Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Chi distribution

From Wikipedia, the free encyclopedia
Probability distribution
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Chi distribution" – news ·newspapers ·books ·scholar ·JSTOR
(October 2009) (Learn how and when to remove this message)
chi
Probability density function
Plot of the Chi PMF
Cumulative distribution function
Plot of the Chi CMF
Notationχ(k){\displaystyle \chi (k)\;} orχk{\displaystyle \chi _{k}\!}
Parametersk>0{\displaystyle k>0\,} (degrees of freedom)
Supportx[0,){\displaystyle x\in [0,\infty )}
PDF12(k/2)1Γ(k/2)xk1ex2/2{\displaystyle {\frac {1}{2^{(k/2)-1}\Gamma (k/2)}}\;x^{k-1}e^{-x^{2}/2}}
CDFP(k/2,x2/2){\displaystyle P(k/2,x^{2}/2)\,}
Meanμ=2Γ((k+1)/2)Γ(k/2){\displaystyle \mu ={\sqrt {2}}\,{\frac {\Gamma ((k+1)/2)}{\Gamma (k/2)}}}
Mediank(129k)3{\displaystyle \approx {\sqrt {k{\bigg (}1-{\frac {2}{9k}}{\bigg )}^{3}}}}
Modek1{\displaystyle {\sqrt {k-1}}\,} fork1{\displaystyle k\geq 1}
Varianceσ2=kμ2{\displaystyle \sigma ^{2}=k-\mu ^{2}\,}
Skewnessγ1=μσ3(12σ2){\displaystyle \gamma _{1}={\frac {\mu }{\sigma ^{3}}}\,(1-2\sigma ^{2})}
Excess kurtosis2σ2(1μσγ1σ2){\displaystyle {\frac {2}{\sigma ^{2}}}(1-\mu \sigma \gamma _{1}-\sigma ^{2})}
Entropyln(Γ(k/2))+{\displaystyle \ln(\Gamma (k/2))+\,}
12(kln(2)(k1)ψ0(k/2)){\displaystyle {\frac {1}{2}}(k\!-\!\ln(2)\!-\!(k\!-\!1)\psi _{0}(k/2))}
MGFComplicated (see text)
CFComplicated (see text)

Inprobability theory andstatistics, thechi distribution is a continuousprobability distribution over the non-negative real line. It is the distribution of the positive square root of a sum of squared independentGaussian random variables. Equivalently, it is the distribution of theEuclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying achi-squared distribution.

IfZ1,,Zk{\displaystyle Z_{1},\ldots ,Z_{k}} arek{\displaystyle k} independent,normally distributed random variables with mean 0 andstandard deviation 1, then the statistic

Y=i=1kZi2{\displaystyle Y={\sqrt {\sum _{i=1}^{k}Z_{i}^{2}}}}

is distributed according to the chi distribution. The chi distribution has one positive integer parameterk{\displaystyle k}, which specifies thedegrees of freedom (i.e. the number of random variablesZi{\displaystyle Z_{i}}).

The most familiar examples are theRayleigh distribution (chi distribution with twodegrees of freedom) and theMaxwell–Boltzmann distribution of the molecular speeds in anideal gas (chi distribution with three degrees of freedom).

Definitions

[edit]

Probability density function

[edit]

Theprobability density function (pdf) of the chi-distribution is

f(x;k)={xk1ex2/22k/21Γ(k2),x0;0,otherwise.{\displaystyle f(x;k)={\begin{cases}{\dfrac {x^{k-1}e^{-x^{2}/2}}{2^{k/2-1}\Gamma \left({\frac {k}{2}}\right)}},&x\geq 0;\\0,&{\text{otherwise}}.\end{cases}}}

whereΓ(z){\displaystyle \Gamma (z)} is thegamma function.

Cumulative distribution function

[edit]

The cumulative distribution function is given by:

F(x;k)=P(k/2,x2/2){\displaystyle F(x;k)=P(k/2,x^{2}/2)\,}

whereP(k,x){\displaystyle P(k,x)} is theregularized gamma function.

Generating functions

[edit]

Themoment-generating function is given by:

M(t)=M(k2,12,t22)+t2Γ((k+1)/2)Γ(k/2)M(k+12,32,t22),{\displaystyle M(t)=M\left({\frac {k}{2}},{\frac {1}{2}},{\frac {t^{2}}{2}}\right)+t{\sqrt {2}}\,{\frac {\Gamma ((k+1)/2)}{\Gamma (k/2)}}M\left({\frac {k+1}{2}},{\frac {3}{2}},{\frac {t^{2}}{2}}\right),}

whereM(a,b,z){\displaystyle M(a,b,z)} is Kummer'sconfluent hypergeometric function. Thecharacteristic function is given by:

φ(t;k)=M(k2,12,t22)+it2Γ((k+1)/2)Γ(k/2)M(k+12,32,t22).{\displaystyle \varphi (t;k)=M\left({\frac {k}{2}},{\frac {1}{2}},{\frac {-t^{2}}{2}}\right)+it{\sqrt {2}}\,{\frac {\Gamma ((k+1)/2)}{\Gamma (k/2)}}M\left({\frac {k+1}{2}},{\frac {3}{2}},{\frac {-t^{2}}{2}}\right).}

Properties

[edit]

Moments

[edit]

The rawmoments are then given by:

μj=0f(x;k)xjdx=2j/2  Γ(12(k+j)) Γ(12k){\displaystyle \mu _{j}=\int _{0}^{\infty }f(x;k)x^{j}\mathrm {d} x=2^{j/2}\ {\frac {\ \Gamma \left({\tfrac {1}{2}}(k+j)\right)\ }{\Gamma \left({\tfrac {1}{2}}k\right)}}}

where Γ(z) {\displaystyle \ \Gamma (z)\ } is thegamma function. Thus the first few raw moments are:

μ1=2   Γ(12(k+1)) Γ(12k){\displaystyle \mu _{1}={\sqrt {2\ }}\ {\frac {\ \Gamma \left({\tfrac {1}{2}}(k+1)\right)\ }{\Gamma \left({\tfrac {1}{2}}k\right)}}}
μ2=k ,{\displaystyle \mu _{2}=k\ ,}
μ3=22   Γ(12(k+3)) Γ(12k)=(k+1) μ1 ,{\displaystyle \mu _{3}=2{\sqrt {2\ }}\ {\frac {\ \Gamma \left({\tfrac {1}{2}}(k+3)\right)\ }{\Gamma \left({\tfrac {1}{2}}k\right)}}=(k+1)\ \mu _{1}\ ,}
μ4=(k)(k+2) ,{\displaystyle \mu _{4}=(k)(k+2)\ ,}
μ5=42   Γ(12(k+5)) Γ(12k)=(k+1)(k+3) μ1 ,{\displaystyle \mu _{5}=4{\sqrt {2\ }}\ {\frac {\ \Gamma \left({\tfrac {1}{2}}(k\!+\!5)\right)\ }{\Gamma \left({\tfrac {1}{2}}k\right)}}=(k+1)(k+3)\ \mu _{1}\ ,}
μ6=(k)(k+2)(k+4) ,{\displaystyle \mu _{6}=(k)(k+2)(k+4)\ ,}

where the rightmost expressions are derived using the recurrence relationship for the gamma function:

Γ(x+1)=x Γ(x) .{\displaystyle \Gamma (x+1)=x\ \Gamma (x)~.}

From these expressions we may derive the following relationships:

Mean:μ=2   Γ(12(k+1)) Γ(12k) ,{\displaystyle \mu ={\sqrt {2\ }}\ {\frac {\ \Gamma \left({\tfrac {1}{2}}(k+1)\right)\ }{\Gamma \left({\tfrac {1}{2}}k\right)}}\ ,} which is close tok12  {\displaystyle {\sqrt {k-{\tfrac {1}{2}}\ }}\ } for largek.

Variance:V=kμ2 ,{\displaystyle V=k-\mu ^{2}\ ,} which approaches 12 {\displaystyle \ {\tfrac {1}{2}}\ } ask increases.

Skewness:γ1=μ σ3 (12σ2) .{\displaystyle \gamma _{1}={\frac {\mu }{\ \sigma ^{3}\ }}\left(1-2\sigma ^{2}\right)~.}

Kurtosis excess:γ2=2 σ2 (1μ σ γ1σ2) .{\displaystyle \gamma _{2}={\frac {2}{\ \sigma ^{2}\ }}\left(1-\mu \ \sigma \ \gamma _{1}-\sigma ^{2}\right)~.}

Entropy

[edit]

The entropy is given by:

S=ln(Γ(k/2))+12(kln(2)(k1)ψ0(k/2)){\displaystyle S=\ln(\Gamma (k/2))+{\frac {1}{2}}(k\!-\!\ln(2)\!-\!(k\!-\!1)\psi ^{0}(k/2))}

whereψ0(z){\displaystyle \psi ^{0}(z)} is thepolygamma function.

Large n approximation

[edit]

We find the large n=k+1 approximation of the mean and variance of chi distribution. This has application e.g. in finding the distribution of standard deviation of a sample of normally distributed population, where n is the sample size.

The mean is then:

μ=2Γ(n/2)Γ((n1)/2){\displaystyle \mu ={\sqrt {2}}\,\,{\frac {\Gamma (n/2)}{\Gamma ((n-1)/2)}}}

We use theLegendre duplication formula to write:

2n2Γ((n1)/2)Γ(n/2)=πΓ(n1){\displaystyle 2^{n-2}\,\Gamma ((n-1)/2)\cdot \Gamma (n/2)={\sqrt {\pi }}\Gamma (n-1)},

so that:

μ=2/π2n2(Γ(n/2))2Γ(n1){\displaystyle \mu ={\sqrt {2/\pi }}\,2^{n-2}\,{\frac {(\Gamma (n/2))^{2}}{\Gamma (n-1)}}}

UsingStirling's approximation for Gamma function, we get the following expression for the mean:

μ=2/π2n2(2π(n/21)n/21+1/2e(n/21)[1+112(n/21)+O(1n2)])22π(n2)n2+1/2e(n2)[1+112(n2)+O(1n2)]{\displaystyle \mu ={\sqrt {2/\pi }}\,2^{n-2}\,{\frac {\left({\sqrt {2\pi }}(n/2-1)^{n/2-1+1/2}e^{-(n/2-1)}\cdot [1+{\frac {1}{12(n/2-1)}}+O({\frac {1}{n^{2}}})]\right)^{2}}{{\sqrt {2\pi }}(n-2)^{n-2+1/2}e^{-(n-2)}\cdot [1+{\frac {1}{12(n-2)}}+O({\frac {1}{n^{2}}})]}}}
=(n2)1/2[1+14n+O(1n2)]=n1(11n1)1/2[1+14n+O(1n2)]{\displaystyle =(n-2)^{1/2}\,\cdot \left[1+{\frac {1}{4n}}+O({\frac {1}{n^{2}}})\right]={\sqrt {n-1}}\,(1-{\frac {1}{n-1}})^{1/2}\cdot \left[1+{\frac {1}{4n}}+O({\frac {1}{n^{2}}})\right]}
=n1[112n+O(1n2)][1+14n+O(1n2)]{\displaystyle ={\sqrt {n-1}}\,\cdot \left[1-{\frac {1}{2n}}+O({\frac {1}{n^{2}}})\right]\,\cdot \left[1+{\frac {1}{4n}}+O({\frac {1}{n^{2}}})\right]}
=n1[114n+O(1n2)]{\displaystyle ={\sqrt {n-1}}\,\cdot \left[1-{\frac {1}{4n}}+O({\frac {1}{n^{2}}})\right]}

And thus the variance is:

V=(n1)μ2=(n1)12n[1+O(1n)]{\displaystyle V=(n-1)-\mu ^{2}\,=(n-1)\cdot {\frac {1}{2n}}\,\cdot \left[1+O({\frac {1}{n}})\right]}

Related distributions

[edit]
Various chi and chi-squared distributions
NameStatistic
chi-squared distributioni=1k(Xiμiσi)2{\displaystyle \sum _{i=1}^{k}\left({\frac {X_{i}-\mu _{i}}{\sigma _{i}}}\right)^{2}}
noncentral chi-squared distributioni=1k(Xiσi)2{\displaystyle \sum _{i=1}^{k}\left({\frac {X_{i}}{\sigma _{i}}}\right)^{2}}
chi distributioni=1k(Xiμiσi)2{\displaystyle {\sqrt {\sum _{i=1}^{k}\left({\frac {X_{i}-\mu _{i}}{\sigma _{i}}}\right)^{2}}}}
noncentral chi distributioni=1k(Xiσi)2{\displaystyle {\sqrt {\sum _{i=1}^{k}\left({\frac {X_{i}}{\sigma _{i}}}\right)^{2}}}}

References

[edit]
  • Martha L. Abell, James P. Braselton, John Arthur Rafter, John A. Rafter,Statistics with Mathematica (1999),237f.
  • Jan W. Gooch,Encyclopedic Dictionary of Polymers vol. 1 (2010), Appendix E,p. 972.

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Chi_distribution&oldid=1259192969"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp