Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Chirgwin–Coulson weights

From Wikipedia, the free encyclopedia
(Redirected fromChirgwin-Coulson weights)

Inmodern valence bond (VB) theory calculations,Chirgwin–Coulson weights (also called Mulliken weights) are the relative weights of a set of possible VB structures of a molecule. Related methods of finding the relative weights of valence bond structures are the Löwdin[1] and the inverse weights.[2]

Background

[edit]

For a wave functionΨ=iCiΦi{\displaystyle \Psi =\sum \limits _{i}C_{i}\Phi _{i}} whereΦ1,Φ2,,Φn{\displaystyle \Phi _{1},\Phi _{2},\dots ,\Phi _{n}} are a linearly independent, orthogonal set ofbasis orbitals, the weight of a constituent orbitalΨi{\displaystyle \Psi _{i}} would beCi2{\displaystyle C_{i}^{2}} since the overlap integral,Sij{\displaystyle S_{ij}} , between two wave functionsΨi,Ψj{\displaystyle \Psi _{i},\Psi _{j}} would be 1 fori=j{\displaystyle i=j} and 0 forij{\displaystyle i\neq j} . Invalence bond theory, however, the generated structures are not necessarily orthogonal with each other, and oftentimes have substantial overlap between the two structures. As such, when considering non-orthogonal constituent orbitals (i.e. orbitals with non-zero overlap) the non-diagonal terms in the overlap matrix would be non-zero, and must be included in determining the weight of a constituent orbital. A method of computing the weight of a constituent orbital,Φi{\displaystyle \Phi _{i}}, proposed by Chirgwin andCoulson would be:[3]

Chirgwin-Coulson Formula

Wi=CiΦi|Ψ=CijCjΨi|Ψj=jCiCjSij{\displaystyle {\begin{aligned}W_{i}&=C_{i}\langle \Phi _{i}\vert \Psi \rangle =C_{i}\sum \limits _{j}C_{j}\langle \Psi _{i}\vert \Psi _{j}\rangle \\&=\sum \limits _{j}C_{i}C_{j}S_{ij}\end{aligned}}}

Application of the Chirgwin-Coulson formula to amolecular orbital yields theMulliken population of the molecular orbital.[4]

Rigorous formulation

[edit]

Determination of VB Structures

[edit]

Rumer's method

[edit]
The 20 possible VB structures for butadiene and their Rumer circles

A method of creating a linearly independent, complete set of valence bond structures for a molecule was proposed byYuri Rumer.[citation needed] For a system with nelectrons and n orbitals, Rumer's method involves arranging the orbitals in a circle and connecting the orbitals together with lines that do not intersect one another.[5] Covalent, or uncharged, structures can be created by connecting all of the orbitals with one another. Ionic, or charged, structures for a given atom can be determined by assigning a charge to a molecule, and then following Rumer's method. For the case of butadiene, the 20 possible Rumer structures are shown, where 1 and 2 are the covalent structures, 3-14 are the monoionic structures, and 15-20 are the diionic structures. The resulting VB structures can be represented by a linear combination of determinants|ab¯cd¯|{\displaystyle |a{\overline {b}}c{\overline {d}}|}, where a letter without an over-line indicates an electron withα{\displaystyle \alpha } spin, while a letter with over-line indicates an electron withβ{\displaystyle \beta } spin. The VB structure for 1, for example would be a linear combination of the determinants|12¯34¯|{\displaystyle |1{\overline {2}}3{\overline {4}}|},|21¯34¯|{\displaystyle |2{\overline {1}}3{\overline {4}}|},|12¯43¯|{\displaystyle |1{\overline {2}}4{\overline {3}}|}, and|21¯43¯|{\displaystyle |2{\overline {1}}4{\overline {3}}|}. For a monoanionic species, the VB structure for 11 would be a linear combination of|12¯44¯|{\displaystyle |1{\overline {2}}4{\overline {4}}|} and|21¯44¯|{\displaystyle |2{\overline {1}}4{\overline {4}}|}, namely:

ϕ11=12(|12¯44¯|+|21¯44¯|){\displaystyle \phi _{11}={\frac {1}{\sqrt {2}}}(|1{\overline {2}}4{\overline {4}}|+|2{\overline {1}}4{\overline {4}}|)}

Matrix representation of VB structures

[edit]

An arbitrary VB structure|φ1φ2¯φ3φ4¯|{\displaystyle |\varphi _{1}{\overline {\varphi _{2}}}\varphi _{3}{\overline {\varphi _{4}}}\dots |} containingn{\displaystyle n} electrons, represented by the electron indices1,2,,n{\displaystyle 1,2,\dots ,n}, andn{\displaystyle n} orbitals, represented byφ1,φ2,,φn{\displaystyle \varphi _{1},\varphi _{2},\dots ,\varphi _{n}}, can be represented by the followingSlater determinant:

|φ1φ2¯φ3φ4¯|=1n!|φ1(1)α(1)φ1(2)α(2)φ1(n)α(n)φ2(1)β(1)φ2(2)β(2)φ2(n)β(n)|{\displaystyle |\varphi _{1}{\overline {\varphi _{2}}}\varphi _{3}{\overline {\varphi _{4}}}\dots |={\frac {1}{\sqrt {n!}}}{\begin{vmatrix}\varphi _{1}(1)\alpha (1)&\varphi _{1}(2)\alpha (2)&\dots &\varphi _{1}(n)\alpha (n)\\\varphi _{2}(1)\beta (1)&\varphi _{2}(2)\beta (2)&\dots &\varphi _{2}(n)\beta (n)\\\vdots &\vdots &\ddots &\vdots \end{vmatrix}}}

Whereα(k){\displaystyle \alpha (k)} andβ(k){\displaystyle \beta (k)} represent anα{\displaystyle \alpha } orβ{\displaystyle \beta } spin on thekth{\displaystyle k^{\text{th}}} electron, respectively. For the case of a two electron system with orbitalsa{\displaystyle a} andb{\displaystyle b}, the VB structure,|ab¯|{\displaystyle |a{\overline {b}}|}, can be represented:|ab¯|=12|a(1)α(1)a(2)α(2)b(1)β(1)b(2)β(2)|{\displaystyle |a{\overline {b}}|={\frac {1}{\sqrt {2}}}{\begin{vmatrix}a(1)\alpha (1)&a(2)\alpha (2)\\b(1)\beta (1)&b(2)\beta (2)\end{vmatrix}}}

Evaluating the determinant yields:[6]

|ab¯|=12(a(1)b(2)[α(1)β(2)]a(2)b(1)[α(2)β(1)]){\displaystyle |a{\overline {b}}|={\frac {1}{\sqrt {2}}}(a(1)b(2)[\alpha (1)\beta (2)]-a(2)b(1)[\alpha (2)\beta (1)])}

Definition of Chirgwin–Coulson weights

[edit]

Given awave functionΨ=iCiΦi{\displaystyle \Psi =\sum \limits _{i}C_{i}\Phi _{i}} whereΦ1,Φ2,,ΦN{\displaystyle \Phi _{1},\Phi _{2},\dots ,\Phi _{N}} is a complete, linearly independent set of VB structures andCk{\displaystyle C_{k}} is the coefficient of each structure, the Chirgwin-Coulson weightWK{\displaystyle W_{K}} of a VB structureΦK{\displaystyle \Phi _{K}} can be computed in the following manner:[3]

Wi=jCiCjΦi|Φj=jCiCjSij{\displaystyle W_{i}=\sum \limits _{j}C_{i}C_{j}\langle \Phi _{i}|\Phi _{j}\rangle =\sum \limits _{j}C_{i}C_{j}S_{ij}}

WhereS{\displaystyle S} is the overlap matrix satisfyingΦi|Φj=Sij{\displaystyle \langle \Phi _{i}|\Phi _{j}\rangle =S_{ij}}.

Other methods of computing weights of VB structure includeLöwdin weights, whereWiLowdin=j,kSij1/2CjSik1/2Ck{\displaystyle W_{i}^{\text{Lowdin}}=\sum \limits _{j,k}S_{ij}^{1/2}C_{j}S_{ik}^{1/2}C_{k}},[1] and inverse weights, whereWiinverse=1N(Ci2(S1)ii){\displaystyle W_{i}^{\text{inverse}}={\frac {1}{N}}{\bigg (}{\frac {C_{i}^{2}}{(S^{-1})_{ii}}}{\bigg )}} withN{\displaystyle N} being a normalization factor defined byN=iCi2(S1)ii{\displaystyle N=\sum \limits _{i}{\frac {C_{i}^{2}}{(S^{-1})_{ii}}}}.[2] The use of Löwdin and inverse weights is appropriate when the Chirgwin–Coulson weights either exceed 1 or are negative.[2]

Half determinant decomposition of molecular orbitals

[edit]

Given a set of molecular orbitals,Ψ1,Ψ2,,Ψm{\displaystyle \Psi _{1},\Psi _{2},\dots ,\Psi _{m}}, for a molecule, consider the determinant of a given orbital population, represented byDMO{\displaystyle D_{\text{MO}}}. The determinant can be written as the following Slater determinant:

DMO=|Ψ1Ψ¯1Ψ2Ψ¯2|{\displaystyle D_{\text{MO}}=|\Psi _{1}{\overline {\Psi }}_{1}\Psi _{2}{\overline {\Psi }}_{2}\dots |}

Computing the determinant explicitly by multiplying this expression can be a computationally difficult task, given that each molecular orbital is composed of a combination of atomic orbitals. On the other hand, because the determinant of a product of matrices is equal to the product of determinants, the determinant can be regrouped to half-determinants, one of which contains only electrons withα{\displaystyle \alpha } spin and the only with electrons ofβ{\displaystyle \beta } spin, that is:DMO=hMOαhMOβ{\displaystyle D_{\text{MO}}=h_{\text{MO}}^{\alpha }h_{\text{MO}}^{\beta }} wherehMOα=|ϕ1ϕ2|{\displaystyle h_{\text{MO}}^{\alpha }=|\phi _{1}\phi _{2}\dots |} andhMOβ=|ϕ¯1ϕ¯2|{\displaystyle h_{\text{MO}}^{\beta }=|{\overline {\phi }}_{1}{\overline {\phi }}_{2}\dots |}.[6][7][8]

Note that any given molecular orbitalΨMO{\displaystyle \Psi _{\text{MO}}} can be written as alinear combination of atomic orbitalsϕ1,ϕ2,,ϕn{\displaystyle \phi _{1},\phi _{2},\dots ,\phi _{n}}, that is for eachΨi{\displaystyle \Psi _{i}}, there existCij{\displaystyle C_{ij}} such thatΨi=jCijϕj{\displaystyle \Psi _{i}=\sum \limits _{j}C_{ij}\phi _{j}}. As such, the half determinanthMOα{\displaystyle h_{\text{MO}}^{\alpha }} can be further decomposed into the half determinants for an ordering of atomic orbitalshrα=|ϕ1,ϕ2,,ϕn|{\displaystyle h_{r}^{\alpha }=|\phi _{1},\phi _{2},\dots ,\phi _{n}|} corresponding to a VB structurer{\displaystyle r}. As such, the molecular orbitalΨi{\displaystyle \Psi _{i}} can be represented as a combination of the half determinants of the atomic orbitals,hMOα=rCrαhrα{\displaystyle h_{\text{MO}}^{\alpha }=\sum \limits _{r}C_{r}^{\alpha }h_{r}^{\alpha }}. The coefficientCrα{\displaystyle C_{r}^{\alpha }} can be determined by evaluating the following matrix:[6][7][8]

Crα=|C11C21Cn1C12C22Cn2C1nC2nCnn|{\displaystyle C_{r}^{\alpha }={\begin{vmatrix}C_{11}&C_{21}&\dots C_{n1}\\C_{12}&C_{22}&\dots C_{n2}\\\vdots &\vdots &\ddots \\C_{1n}&C_{2n}&\dots C_{nn}\\\end{vmatrix}}}

The same method can be used to evaluate the half determinant for theβ{\displaystyle \beta } electrons,hMOβ{\displaystyle h_{\text{MO}}^{\beta }}. As such, the determinantDMO{\displaystyle D_{\text{MO}}} can be expressed asDMO=r,sCrαCrβhrαhsβ{\displaystyle D_{\text{MO}}=\sum \limits _{r,s}C_{r}^{\alpha }C_{r}^{\beta }h_{r}^{\alpha }h_{s}^{\beta }}, wherer,s{\displaystyle r,s} index across all possible VB structures.[6][7][8]

Sample computations for simple molecules

[edit]

Computations for the hydrogen molecule

[edit]

Thehydrogen molecule can be considered to be a linear combination of twoH{\displaystyle {\ce {H}}}1s{\displaystyle 1s} orbitals, indicated asφ1{\displaystyle \varphi _{1}} andφ2{\displaystyle \varphi _{2}}. The possible VB structures forH2{\displaystyle {\ce {H_2}}} are the two covalent structures,|φ1φ2¯|{\displaystyle |\varphi _{1}{\overline {\varphi _{2}}}|} and|φ2φ1¯|{\displaystyle |\varphi _{2}{\overline {\varphi _{1}}}|} indicated as 1 and 2 respectively, as well as the ionic structures|φ1φ1¯|{\displaystyle |\varphi _{1}{\overline {\varphi _{1}}}|} and|φ2φ2¯|{\displaystyle |\varphi _{2}{\overline {\varphi _{2}}}|} indicated as 3 and 4 respectively, shown below.

Possible spin configurations of the hydrogen molecule

Because structures 1 and 2 both represent covalent bonding in the hydrogen molecule and exchanging the electrons of structure 1 yields structure 2, the two covalent structures can be combined into one wave function. As such, the Heitler-London model for bonding inH2{\displaystyle {\ce {H_2}}},ΦHL{\displaystyle \Phi _{HL}}, can be used in place of the VB structures|φ1φ2¯|{\displaystyle |\varphi _{1}{\overline {\varphi _{2}}}|} and|φ1¯φ2|{\displaystyle |{\overline {\varphi _{1}}}\varphi _{2}|}:[9]

ΦHL=|φ1φ2¯||φ1¯φ2|{\displaystyle \Phi _{HL}=|\varphi _{1}{\overline {\varphi _{2}}}|-|{\overline {\varphi _{1}}}\varphi _{2}|}

Where the negative sign arises from theantisymmetry of electron exchange. As such, the wave function for theH2{\displaystyle {\ce {H_2}}} molecule,ΨH2{\displaystyle \Psi _{{\text{H}}_{2}}}, can be considered to be a linear combination of the Heitler-London structure and the two ionic valence bond structures.

ΨH2=C1ΦHL+C2|φ1φ1¯|+C3|φ2φ2¯|{\displaystyle \Psi _{{\text{H}}_{2}}=C_{1}\Phi _{HL}+C_{2}|\varphi _{1}{\overline {\varphi _{1}}}|+C_{3}|\varphi _{2}{\overline {\varphi _{2}}}|}

The overlap matrix between the atomic orbitals between the three valence bond configurationsΦHL{\displaystyle \Phi _{HL}},|φ1φ1¯|{\displaystyle |\varphi _{1}{\overline {\varphi _{1}}}|}, and|φ2φ2¯|{\displaystyle |\varphi _{2}{\overline {\varphi _{2}}}|} is given in the output for valence bond calculations. A sample output is given below:[6]

S=|S11S21S22S31S32S33|=|10.7789042310.778904230.435432581|{\displaystyle S={\begin{vmatrix}S_{11}\\S_{21}&S_{22}\\S_{31}&S_{32}&S_{33}\\\end{vmatrix}}={\begin{vmatrix}1\\0.77890423&1\\0.77890423&0.43543258&1\\\end{vmatrix}}}

Finding the eigenvectors of the matrixHES=0{\displaystyle H-ES=0}, whereH{\displaystyle H} is thehamiltonian andE{\displaystyle E} is energy due to orbital overlap, yields the VB-vectorc{\displaystyle {\vec {c}}}, which satisfies:[10]

ΨH=c{ΦHL,|φ1φ1¯|,|φ2φ2¯|}=C1ΦHL+C2|φ1φ1¯|+C3|φ2φ2¯|{\displaystyle \Psi _{H}={\vec {c}}\{\Phi _{HL},|\varphi _{1}{\overline {\varphi _{1}}}|,|\varphi _{2}{\overline {\varphi _{2}}}|\}=C_{1}\Phi _{HL}+C_{2}|\varphi _{1}{\overline {\varphi _{1}}}|+C_{3}|\varphi _{2}{\overline {\varphi _{2}}}|}

Solving for the VB-vectorc{\displaystyle {\vec {c}}} usingdensity functional theory yields the coefficientsC1=0.787469{\displaystyle C_{1}=0.787469} andC2=C3=0.133870{\displaystyle C_{2}=C_{3}=0.133870}. Thus, the Coulson-Chrigwin weights can be computed:[6]

W1=C12S11+C1C2S12+C1C3S13=0.784{\displaystyle W_{1}=C_{1}^{2}S_{11}+C_{1}C_{2}S_{12}+C_{1}C_{3}S_{13}=0.784}
W2=W3=0.108{\displaystyle W_{2}=W_{3}=0.108}

To check for consistency, the inverse weights can be computed by first determining the inverse of the overlap matrix:

S1=|6.464493.50783.137393.50781.366123.13739|{\displaystyle S^{-1}={\begin{vmatrix}6.46449\\-3.5078&3.13739\\-3.5078&1.36612&3.13739\\\end{vmatrix}}}

Next, the normalization constantN{\displaystyle N} can be determined:

N=KCK2(S1)KK=0.0185{\displaystyle N=\sum \limits _{K}{\frac {C_{K}^{2}}{(S^{-1})_{KK}}}=0.0185}

The final weights are:W1=1N(C12(S1)11)=0.803{\displaystyle W_{1}={\frac {1}{N}}{\bigg (}{\frac {C_{1}^{2}}{(S^{-1})_{11}}}{\bigg )}=0.803}, andW2=W3=0.098{\displaystyle W_{2}=W_{3}=0.098}.

Informally, the computed weights indicate that the wave function for theH2{\displaystyle {\ce {H_2}}} molecule has a minor contribution from an ionic species not predicted from a strictly MO model for bonding.

Computations for ozone

[edit]
The 6 possible VB structures and corresponding Rumer circles for ozone

Determining the relative weights of each resonance structure ofozone requires, first, the determination of the possible VB structures forO3{\displaystyle {\ce {O_3}}}. Considering only thep{\displaystyle p} orbitals of oxygen, and labeling thep{\displaystyle p} orbital on theith{\displaystyle i^{\text{th}}} oxygenϕi{\displaystyle \phi _{i}},O3{\displaystyle {\ce {O_3}}}has 6 possible VB structures by Rumer's method. Assuming no atomic orbital overlap, thekth{\displaystyle k^{\text{th}}} structure can be represented by the determinantsΦk{\displaystyle \Phi _{k}}:[6]

Φ1=12(|ϕ2ϕ2¯ϕ1ϕ3¯|+|ϕ2ϕ2¯ϕ3ϕ1¯|){\displaystyle \Phi _{1}={\frac {1}{\sqrt {2}}}(|\phi _{2}{\overline {\phi _{2}}}\phi _{1}{\overline {\phi _{3}}}|+|\phi _{2}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{1}}}|)}
Φ2=12(|ϕ1ϕ1¯ϕ2ϕ3¯|+|ϕ1ϕ1¯ϕ3ϕ2¯|){\displaystyle \Phi _{2}={\frac {1}{\sqrt {2}}}(|\phi _{1}{\overline {\phi _{1}}}\phi _{2}{\overline {\phi _{3}}}|+|\phi _{1}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{2}}}|)}
Φ3=12(|ϕ1ϕ2¯ϕ3ϕ3¯|+|ϕ2ϕ1¯ϕ3ϕ3¯|){\displaystyle \Phi _{3}={\frac {1}{\sqrt {2}}}(|\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|+|\phi _{2}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{3}}}|)}
Φ4=|ϕ1ϕ1¯ϕ2ϕ2¯|{\displaystyle \Phi _{4}=|\phi _{1}{\overline {\phi _{1}}}\phi _{2}{\overline {\phi _{2}}}|}
Φ5=|ϕ2ϕ2¯ϕ3ϕ3¯|{\displaystyle \Phi _{5}=|\phi _{2}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|}
Φ6=|ϕ1ϕ1¯ϕ3ϕ3¯|{\displaystyle \Phi _{6}=|\phi _{1}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{3}}}|}

O3{\displaystyle {\ce {O_3}}}has the following threemolecular orbitals, one where all of the oxygenp{\displaystyle p} orbitals are in phase, one where there is anode on the central oxygen, and one where all of the oxygenp{\displaystyle p} orbitals are out of phase, shown below:[citation needed]

The molecularπ{\displaystyle \pi } orbitals of ozone, from left to right,π1{\displaystyle \pi _{1}},π2{\displaystyle \pi _{2}}, andπ3{\displaystyle \pi _{3}}

The wave functions for each of the molecular orbitalsπi{\displaystyle \pi _{i}} can be written as a linear combination of each of the oxygenp{\displaystyle p} orbitals as follows:[6]

|π1π2π3|=|C11C12C13C21C22C23C31C32C33||ϕ1ϕ2ϕ3|=|0.3680.7640.3680.71000.7100.6140.6710.614||ϕ1ϕ2ϕ3|{\displaystyle {\begin{vmatrix}\pi _{1}\\\pi _{2}\\\pi _{3}\\\end{vmatrix}}={\begin{vmatrix}C_{11}&C_{12}&C_{13}\\C_{21}&C_{22}&C_{23}\\C_{31}&C_{32}&C_{33}\\\end{vmatrix}}{\begin{vmatrix}\phi _{1}\\\phi _{2}\\\phi _{3}\\\end{vmatrix}}={\begin{vmatrix}0.368&0.764&0.368\\0.710&0&-0.710\\0.614&-0.671&0.614\\\end{vmatrix}}{\begin{vmatrix}\phi _{1}\\\phi _{2}\\\phi _{3}\\\end{vmatrix}}}

WhereCij{\displaystyle C_{ij}} indicates the coefficient ofϕj{\displaystyle \phi _{j}} in a molecular orbitalπi{\displaystyle \pi _{i}}. Consider, the VB contributions for the ground state ofO3{\displaystyle {\ce {O_3}}},|π1π1¯π2π2¯|{\displaystyle |\pi _{1}{\overline {\pi _{1}}}\pi _{2}{\overline {\pi _{2}}}|}. Using the methods of half determinants, the half determinants for the ground state are:

|ϕ1ϕ2|g=C11C12C21C22=0.542{\displaystyle |\phi _{1}\phi _{2}|_{g}={\begin{Vmatrix}C_{11}&C_{12}\\C_{21}&C_{22}\\\end{Vmatrix}}=-0.542}
|ϕ2ϕ3|g=C12C13C22C23=0.542{\displaystyle |\phi _{2}\phi _{3}|_{g}={\begin{Vmatrix}C_{12}&C_{13}\\C_{22}&C_{23}\\\end{Vmatrix}}=-0.542}
|ϕ1ϕ3|g=C11C13C21C23=0.523{\displaystyle |\phi _{1}\phi _{3}|_{g}={\begin{Vmatrix}C_{11}&C_{13}\\C_{21}&C_{23}\\\end{Vmatrix}}=-0.523}

By the method of half determinant expansion, the coefficient,Ci{\displaystyle C_{i}}, for a structure|ϕiϕj¯ϕkϕl¯|{\displaystyle |\phi _{i}{\overline {\phi _{j}}}\phi _{k}{\overline {\phi _{l}}}|} is:

|ϕiϕj¯ϕkϕl¯|=|ϕiϕk||ϕjϕl|{\displaystyle |\phi _{i}{\overline {\phi _{j}}}\phi _{k}{\overline {\phi _{l}}}|=|\phi _{i}\phi _{k}||\phi _{j}\phi _{l}|}

Which implies that the ground state has the following coefficients:

Ψg=0.416Φ1+0.400Φ2+0.400Φ3+0.294Φ4+0.294Φ5+0.274Φ6=0.294(|ϕ2ϕ2¯ϕ1ϕ3¯|+|ϕ2ϕ2¯ϕ3ϕ1¯|)+0.283(|ϕ1ϕ1¯ϕ2ϕ3¯|+|ϕ1ϕ1¯ϕ3ϕ2¯|)+0.283(|ϕ1ϕ2¯ϕ3ϕ3¯|+|ϕ2ϕ1¯ϕ3ϕ3¯|)+0.294|ϕ1ϕ1¯ϕ2ϕ2¯|+0.294|ϕ2ϕ2¯ϕ3ϕ3¯|+0.274|ϕ1ϕ1¯ϕ3ϕ3¯|{\displaystyle {\begin{aligned}\Psi _{g}&=-0.416\Phi _{1}+0.400\Phi _{2}+0.400\Phi _{3}+0.294\Phi _{4}+0.294\Phi _{5}+0.274\Phi _{6}\\&=-0.294(|\phi _{2}{\overline {\phi _{2}}}\phi _{1}{\overline {\phi _{3}}}|+|\phi _{2}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{1}}}|)+0.283(|\phi _{1}{\overline {\phi _{1}}}\phi _{2}{\overline {\phi _{3}}}|+|\phi _{1}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{2}}}|)+0.283(|\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|+|\phi _{2}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{3}}}|)+\\&\quad \quad 0.294|\phi _{1}{\overline {\phi _{1}}}\phi _{2}{\overline {\phi _{2}}}|+0.294|\phi _{2}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|+0.274|\phi _{1}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{3}}}|\end{aligned}}}

Given the following overlap matrix for the half determinants:[6]

S=||ϕ1ϕ2|||ϕ1ϕ2||ϕ1ϕ2|||ϕ1ϕ3||ϕ1ϕ3|||ϕ1ϕ3||ϕ1ϕ2|||ϕ2ϕ3||ϕ1ϕ3|||ϕ2ϕ3||ϕ2ϕ3|||ϕ2ϕ3||=|0.983770.126340.999930.008100.126340.98377|{\displaystyle S={\begin{vmatrix}\langle |\phi _{1}\phi _{2}|||\phi _{1}\phi _{2}|\rangle \\\langle |\phi _{1}\phi _{2}|||\phi _{1}\phi _{3}|\rangle &\langle |\phi _{1}\phi _{3}|||\phi _{1}\phi _{3}|\rangle \\\langle |\phi _{1}\phi _{2}|||\phi _{2}\phi _{3}|\rangle &\langle |\phi _{1}\phi _{3}|||\phi _{2}\phi _{3}|\rangle &\langle |\phi _{2}\phi _{3}|||\phi _{2}\phi _{3}|\rangle \end{vmatrix}}={\begin{vmatrix}0.98377\\0.12634&0.99993\\0.00810&0.12634&0.98377\end{vmatrix}}}

The overlap between two VB structures represented by the product of two VB determinants|ϕaϕb¯ϕcϕd¯|||ϕwϕx¯ϕyϕz¯|{\displaystyle \langle |\phi _{a}{\overline {\phi _{b}}}\phi _{c}{\overline {\phi _{d}}}|||\phi _{w}{\overline {\phi _{x}}}\phi _{y}{\overline {\phi _{z}}}|\rangle } can be evaluated by finding the product of the overlap between the two half determinants, that is:

|ϕaϕb¯ϕcϕd¯|||ϕwϕx¯ϕyϕz¯|=(|ϕaϕc|||ϕwϕy|)(|ϕbϕd|||ϕxϕz|){\displaystyle \langle |\phi _{a}{\overline {\phi _{b}}}\phi _{c}{\overline {\phi _{d}}}|||\phi _{w}{\overline {\phi _{x}}}\phi _{y}{\overline {\phi _{z}}}|\rangle =(\langle |\phi _{a}\phi _{c}|||\phi _{w}\phi _{y}|\rangle )(\langle |\phi _{b}\phi _{d}|||\phi _{x}\phi _{z}|\rangle )}

For example, the overlap between the orbitals|ϕ1ϕ2¯ϕ3ϕ3¯|{\displaystyle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|} and|ϕ1ϕ2¯ϕ2ϕ3¯|{\displaystyle |\phi _{1}{\overline {\phi _{2}}}\phi _{2}{\overline {\phi _{3}}}|} would be:

|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ1ϕ2¯ϕ2ϕ3¯|=(|ϕ1ϕ3|||ϕ1ϕ2|)(|ϕ2ϕ3|||ϕ2ϕ3|)=(0.12634)(0.98377)=0.12429{\displaystyle \langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{1}{\overline {\phi _{2}}}\phi _{2}{\overline {\phi _{3}}}|\rangle =(\langle |\phi _{1}\phi _{3}|||\phi _{1}\phi _{2}|\rangle )(\langle |\phi _{2}\phi _{3}|||\phi _{2}\phi _{3}|\rangle )=(0.12634)(0.98377)=0.12429}

The weights of the standard Lewis structures forO3{\displaystyle {\ce {O_3}}} would beW(Ψ2){\displaystyle W(\Psi _{2})} andW(Ψ3){\displaystyle W(\Psi _{3})}. The weights can be found by first computing the Chirgwin–Coulson weights for their constituent determinants:

W(|ϕ1ϕ2¯ϕ3ϕ3¯|)=k0.283Ck|ϕ1ϕ2¯ϕ3ϕ3¯|||Φk|=0.283[0.294(|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ2ϕ2¯ϕ1ϕ3¯|+|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ2ϕ2¯ϕ3ϕ1¯|)+0.283(|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ1ϕ1¯ϕ2ϕ3¯|+|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ1ϕ1¯ϕ3ϕ2¯|)+0.283(|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ1ϕ2¯ϕ3ϕ3¯|+|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ2ϕ1¯ϕ3ϕ3¯|)+0.294|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ1ϕ1¯ϕ2ϕ2¯|+0.294|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ2ϕ2¯ϕ3ϕ3¯|+0.274|ϕ1ϕ2¯ϕ3ϕ3¯|||ϕ1ϕ1¯ϕ3ϕ3¯|]=0.111{\displaystyle {\begin{aligned}W(|\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|)&=\sum \limits _{k}0.283C_{k}\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\Phi _{k}|\rangle \\&=0.283[-0.294(\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{2}{\overline {\phi _{2}}}\phi _{1}{\overline {\phi _{3}}}|\rangle +\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{2}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{1}}}|\rangle )+0.283(\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{1}{\overline {\phi _{1}}}\phi _{2}{\overline {\phi _{3}}}|\rangle +\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{1}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{2}}}|\rangle )\\&\quad \quad +0.283(\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|\rangle +\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{2}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{3}}}|\rangle )+0.294\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{1}{\overline {\phi _{1}}}\phi _{2}{\overline {\phi _{2}}}|\rangle +0.294\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{2}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|\rangle \\&\quad \quad +0.274\langle |\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|||\phi _{1}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{3}}}|\rangle ]\\&=0.111\end{aligned}}}
W(|ϕ2ϕ1¯ϕ3ϕ3¯|)=W(|ϕ1ϕ1¯ϕ2ϕ3¯|)=W(|ϕ1ϕ1¯ϕ3ϕ2¯|)=0.111{\displaystyle W(|\phi _{2}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{3}}}|)=W(|\phi _{1}{\overline {\phi _{1}}}\phi _{2}{\overline {\phi _{3}}}|)=W(|\phi _{1}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{2}}}|)=0.111}

The weights for the standard lewis structures would be the sum of the weights of the constituent determinants. As such:[3]

W(Ψ2)=W(|ϕ1ϕ1¯ϕ2ϕ3¯|)+W(|ϕ1ϕ1¯ϕ3ϕ2¯|)=0.222{\displaystyle W(\Psi _{2})=W(|\phi _{1}{\overline {\phi _{1}}}\phi _{2}{\overline {\phi _{3}}}|)+W(|\phi _{1}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{2}}}|)=0.222}
W(Ψ3)=W(|ϕ1ϕ2¯ϕ3ϕ3¯|)+W(|ϕ2ϕ1¯ϕ3ϕ3¯|)=0.222{\displaystyle W(\Psi _{3})=W(|\phi _{1}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{3}}}|)+W(|\phi _{2}{\overline {\phi _{1}}}\phi _{3}{\overline {\phi _{3}}}|)=0.222}

This compares well with reported Chirgwin–Coulson weights of 0.226 for the standardLewis structure of ozone in the ground state.[8]

For the diradical state,Ψ1{\displaystyle \Psi _{1}}, the weight is:

W(|ϕ2ϕ2¯ϕ1ϕ3¯|)=k0.294Ck|ϕ2ϕ2¯ϕ1ϕ3¯||Φk|=0.106{\displaystyle W(|\phi _{2}{\overline {\phi _{2}}}\phi _{1}{\overline {\phi _{3}}}|)=\sum \limits _{k}-0.294C_{k}|\phi _{2}{\overline {\phi _{2}}}\phi _{1}{\overline {\phi _{3}}}||\Phi _{k}|=0.106}
W(|ϕ2ϕ2¯ϕ3ϕ1¯|)=0.106{\displaystyle W(|\phi _{2}{\overline {\phi _{2}}}\phi _{3}{\overline {\phi _{1}}}|)=0.106}
W(Ψ1)=W(|ϕ2ϕ¯2ϕ1ϕ¯3|)+W(|ϕ2ϕ¯2ϕ1ϕ¯3|)=0.106+0.106=0.212{\displaystyle W(\Psi _{1})=W(|\phi _{2}{\overline {\phi }}_{2}\phi _{1}{\overline {\phi }}_{3}|)+W(|\phi _{2}{\overline {\phi }}_{2}\phi _{1}{\overline {\phi }}_{3}|)=0.106+0.106=0.212}

This also compares favorably with reported Chirgwin–Coulson weights of 0.213 for the diradical state of ozone in the ground state.[8]

Applications to main group compounds

[edit]

Borazine

[edit]

Borazine, (chemical formulaB3N3H6{\displaystyle {\ce {B_3N_3H_6}}}) is a cyclic, planar compound that is isoelectronic withbenzene. Given thelone pair in the nitrogen p orbital out of the plane and the empty p orbital of boron, the following resonance structure is possible:[citation needed]

Borazin Mesomers

However, VB calculations using a double-zeta D95basis set indicate that the predominant resonance structures are the structure with all three lone pairs on the nitrogen (labeled 1 below) and the six resonance structures with one double bond between boron and nitrogen (labeled 2 below). The relative weights of the two structures are 0.17 and 0.08 respectively.[11][12]

Dominant resonance structures of borazine

By contrast, the dominant resonance structures of benzene are the two Kekule structures, with weight 0.15, and 12 monozwitterionic structures with weight 0.03. The data, together, indicate that, despite the similarity in appearance and structure, the electrons on borazine are less delocalized than those on benzene.[11]

S2N2

[edit]

Disulfur dinitride is a square planar compound that contains a 6 electron conjugatedπ{\displaystyle \pi } system. The primary diradical resonance structures (1 and 2) and a secondaryzwitterionic structure (3) are shown below:[citation needed]

Dominant resonance structures of S2N2

Valence bond calculations using the Dunning's D95 full double-zeta basis set indicate that the dominant resonance structure is thesingletdiradical with a long nitrogen-nitrogen bond (structure 1), with Chirgwin-Coulson weight 0.47. This value is substantially higher than the weight for the singlet diradical centered on the sulfurs (structure 2), which has a Chirgwin-Coulson weight of 0.06.[13] This result corresponds nicely with the general rules regarding Lewis structures, namely that formal charges ought to be minimized, and contrasts with earlier computational results indicating that 1 is the dominant structure.[14]

References

[edit]
  1. ^abLöwdin, Per-Olov (March 1953). "On the Molecular-Orbital Theory of Conjugated Organic Compounds with Application to the Perturbed Benzene Ring".The Journal of Chemical Physics.21 (3):496–515.Bibcode:1953JChPh..21..496L.doi:10.1063/1.1698934.ISSN 0021-9606.
  2. ^abcGallup, G.A.; Norbeck, J.M. (September 1973). "Population analyses of valence-bond wavefunctions and BeH2".Chemical Physics Letters.21 (3):495–500.Bibcode:1973CPL....21..495G.doi:10.1016/0009-2614(73)80292-1.ISSN 0009-2614.
  3. ^abcChirgwin, B. H.; Coulson, C. A. (22 March 1950). "The Electronic Structure of Conjugated Systems. VI".Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.201 (1065):196–209.Bibcode:1950RSPSA.201..196C.doi:10.1098/rspa.1950.0053.ISSN 1364-5021.
  4. ^Mulliken, R. S. (October 1955). "Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I".The Journal of Chemical Physics.23 (10):1833–1840.Bibcode:1955JChPh..23.1833M.doi:10.1063/1.1740588.ISSN 0021-9606.
  5. ^Rumer, Georg (1932)."Zur Theorie der Spinvalenz".Gottinger Nachr.: 337.
  6. ^abcdefghiShaik, Sason; Hiberty, Philippe C. (2007-11-16).A Chemist's Guide to Valence Bond Theory. Hoboken, NJ, USA: John Wiley & Sons, Inc.doi:10.1002/9780470192597.ISBN 9780470192597.
  7. ^abcShaik, Sason; Hiberty, Philippe C. (2004-08-17). "Valence Bond Theory, Its History, Fundamentals, and Applications: A Primer".Reviews in Computational Chemistry. John Wiley & Sons, Inc. pp. 1–100.doi:10.1002/0471678856.ch1.ISBN 9780471445258.
  8. ^abcdeHiberty, P. C.; Leforestier, C. (March 1978). "Expansion of molecular orbital wave functions into valence bond wave functions. A simplified procedure".Journal of the American Chemical Society.100 (7):2012–2017.Bibcode:1978JAChS.100.2012H.doi:10.1021/ja00475a007.ISSN 0002-7863.
  9. ^Heitler, W.; London, F. (June 1927). "Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik".Zeitschrift für Physik.44 (6–7):455–472.Bibcode:1927ZPhy...44..455H.doi:10.1007/bf01397394.ISSN 1434-6001.
  10. ^J. Verbeek, J. H. Langenberg, C. P. Byrman, F. Dijkstra, J. H. van Lenthe, TURTLE: An Ab Initio VB/VBSCF Program (1998–2000)
  11. ^abBenker, Daniel; Klapötke, Thomas M.; Kuhn, Gerhard; Li, Jiabo; Miller, Christian (2005). "An ab initio valence bond (VB) calculation of the π delocalization energy in borazine, B3N3H6".Heteroatom Chemistry.16 (5):311–315.doi:10.1002/hc.20095.ISSN 1042-7163.
  12. ^Engelberts, Jeroen Johan. “Analysis Of Chemical Bonding Using Ab Initio Valence Bond Theory.”Utrecht University, 2017.
  13. ^Klapoetke, Thomas M.; Li, Jiabo; Harcourt, Richard D. (2004-10-12). "Ab initio Double-ζ (D95) Valence Bond Calculations for the Ground States of S2N2 and S42+".ChemInform.35 (41).doi:10.1002/chin.200441002.ISSN 0931-7597.
  14. ^Gerratt, J.; McNicholas, S. J.; Karadakov, P. B.; Sironi, M.; Raimondi, M.; Cooper, D. L. (January 1996). "The Extraordinary Electronic Structure of N2S2".Journal of the American Chemical Society.118 (27):6472–6476.Bibcode:1996JAChS.118.6472G.doi:10.1021/ja953994f.ISSN 0002-7863.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Chirgwin–Coulson_weights&oldid=1290360441"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp