Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Row and column vectors

From Wikipedia, the free encyclopedia
(Redirected fromColumn vector)
Matrix consisting of a single row or column
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(November 2022) (Learn how and when to remove this message)

Inlinear algebra, acolumn vector withm{\displaystyle m} elements is anm×1{\displaystyle m\times 1}matrix[1] consisting of a single column ofm{\displaystyle m} entries, for example,x=[x1x2xm].{\displaystyle {\boldsymbol {x}}={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}.}

Similarly, arow vector is a1×n{\displaystyle 1\times n} matrix for somen{\displaystyle n}, consisting of a single row ofn{\displaystyle n} entries,a=[a1a2an].{\displaystyle {\boldsymbol {a}}={\begin{bmatrix}a_{1}&a_{2}&\dots &a_{n}\end{bmatrix}}.}(Throughout this article, boldface is used for both row and column vectors.)

Thetranspose (indicated byT) of any row vector is a column vector, and the transpose of any column vector is a row vector:[x1x2xm]T=[x1x2xm]{\displaystyle {\begin{bmatrix}x_{1}\;x_{2}\;\dots \;x_{m}\end{bmatrix}}^{\rm {T}}={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}}and[x1x2xm]T=[x1x2xm].{\displaystyle {\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}^{\rm {T}}={\begin{bmatrix}x_{1}\;x_{2}\;\dots \;x_{m}\end{bmatrix}}.}

The set of all row vectors withn entries in a givenfield (such as thereal numbers) forms ann-dimensionalvector space; similarly, the set of all column vectors withm entries forms anm-dimensional vector space.

The space of row vectors withn entries can be regarded as thedual space of the space of column vectors withn entries, since any linear functional on the space of column vectors can be represented as the left-multiplication of a unique row vector.

Notation

[edit]

To simplify writing column vectors in-line with other text, sometimes they are written as row vectors with the transpose operation applied to them.

x=[x1x2xm]T{\displaystyle {\boldsymbol {x}}={\begin{bmatrix}x_{1}\;x_{2}\;\dots \;x_{m}\end{bmatrix}}^{\rm {T}}}

or

x=[x1,x2,,xm]T{\displaystyle {\boldsymbol {x}}={\begin{bmatrix}x_{1},x_{2},\dots ,x_{m}\end{bmatrix}}^{\rm {T}}}

Some authors also use the convention of writing both column vectors and row vectors as rows, but separating row vector elements withcommas and column vector elements withsemicolons (see alternative notation 2 in the table below).[citation needed]

Row vectorColumn vector
Standard matrix notation
(array spaces, no commas, transpose signs)
[x1x2xm]{\displaystyle {\begin{bmatrix}x_{1}\;x_{2}\;\dots \;x_{m}\end{bmatrix}}}[x1x2xm] or [x1x2xm]T{\displaystyle {\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}{\text{ or }}{\begin{bmatrix}x_{1}\;x_{2}\;\dots \;x_{m}\end{bmatrix}}^{\rm {T}}}
Alternative notation 1
(commas, transpose signs)
[x1,x2,,xm]{\displaystyle {\begin{bmatrix}x_{1},x_{2},\dots ,x_{m}\end{bmatrix}}}[x1,x2,,xm]T{\displaystyle {\begin{bmatrix}x_{1},x_{2},\dots ,x_{m}\end{bmatrix}}^{\rm {T}}}
Alternative notation 2
(commas and semicolons, no transpose signs)
[x1,x2,,xm]{\displaystyle {\begin{bmatrix}x_{1},x_{2},\dots ,x_{m}\end{bmatrix}}}[x1;x2;;xm]{\displaystyle {\begin{bmatrix}x_{1};x_{2};\dots ;x_{m}\end{bmatrix}}}

Operations

[edit]

Matrix multiplication involves the action of multiplying each row vector of one matrix by each column vector of another matrix.

Thedot product of two column vectorsa,b, considered as elements of a coordinate space, is equal to the matrix product of the transpose ofa withb,

ab=ab=[a1an][b1bn]=a1b1++anbn,{\displaystyle \mathbf {a} \cdot \mathbf {b} =\mathbf {a} ^{\intercal }\mathbf {b} ={\begin{bmatrix}a_{1}&\cdots &a_{n}\end{bmatrix}}{\begin{bmatrix}b_{1}\\\vdots \\b_{n}\end{bmatrix}}=a_{1}b_{1}+\cdots +a_{n}b_{n}\,,}

By the symmetry of the dot product, thedot product of two column vectorsa,b is also equal to the matrix product of the transpose ofb witha,

ba=ba=[b1bn][a1an]=a1b1++anbn.{\displaystyle \mathbf {b} \cdot \mathbf {a} =\mathbf {b} ^{\intercal }\mathbf {a} ={\begin{bmatrix}b_{1}&\cdots &b_{n}\end{bmatrix}}{\begin{bmatrix}a_{1}\\\vdots \\a_{n}\end{bmatrix}}=a_{1}b_{1}+\cdots +a_{n}b_{n}\,.}

The matrix product of a column and a row vector gives theouter product of two vectorsa,b, an example of the more generaltensor product. The matrix product of the column vector representation ofa and the row vector representation ofb gives the components of their dyadic product,

ab=ab=[a1a2a3][b1b2b3]=[a1b1a1b2a1b3a2b1a2b2a2b3a3b1a3b2a3b3],{\displaystyle \mathbf {a} \otimes \mathbf {b} =\mathbf {a} \mathbf {b} ^{\intercal }={\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\end{bmatrix}}{\begin{bmatrix}b_{1}&b_{2}&b_{3}\end{bmatrix}}={\begin{bmatrix}a_{1}b_{1}&a_{1}b_{2}&a_{1}b_{3}\\a_{2}b_{1}&a_{2}b_{2}&a_{2}b_{3}\\a_{3}b_{1}&a_{3}b_{2}&a_{3}b_{3}\\\end{bmatrix}}\,,}

which is thetranspose of the matrix product of the column vector representation ofb and the row vector representation ofa,

ba=ba=[b1b2b3][a1a2a3]=[b1a1b1a2b1a3b2a1b2a2b2a3b3a1b3a2b3a3].{\displaystyle \mathbf {b} \otimes \mathbf {a} =\mathbf {b} \mathbf {a} ^{\intercal }={\begin{bmatrix}b_{1}\\b_{2}\\b_{3}\end{bmatrix}}{\begin{bmatrix}a_{1}&a_{2}&a_{3}\end{bmatrix}}={\begin{bmatrix}b_{1}a_{1}&b_{1}a_{2}&b_{1}a_{3}\\b_{2}a_{1}&b_{2}a_{2}&b_{2}a_{3}\\b_{3}a_{1}&b_{3}a_{2}&b_{3}a_{3}\\\end{bmatrix}}\,.}

Matrix transformations

[edit]
Main article:Transformation matrix

Ann ×n matrixM can represent alinear map and act on row and column vectors as the linear map'stransformation matrix. For a row vectorv, the productvM is another row vectorp:

vM=p.{\displaystyle \mathbf {v} M=\mathbf {p} \,.}

Anothern ×n matrixQ can act onp,

pQ=t.{\displaystyle \mathbf {p} Q=\mathbf {t} \,.}

Then one can writet =pQ =vMQ, so thematrix product transformationMQ mapsv directly tot. Continuing with row vectors, matrix transformations further reconfiguringn-space can be applied to the right of previous outputs.

When a column vector is transformed to another column vector under ann ×n matrix action, the operation occurs to the left,

pT=MvT,tT=QpT,{\displaystyle \mathbf {p} ^{\mathrm {T} }=M\mathbf {v} ^{\mathrm {T} }\,,\quad \mathbf {t} ^{\mathrm {T} }=Q\mathbf {p} ^{\mathrm {T} },}

leading to the algebraic expressionQMvT for the composed output fromvT input. The matrix transformations mount up to the left in this use of a column vector for input to matrix transformation.

See also

[edit]

Notes

[edit]
  1. ^Artin, Michael (1991).Algebra. Englewood Cliffs, NJ: Prentice-Hall. p. 2.ISBN 0-13-004763-5.

References

[edit]
See also:Linear algebra § Further reading
  • Axler, Sheldon Jay (1997),Linear Algebra Done Right (2nd ed.), Springer-Verlag,ISBN 0-387-98259-0
  • Lay, David C. (August 22, 2005),Linear Algebra and Its Applications (3rd ed.), Addison Wesley,ISBN 978-0-321-28713-7
  • Meyer, Carl D. (February 15, 2001),Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM),ISBN 978-0-89871-454-8, archived fromthe original on March 1, 2001
  • Poole, David (2006),Linear Algebra: A Modern Introduction (2nd ed.), Brooks/Cole,ISBN 0-534-99845-3
  • Anton, Howard (2005),Elementary Linear Algebra (Applications Version) (9th ed.), Wiley International
  • Leon, Steven J. (2006),Linear Algebra With Applications (7th ed.), Pearson Prentice Hall
Basic concepts
Three dimensional Euclidean space
Matrices
Bilinear
Multilinear algebra
Vector space constructions
Numerical
Retrieved from "https://en.wikipedia.org/w/index.php?title=Row_and_column_vectors&oldid=1240381890"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp