Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Chemical field-effect transistor

From Wikipedia, the free encyclopedia
Type of field-effect transistor

AChemFET is achemically-sensitive field-effect transistor, that is afield-effect transistor used as asensor for measuringchemical concentrations insolution.[1] When the targetanalyte concentration changes, the current through thetransistor will change accordingly.[2] Here, the analyte solution separates the source andgate electrodes.[3] A concentration gradient between the solution and the gate electrode arises due to a semi-permeable membrane on the FET surface containing receptor moieties that preferentially bind the target analyte.[3] This concentration gradient of charged analyte ions creates a chemical potential between the source and gate, which is in turn measured by the FET.[4]

Construction

[edit]
See also:ISFET
The schematic view of a ChemFET. Source, drain, and gate are the three electrodes used in a FET system. The electron flow takes place in a channel between the drain and source. The gate potential controls the current between the source and drain electrodes.

A ChemFET's source and drain are constructed as for anISFET, with the gate electrode separated from the source electrode by a solution.[4] The gate electrode's interface with the solution is a semi-permeable membrane containing the receptors, and a gap to allow the substance under test to come in contact with the sensitive receptor moieties.[5] A ChemFET'sthreshold voltage depends on the concentration gradient between the analyte in solution and the analyte in contact with its receptor-embedded semi-permeable barrier.[5]

Often,ionophores are used to facilitate analyte ion mobility through the substrate to the receptor.[6] For example, when targeting anions,quaternary ammonium salts (such astetraoctylammonium bromide) are used to provide cationic nature to the membrane, facilitating anion mobility through the substrate to the receptor moieties.[7]

Applications

[edit]

ChemFETs can be utilized in either liquid or gas phase to detect target analyte, requiring reversible binding of analyte with a receptor located in the gate electrode membrane.[8][3] There is a wide range of applications of ChemFETs, including most notably anion or cation selective sensing.[5] More work has been done with cation-sensing ChemFETs than anion-sensing ChemFETs.[5] Anion-sensing is more complicated than cation-sensing in ChemFETs due to many factors, including the size, shape, geometry, polarity, and pH of the species of interest.[5]

Practical limitations

[edit]

The body of a ChemFET is generally found to be robust.[9][4] However, the unavoidable requirement for a separate reference electrode makes the system more bulky overall and potentially more fragile.

History

[edit]

Dutch engineerPiet Bergveld studied theMOSFET and realized it could be adapted into asensor for chemical and biological applications.[10]

In 1970, Bergveld invented theion-sensitive field-effect transistor (ISFET).[11] He described the ISFET as "a special type of MOSFET with a gate at a certain distance".[10] In the ISFET structure, themetal gate of a standard MOSFET is replaced by anion-sensitivemembrane,electrolyte solution andreference electrode.[12]

ChemFETs are based on a modified ISFET, a concept developed by Bergveld in the 1970s.[4] There is some confusion as to the relationship between ChemFETs and ISFETs. Whereas an ISFET only detects ions, a ChemFET detects any chemical (including ions).

See also

[edit]
  • Chemiresistor – Material with changing electrical resistance according to its surroundings
  • EOSFET – Type of field-effect transistor
  • Electronic nose – Electronic sensor for odor detection

References

[edit]
  1. ^Reinhoudt, David N. (1992)."Application of supramolecular chemistry in the development of ion-selective CHEMFETs".Sensors and Actuators B: Chemical.6 (1–3):179–185.Bibcode:1992SeAcB...6..179R.doi:10.1016/0925-4005(92)80052-y.
  2. ^Lugtenberg, Ronny J. W.; Antonisse, Martijn M. G.; Egberink, Richard J. M.; Engbersen, Johan F. J.; Reinhoudt, David N. (1 January 1996)."Polysiloxane based CHEMFETs for the detection of heavy metal ions".Journal of the Chemical Society, Perkin Transactions 2 (9):1937–1941.doi:10.1039/p29960001937.ISSN 1364-5471.
  3. ^abcJanata, Jiri (1 November 2004). "Thirty Years of CHEMFETs – A Personal View".Electroanalysis.16 (22):1831–1835.doi:10.1002/elan.200403070.ISSN 1521-4109.
  4. ^abcdBergveld, P. (2003)."Thirty years of ISFETOLOGY".Sensors and Actuators B: Chemical.88 (1):1–20.doi:10.1016/s0925-4005(02)00301-5.
  5. ^abcdeAntonisse, Martijn M. G.; Reinhoudt, David N. (1 October 1999). "Potentiometric Anion Selective Sensors".Electroanalysis.11 (14): 1035.doi:10.1002/(sici)1521-4109(199910)11:14<1035::aid-elan1035>3.0.co;2-i.ISSN 1521-4109.
  6. ^Wróblewski, Wojciech; Wojciechowski, Kamil; Dybko, Artur; Brzózka, Zbigniew; Egberink, Richard J.M; Snellink-Ruël, Bianca H.M; Reinhoudt, David N (2001). "Durability of phosphate-selective CHEMFETs".Sensors and Actuators B: Chemical.78 (1–3):315–319.Bibcode:2001SeAcB..78..315W.doi:10.1016/s0925-4005(01)00832-2.
  7. ^Antonisse, Martijn M. G.; Snellink-Ruël, Bianca H. M.; Engbersen, Johan F. J.; Reinhoudt, David N. (1 January 1998). "Chemically modified field effect transistors with nitrite or fluoride selectivity".Journal of the Chemical Society, Perkin Transactions 2 (4): 775.doi:10.1039/a709076e.ISSN 1364-5471.
  8. ^Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M. (30 September 2015). "Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor".ACS Applied Materials & Interfaces.7 (38):21263–9.Bibcode:2015AAMI....721263H.doi:10.1021/acsami.5b05479.ISSN 1944-8244.PMID 26381613.
  9. ^Jimenez-Jorquera, Cecilia; Orozco, Jahir; Baldi, Antoni (24 December 2009)."ISFET Based Microsensors for Environmental Monitoring".Sensors.10 (1): 66.Bibcode:2009Senso..10...61J.doi:10.3390/s100100061.PMC 3270828.PMID 22315527.
  10. ^abBergveld, Piet (October 1985)."The impact of MOSFET-based sensors"(PDF).Sensors and Actuators.8 (2):109–127.Bibcode:1985SeAc....8..109B.doi:10.1016/0250-6874(85)87009-8.ISSN 0250-6874. Archived fromthe original(PDF) on 26 April 2021. Retrieved7 October 2019.
  11. ^Chris Toumazou; Pantelis Georgiou (December 2011)."40 years of ISFET technology: From neuronal sensing to DNA sequencing".Electronics Letters.doi:10.1049/el.2011.3231. Retrieved13 May 2016.
  12. ^Schöning, Michael J.; Poghossian, Arshak (10 September 2002)."Recent advances in biologically sensitive field-effect transistors (BioFETs)"(PDF).Analyst.127 (9):1137–1151.Bibcode:2002Ana...127.1137S.doi:10.1039/B204444G.ISSN 1364-5528.PMID 12375833.
Semiconductor
devices
MOS
transistors
Other
transistors
Diodes
Other
devices
Voltage regulators
Vacuum tubes
Vacuum tubes (RF)
Cathode ray tubes
Gas-filled tubes
Adjustable
Passive
Reactive
Other devices

Retrieved from "https://en.wikipedia.org/w/index.php?title=Chemical_field-effect_transistor&oldid=1306573227"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp