Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Complete Fermi–Dirac integral

From Wikipedia, the free encyclopedia

Mathematical integral

Inmathematics, thecomplete Fermi–Dirac integral, named afterEnrico Fermi andPaul Dirac, for an index is defined by

Fj(x)=1Γ(j+1)0tjetx+1dt,(j>1){\displaystyle F_{j}(x)={\frac {1}{\Gamma (j+1)}}\int _{0}^{\infty }{\frac {t^{j}}{e^{t-x}+1}}\,dt,\qquad (j>-1)}

This equals

Lij+1(ex),{\displaystyle -\operatorname {Li} _{j+1}(-e^{x}),}

whereLis(z){\displaystyle \operatorname {Li} _{s}(z)} is thepolylogarithm.

Its derivative is

dFj(x)dx=Fj1(x),{\displaystyle {\frac {dF_{j}(x)}{dx}}=F_{j-1}(x),}

and this derivative relationship is used to define the Fermi-Dirac integral for nonpositive indicesj. Differing notation forFj{\displaystyle F_{j}} appears in the literature, for instance some authors omit the factor1/Γ(j+1){\displaystyle 1/\Gamma (j+1)}. The definition used here matches that in theNIST DLMF.

Special values

[edit]

The closed form of the function exists forj = 0:

F0(x)=ln(1+exp(x)).{\displaystyle F_{0}(x)=\ln(1+\exp(x)).}

Forx = 0, the result reduces to

Fj(0)=η(j+1),{\displaystyle F_{j}(0)=\eta (j+1),}

whereη{\displaystyle \eta } is theDirichlet eta function.

See also

[edit]

References

[edit]

External links

[edit]


Stub icon

Thismathematical analysis–related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Complete_Fermi–Dirac_integral&oldid=1280532660"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp