acomplex version of theWishart distribution. It is the distribution ofn{\displaystyle n} times the sample Hermitian covariance matrix ofn{\displaystyle n} zero-meanindependentGaussian random variables. It hassupport forp×p{\displaystyle p\times p}Hermitianpositive definite matrices.[1]

The complex Wishart distribution is also encountered in wireless communications, while analyzing the performance ofRayleigh fadingMIMO wireless channels.[2]

The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let

Sp×p=i=1nGiGiH{\displaystyle S_{p\times p}=\sum _{i=1}^{n}G_{i}G_{i}^{H}}

where eachGi{\displaystyle G_{i}} is an independent columnp-vector of random complex Gaussian zero-mean samples and(.)H{\displaystyle (.)^{H}} is an Hermitian (complex conjugate) transpose. If the covariance ofG isE[GGH]=M{\displaystyle \mathbb {E} [GG^{H}]=M} then

SnCW(M,n,p){\displaystyle S\sim n{\mathcal {CW}}(M,n,p)}

whereCW(M,n,p){\displaystyle {\mathcal {CW}}(M,n,p)} is the complex central Wishart distribution withn degrees of freedom and mean value, or scale matrix,M.

fS(S)=|S|npetr(M1S)|M|nCΓ~p(n),np,|M|>0{\displaystyle f_{S}(\mathbf {S} )={\frac {\left|\mathbf {S} \right|^{n-p}e^{-\operatorname {tr} (\mathbf {M} ^{-1}\mathbf {S} )}}{\left|\mathbf {M} \right|^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}},\;\;\;n\geq p,\;\;\;\left|\mathbf {M} \right|>0}

where

CΓ~p(n)=πp(p1)/2j=1pΓ(nj+1){\displaystyle {\mathcal {C}}{\widetilde {\Gamma }}_{p}^{}(n)=\pi ^{p(p-1)/2}\prod _{j=1}^{p}\Gamma (n-j+1)}

is the complex multivariate Gamma function.[3]

Using the trace rotation ruletr(ABC)=tr(CAB){\displaystyle \operatorname {tr} (ABC)=\operatorname {tr} (CAB)} we also get

fS(S)=|S|np|M|nCΓ~p(n)exp(i=1pGiHM1Gi){\displaystyle f_{S}(\mathbf {S} )={\frac {\left|\mathbf {S} \right|^{n-p}}{\left|\mathbf {M} \right|^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}}\exp \left(-\sum _{i=1}^{p}G_{i}^{H}\mathbf {M} ^{-1}G_{i}\right)}

which is quite close to the complex multivariate pdf ofG itself. The elements ofG conventionally have circular symmetry such thatE[GGT]=0{\displaystyle \mathbb {E} [GG^{T}]=0}.

Inverse Complex WishartThe distribution of the inverse complex Wishart distribution ofY=S1{\displaystyle \mathbf {Y} =\mathbf {S^{-1}} } according to Goodman,[3] Shaman[4] is

fY(Y)=|Y|(n+p)etr(MY1)|M|nCΓ~p(n),np,det(Y)>0{\displaystyle f_{Y}(\mathbf {Y} )={\frac {\left|\mathbf {Y} \right|^{-(n+p)}e^{-\operatorname {tr} (\mathbf {M} \mathbf {Y^{-1}} )}}{\left|\mathbf {M} \right|^{-n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}},\;\;\;n\geq p,\;\;\;\det \left(\mathbf {Y} \right)>0}

whereM=Γ1{\displaystyle \mathbf {M} =\mathbf {\Gamma ^{-1}} }.

If derived via a matrix inversion mapping, the result depends on the complex Jacobian determinant

CJY(Y1)=|Y|2p{\displaystyle {\mathcal {C}}J_{Y}(Y^{-1})=\left|Y\right|^{-2p}}

Goodman and others[5] discuss such complex Jacobians.

Eigenvalues

[edit]

The probability distribution of the eigenvalues of the complex Hermitian Wishart distribution are given by, for example, James[6] and Edelman.[7] For ap×p{\displaystyle p\times p} matrix withνp{\displaystyle \nu \geq p} degrees of freedom we have

f(λ1λp)=K~ν,pexp(12i=1pλi)i=1pλiνpi<j(λiλj)2dλ1dλp,λiR0{\displaystyle f(\lambda _{1}\dots \lambda _{p})={\tilde {K}}_{\nu ,p}\exp \left(-{\frac {1}{2}}\sum _{i=1}^{p}\lambda _{i}\right)\prod _{i=1}^{p}\lambda _{i}^{\nu -p}\prod _{i<j}(\lambda _{i}-\lambda _{j})^{2}d\lambda _{1}\dots d\lambda _{p},\;\;\;\lambda _{i}\in \mathbb {R} \geq 0}

where

K~ν,p1=2pνi=1pΓ(νi+1)Γ(pi+1){\displaystyle {\tilde {K}}_{\nu ,p}^{-1}=2^{p\nu }\prod _{i=1}^{p}\Gamma (\nu -i+1)\Gamma (p-i+1)}

Note however that Edelman uses the "mathematical" definition of a complex normal variableZ=X+iY{\displaystyle Z=X+iY} where iidX andY each have unit variance and the variance ofZ=E(X2+Y2)=2{\displaystyle Z=\mathbf {E} \left(X^{2}+Y^{2}\right)=2}. For the definition more common in engineering circles, withX andY each having 0.5 variance, the eigenvalues are reduced by a factor of 2.

This spectral density can be integrated to give the probability that all eigenvalues of a Wishart random matrix lie within an interval.[8]

The spectral density can be also integrated to give the marginal distribution of eigenvalues.[9][10]

There are also approximations for marginal eigenvalue distributions. From Edelman we have that ifS is a sample from the complex Wishart distribution withp=κν,0κ1{\displaystyle p=\kappa \nu ,\;\;0\leq \kappa \leq 1} such thatSp×pCW(2I,pκ){\displaystyle S_{p\times p}\sim {\mathcal {CW}}\left(2\mathbf {I} ,{\frac {p}{\kappa }}\right)}then in the limitp{\displaystyle p\rightarrow \infty } the distribution of eigenvalues converges in probability to theMarchenko–Pastur distribution function

pλ(λ)=[λ/2(κ1)2][κ+1)2λ/2]4πκ(λ/2),2(κ1)2λ2(κ+1)2,0κ1{\displaystyle p_{\lambda }(\lambda )={\frac {\sqrt {[\lambda /2-({\sqrt {\kappa }}-1)^{2}][{\sqrt {\kappa }}+1)^{2}-\lambda /2]}}{4\pi \kappa (\lambda /2)}},\;\;\;2({\sqrt {\kappa }}-1)^{2}\leq \lambda \leq 2({\sqrt {\kappa }}+1)^{2},\;\;\;0\leq \kappa \leq 1}

This distribution becomes identical to the real Wishart case, by replacingλ{\displaystyle \lambda } by2λ{\displaystyle 2\lambda }, on account of the doubled sample variance, so in the caseSp×pCW(I,pκ){\displaystyle S_{p\times p}\sim {\mathcal {CW}}\left(\mathbf {I} ,{\frac {p}{\kappa }}\right)}, the pdf reduces to the real Wishart one:

pλ(λ)=[λ(κ1)2][κ+1)2λ]2πκλ,(κ1)2λ(κ+1)2,0κ1{\displaystyle p_{\lambda }(\lambda )={\frac {\sqrt {[\lambda -({\sqrt {\kappa }}-1)^{2}][{\sqrt {\kappa }}+1)^{2}-\lambda ]}}{2\pi \kappa \lambda }},\;\;\;({\sqrt {\kappa }}-1)^{2}\leq \lambda \leq ({\sqrt {\kappa }}+1)^{2},\;\;\;0\leq \kappa \leq 1}

A special case isκ=1{\displaystyle \kappa =1}

pλ(λ)=14π(8λλ)12,0λ8{\displaystyle p_{\lambda }(\lambda )={\frac {1}{4\pi }}\left({\frac {8-\lambda }{\lambda }}\right)^{\frac {1}{2}},\;0\leq \lambda \leq 8}

or, if a Var(Z) = 1 convention is used then

pλ(λ)=12π(4λλ)12,0λ4{\displaystyle p_{\lambda }(\lambda )={\frac {1}{2\pi }}\left({\frac {4-\lambda }{\lambda }}\right)^{\frac {1}{2}},\;0\leq \lambda \leq 4}.

TheWigner semicircle distribution arises by making the change of variabley=±λ{\displaystyle y=\pm {\sqrt {\lambda }}} in the latter and selecting the sign ofy randomly yielding pdf

py(y)=12π(4y2)12,2y2{\displaystyle p_{y}(y)={\frac {1}{2\pi }}\left(4-y^{2}\right)^{\frac {1}{2}},\;-2\leq y\leq 2}

In place of the definition of the Wishart sample matrix above,Sp×p=j=1νGjGjH{\displaystyle S_{p\times p}=\sum _{j=1}^{\nu }G_{j}G_{j}^{H}}, we can define a Gaussian ensemble

Gi,j=[G1Gν]Cp×ν{\displaystyle \mathbf {G} _{i,j}=[G_{1}\dots G_{\nu }]\in \mathbb {C} ^{\,p\times \nu }}

such thatS is the matrix productS=GGH{\displaystyle S=\mathbf {G} \mathbf {G^{H}} }. The real non-negative eigenvalues ofS are then themodulus-squared singular values of the ensembleG{\displaystyle \mathbf {G} } and the moduli of the latter have a quarter-circle distribution.

In the caseκ>1{\displaystyle \kappa >1} such thatν<p{\displaystyle \nu <p} thenS{\displaystyle S} is rank deficient with at leastpν{\displaystyle p-\nu } null eigenvalues. However the singular values ofG{\displaystyle \mathbf {G} } are invariant under transposition so, redefiningS~=GHG{\displaystyle {\tilde {S}}=\mathbf {G^{H}} \mathbf {G} }, thenS~ν×ν{\displaystyle {\tilde {S}}_{\nu \times \nu }} has a complex Wishart distribution, has full rank almost certainly, and eigenvalue distributions can be obtained fromS~{\displaystyle {\tilde {S}}} in lieu, using all the previous equations.

In cases where the columns ofG{\displaystyle \mathbf {G} } are not linearly independent andS~ν×ν{\displaystyle {\tilde {S}}_{\nu \times \nu }} remains singular, aQR decomposition can be used to reduceG to a product like

G=Q[R0]{\displaystyle \mathbf {G} =Q{\begin{bmatrix}\mathbf {R} \\0\end{bmatrix}}}

such thatRq×q,qν{\displaystyle \mathbf {R} _{q\times q},\;\;q\leq \nu } is upper triangular with full rank andS~~q×q=RHR{\displaystyle {\tilde {\tilde {S}}}_{q\times q}=\mathbf {R^{H}} \mathbf {R} } has further reduced dimensionality.

The eigenvalues are of practical significance in radio communications theory since they define the Shannon channel capacity of aν×p{\displaystyle \nu \times p}MIMO wireless channel which, to first approximation, is modeled as a zero-mean complex Gaussian ensemble.

References

[edit]
  1. ^N. R. Goodman (1963)."The distribution of the determinant of a complex Wishart distributed matrix".The Annals of Mathematical Statistics.34 (1):178–180.doi:10.1214/aoms/1177704251.
  2. ^Chiani, M.; Win, M. Z.; Zanella, A. (2003). "On the capacity of spatially correlated MIMO Rayleigh-fading channels".IEEE Transactions on Information Theory.49 (10):2363–2371.Bibcode:2003ITIT...49.2363C.doi:10.1109/TIT.2003.817437.
  3. ^abGoodman, N R (1963)."Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)".Ann. Math. Statist.34:152–177.doi:10.1214/aoms/1177704250.
  4. ^Shaman, Paul (1980)."The Inverted Complex Wishart Distribution and Its Application to Spectral Estimation".Journal of Multivariate Analysis.10:51–59.doi:10.1016/0047-259X(80)90081-0.
  5. ^Cross, D J (May 2008)."On the Relation between Real and Complex Jacobian Determinants"(PDF).drexel.edu.
  6. ^James, A. T. (1964)."Distributions of Matrix Variates and Latent Roots Derived from Normal Samples".Ann. Math. Statist.35 (2):475–501.doi:10.1214/aoms/1177703550.
  7. ^Edelman, Alan (October 1988)."Eigenvalues and Condition Numbers of Random Matrices"(PDF).SIAM J. Matrix Anal. Appl.9 (4):543–560.doi:10.1137/0609045.hdl:1721.1/14322.
  8. ^Chiani, M. (2017)."On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval".IEEE Transactions on Information Theory.63 (7):4521–4531.arXiv:1502.04189.Bibcode:2017ITIT...63.4521C.doi:10.1109/TIT.2017.2694846.
  9. ^Zanella, A.; Chiani, M.; Win, M. Z. (2009). "On the Marginal Distribution of the Eigenvalues of Wishart Matrices".IEEE Transactions on Communications.57 (4):1050–1060.Bibcode:2009ITCom..57.1050Z.doi:10.1109/TCOMM.2009.04.070143.
  10. ^Chiani, M.; Zanella, A. (2020). "On the Distribution of an Arbitrary Subset of the Eigenvalues for some Finite Dimensional Random Matrices".Random Matrices: Theory and Applications.9 (1):1–25.arXiv:2001.00519.doi:10.1142/S2010326320400043.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Complex_Wishart_distribution&oldid=1319656840"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp