Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Compact embedding

From Wikipedia, the free encyclopedia
(Redirected fromCompactly embedded)

Inmathematics, the notion of beingcompactly embedded expresses the idea that one set or space is "well contained" inside another. There are versions of this concept appropriate to generaltopology andfunctional analysis. The notation for "X{\displaystyle X} is compactly embedded inY{\displaystyle Y}" isX⊂⊂Y{\displaystyle X\subset \subset Y}, orXY{\displaystyle X\Subset Y}.

When used in functional analysis, compact embedding is usually aboutBanach spaces of functions.

Several of theSobolev embedding theorems are compact embedding theorems.

When an embedding is not compact, it may possess a related, but weaker, property ofcocompactness.

Definition

[edit]

Topological spaces

[edit]

LetX{\displaystyle X} be atopological space, and letV{\displaystyle V} andW{\displaystyle W} besubsets ofX{\displaystyle X}. We say thatV{\displaystyle V} iscompactly embedded inW{\displaystyle W} if

Equivalently, it states that there exists some compact setK{\displaystyle K}, such thatVKInt(W){\displaystyle V\subseteq K\subseteq \operatorname {Int} (W)}.

Normed spaces

[edit]

LetX{\displaystyle X} andY{\displaystyle Y} be twonormed vector spaces with normsX{\displaystyle \|\cdot \|_{X}} andY{\displaystyle \|\cdot \|_{Y}} respectively, and suppose thatXY{\displaystyle X\subseteq Y}. We say thatX{\displaystyle X} iscompactly embedded inY{\displaystyle Y}, if

Banach spaces

[edit]

IfY{\displaystyle Y} is aBanach space, an equivalent definition is that the embedding operator (the identity)i:XY{\displaystyle i\colon X\to Y} is acompact operator.

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Compact_embedding&oldid=1305710395"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp