Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of calcium

From Wikipedia, the free encyclopedia
(Redirected fromCalcium-54)

This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of calcium" – news ·newspapers ·books ·scholar ·JSTOR
(May 2018) (Learn how and when to remove this message)
Isotopes ofcalcium (20Ca)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
40Ca96.9%stable
41Catrace9.94×104 yε41K
42Ca0.647%stable
43Ca0.135%stable
44Ca2.09%stable
45Casynth163 dβ45Sc
46Ca0.004%stable
47Casynth4.5 dβ47Sc
48Ca0.187%6.4×1019 yββ48Ti
Standard atomic weightAr°(Ca)

Calcium (20Ca) has 26 known isotopes, ranging from35Ca to60Ca. There are fivestable isotopes (40Ca,42Ca,43Ca,44Ca and46Ca), plus one isotope (48Ca) with such a longhalf-life that it is for all practical purposes stable. The most abundant isotope,40Ca, as well as the rare46Ca, are theoretically unstable on energetic grounds, but their decay has not been observed. Calcium also has acosmogenic isotope,41Ca, withhalf-life 99,400 years. Unlikecosmogenic isotopes that are produced in theair,41Ca is produced byneutron activation of40Ca. Most of its production is in the upper metre of the soil column, where the cosmogenic neutron flux is still strong enough.41Ca has received much attention in stellar studies because it decays to41K, a critical indicator of solar system anomalies. The most stable artificial isotopes are45Ca with half-life 163 days and47Ca with half-life 4.5 days. All other calcium isotopes have half-lives of minutes or less.[4]

Stable40Ca comprises about 97% of natural calcium and is mainly created by nucleosynthesis in large stars. Similarly to40Ar, however, some atoms of40Ca are radiogenic, created through the radioactive decay of40K. WhileK–Ar dating has been used extensively in thegeological sciences, the prevalence of40Ca in nature initially impeded the proliferation of K-Ca dating in early studies, with only a handful of studies in the 20th century. Modern techniques using increasingly precise Thermal-Ionization (TIMS) and Collision-Cell Multi-Collector Inductively-coupled plasmamass spectrometry (CC-MC-ICP-MS) techniques, however, have been used for successfulK–Ca age dating,[5][6] as well as determining K losses from the lower continental crust[7] and for source-tracing calcium contributions from various geologic reservoirs[8][9] similar toRb-Sr.

Stable isotope variations of calcium (most typically44Ca/40Ca or44Ca/42Ca, denoted as 'δ44Ca' and 'δ44/42Ca' in delta notation) are also widely used across the natural sciences for a number of applications, ranging from early determination ofosteoporosis[10] to quantifyingvolcanic eruption timescales.[11] Other applications include: quantifyingcarbon sequestration efficiency in CO2 injection sites[12] and understandingocean acidification,[13] exploring both ubiquitous and rare magmatic processes, such as formation ofgranites[14] andcarbonatites,[15] tracing modern and ancienttrophic webs including in dinosaurs,[16][17][18] assessingweaning practices in ancient humans,[19] and a plethora of other emerging applications.

List of isotopes

[edit]


Nuclide
ZNIsotopic mass(Da)[20]
[n 1]
Half-life[1]
[n 2]
Decay
mode
[1]
[n 3]
Daughter
isotope

[n 4]
Spin and
parity[1]
[n 5][n 6]
Natural abundance(mole fraction)
Normal proportion[1]Range of variation
35Ca201535.00557(22)#25.7(2) msβ+,p (95.8%)34Ar1/2+#
β+, 2p (4.2%)33Cl
β+ (rare)35K
36Ca201635.993074(43)100.9(13) msβ+, p (51.2%)35Ar0+
β+ (48.8%)36K
37Ca201736.98589785(68)181.0(9) msβ+, p (76.8%)36Ar3/2+
β+ (23.2%)37K
38Ca201837.97631922(21)443.70(25) msβ+38K0+
39Ca201938.97071081(64)860.3(8) msβ+39K3/2+
40Ca[n 7]202039.962590850(22)Observationally stable[n 8]0+0.9694(16)0.96933–0.96947
41Ca202140.96227791(15)9.94(15)×104 yEC41K7/2−Trace[n 9]
42Ca202241.95861778(16)Stable0+0.00647(23)0.00646–0.00648
43Ca202342.95876638(24)Stable7/2−0.00135(10)0.00135–0.00135
44Ca202443.95548149(35)Stable0+0.0209(11)0.02082–0.02092
45Ca202544.95618627(39)162.61(9) dβ45Sc7/2−
46Ca202645.9536877(24)Observationally stable[n 10]0+4×10−54×10−5–4×10−5
47Ca202746.9545411(24)4.536(3) dβ47Sc7/2−
48Ca[n 11][n 12]202847.952522654(18)5.6(10)×1019 yββ[n 13][n 14]48Ti0+0.00187(21)0.00186–0.00188
49Ca202948.95566263(19)8.718(6) minβ49Sc3/2−
50Ca203049.9574992(17)13.45(5) sβ50Sc0+
51Ca203150.96099566(56)10.0(8) sβ51Sc3/2−
β,n?50Sc
52Ca203251.96321365(72)4.6(3) sβ (>98%)52Sc0+
β, n (<2%)51Sc
53Ca203352.968451(47)461(90) msβ (60%)53Sc1/2−#
β, n (40%)52Sc
54Ca203453.972989(52)90(6) msβ54Sc0+
β, n?53Sc
β, 2n?52Sc
55Ca203554.97998(17)22(2) msβ55Sc5/2−#
β, n?54Sc
β, 2n?53Sc
56Ca203655.98550(27)11(2) msβ56Sc0+
β, n?55Sc
β, 2n?54Sc
57Ca203756.99296(43)#8# ms [>620 ns]β?57Sc5/2−#
β, n?56Sc
β, 2n?55Sc
58Ca203857.99836(54)#4# ms [>620 ns]β?58Sc0+
β, n?57Sc
β, 2n?56Sc
59Ca203959.00624(64)#5# ms [>400 ns]β?59Sc5/2−#
β, n?58Sc
β, 2n?57Sc
60Ca204060.01181(75)#2# ms [>400 ns]β?60Sc0+
β, n?59Sc
β, 2n?58Sc
This table header & footer:
  1. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  3. ^Modes of decay:
    EC:Electron capture



    n:Neutron emission
    p:Proton emission
  4. ^Bold symbol as daughter – Daughter product is stable.
  5. ^( ) spin value – Indicates spin with weak assignment arguments.
  6. ^# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  7. ^Heaviest observationally stable nuclide with equal numbers of protons and neutrons
  8. ^Believed to undergodouble electron capture to40Ar with a half-life no less than 9.9×1021 y
  9. ^Cosmogenic nuclide
  10. ^Believed to undergo ββ decay to46Ti
  11. ^Primordialradionuclide
  12. ^Believed to be capable of undergoingtriple beta decay with very long partial half-life
  13. ^Lightest nuclide known to undergodouble beta decay
  14. ^Theorized to also undergo β decay to48Sc with apartial half-life exceeding 1.1+0.8
    −0.6
    ×1021 years[21]

Calcium-48

[edit]
Main article:Calcium-48
About 2 g of calcium-48

Calcium-48 is a doubly magic nucleus with 28 neutrons; unusually neutron-rich for a light primordial nucleus. It decays viadouble beta decay with an extremely long half-life of about 6.4×1019 years, though single beta decay is also theoretically possible.[22] This decay can analyzed with thesdnuclear shell model, and it is more energetic (4.27 MeV) than any other double beta decay.[23] It can also be used as a precursor for neutron-rich and superheavy nuclei.[24][25]

Calcium-60

[edit]

Calcium-60 is the heaviest known isotope as of 2020[update].[1] First observed in 2018 atRiken alongside59Ca and seven isotopes of other elements,[26] its existence suggests that there are additional even-N isotopes of calcium up to at least70Ca, while59Ca is probably the last bound isotope with oddN.[27] Earlier predictions had estimated the neutron drip line to occur at60Ca, with59Ca unbound.[26]

In the neutron-rich region,N = 40 becomes amagic number, so60Ca was considered early on to be a possibly doubly magic nucleus, as is observed for the68Niisotone.[28][29] However, subsequent spectroscopic measurements of the nearby nuclides56Ca,58Ca, and62Ti instead predict that it should lie on theisland of inversion known to exist around64Cr.[29][30]

References

[edit]
  1. ^abcdefKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Calcium".CIAAW. 1983.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017)."The NUBASE2016 evaluation of nuclear properties"(PDF).Chinese Physics C.41 (3): 030001.Bibcode:2017ChPhC..41c0001A.doi:10.1088/1674-1137/41/3/030001.
  5. ^Marshall, B. D.; DePaolo, D. J. (1982-12-01)."Precise age determinations and petrogenetic studies using the KCa method".Geochimica et Cosmochimica Acta.46 (12):2537–2545.doi:10.1016/0016-7037(82)90376-3.ISSN 0016-7037.
  6. ^admin."K-Ca dating and Ca isotope composition of the oldest Solar System lava, Erg Chech 002 | Geochemical Perspectives Letters". Retrieved2024-10-16.
  7. ^admin."Radiogenic Ca isotopes confirm post-formation K depletion of lower crust | Geochemical Perspectives Letters". Retrieved2024-10-16.
  8. ^Antonelli, Michael A.; DePaolo, Donald J.; Christensen, John N.; Wotzlaw, Jörn-Frederik; Pester, Nicholas J.; Bachmann, Olivier (2021-09-16)."Radiogenic 40 Ca in Seawater: Implications for Modern and Ancient Ca Cycles".ACS Earth and Space Chemistry.5 (9):2481–2492.doi:10.1021/acsearthspacechem.1c00179.ISSN 2472-3452.
  9. ^Davenport, Jesse; Caro, Guillaume; France-Lanord, Christian (2022-12-01)."Decoupling of physical and chemical erosion in the Himalayas revealed by radiogenic Ca isotopes".Geochimica et Cosmochimica Acta.338:199–219.doi:10.1016/j.gca.2022.10.031.ISSN 0016-7037.
  10. ^Eisenhauer, A.; Müller, M.; Heuser, A.; Kolevica, A.; Glüer, C. -C.; Both, M.; Laue, C.; Hehn, U. v.; Kloth, S.; Shroff, R.; Schrezenmeir, J. (2019-06-01)."Calcium isotope ratios in blood and urine: A new biomarker for the diagnosis of osteoporosis".Bone Reports.10: 100200.doi:10.1016/j.bonr.2019.100200.ISSN 2352-1872.PMC 6453776.PMID 30997369.
  11. ^Antonelli, Michael A.; Mittal, Tushar; McCarthy, Anders; Tripoli, Barbara; Watkins, James M.; DePaolo, Donald J. (2019-10-08)."Ca isotopes record rapid crystal growth in volcanic and subvolcanic systems".Proceedings of the National Academy of Sciences.116 (41):20315–20321.doi:10.1073/pnas.1908921116.ISSN 0027-8424.PMC 6789932.PMID 31548431.
  12. ^Pogge von Strandmann, Philip A. E.; Burton, Kevin W.; Snæbjörnsdóttir, Sandra O.; Sigfússon, Bergur; Aradóttir, Edda S.; Gunnarsson, Ingvi; Alfredsson, Helgi A.; Mesfin, Kiflom G.; Oelkers, Eric H.; Gislason, Sigurður R. (2019-04-30)."Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes".Nature Communications.10 (1): 1983.doi:10.1038/s41467-019-10003-8.ISSN 2041-1723.PMC 6491611.PMID 31040283.
  13. ^Fantle, Matthew S.; Ridgwell, Andy (2020-08-05)."Towards an understanding of the Ca isotopic signal related to ocean acidification and alkalinity overshoots in the rock record".Chemical Geology.547: 119672.doi:10.1016/j.chemgeo.2020.119672.ISSN 0009-2541.
  14. ^Antonelli, Michael A.; Yakymchuk, Chris; Schauble, Edwin A.; Foden, John; Janoušek, Vojtěch; Moyen, Jean-François; Hoffmann, Jan; Moynier, Frédéric; Bachmann, Olivier (2023-04-15)."Granite petrogenesis and the δ44Ca of continental crust".Earth and Planetary Science Letters.608: 118080.doi:10.1016/j.epsl.2023.118080.hdl:20.500.11850/603069.ISSN 0012-821X.
  15. ^admin."Calcium isotope fractionation during melt immiscibility and carbonatite petrogenesis | Geochemical Perspectives Letters". Retrieved2024-10-16.
  16. ^Skulan, Joseph; DePaolo, Donald J.; Owens, Thomas L. (1997-06-01)."Biological control of calcium isotopic abundances in the global calcium cycle".Geochimica et Cosmochimica Acta.61 (12):2505–2510.doi:10.1016/S0016-7037(97)00047-1.ISSN 0016-7037.
  17. ^admin."Calcium stable isotopes place Devonian conodonts as first level consumers | Geochemical Perspectives Letters". Retrieved2024-10-16.
  18. ^Hassler, A.; Martin, J. E.; Amiot, R.; Tacail, T.; Godet, F. Arnaud; Allain, R.; Balter, V. (2018-04-11)."Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs".Proceedings of the Royal Society B: Biological Sciences.285 (1876): 20180197.doi:10.1098/rspb.2018.0197.ISSN 0962-8452.PMC 5904318.PMID 29643213.
  19. ^Tacail, Théo; Thivichon-Prince, Béatrice; Martin, Jeremy E.; Charles, Cyril; Viriot, Laurent; Balter, Vincent (2017-06-13)."Assessing human weaning practices with calcium isotopes in tooth enamel".Proceedings of the National Academy of Sciences.114 (24):6268–6273.doi:10.1073/pnas.1704412114.ISSN 0027-8424.PMC 5474782.PMID 28559355.
  20. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  21. ^Aunola, M.; Suhonen, J.; Siiskonen, T. (1999). "Shell-model study of the highly forbidden beta decay48Ca →48Sc".EPL.46 (5): 577.Bibcode:1999EL.....46..577A.doi:10.1209/epl/i1999-00301-2.S2CID 250836275.
  22. ^Arnold, R.; et al. (NEMO-3 Collaboration) (2016). "Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of48Ca with the NEMO-3 detector".Physical Review D.93 (11): 112008.arXiv:1604.01710.Bibcode:2016PhRvD..93k2008A.doi:10.1103/PhysRevD.93.112008.
  23. ^Balysh, A.; et al. (1996). "Double Beta Decay of48Ca".Physical Review Letters.77 (26):5186–5189.arXiv:nucl-ex/9608001.Bibcode:1996PhRvL..77.5186B.doi:10.1103/PhysRevLett.77.5186.PMID 10062737.
  24. ^Notani, M.; et al. (2002). "New neutron-rich isotopes,34Ne,37Na and43Si, produced by fragmentation of a 64A MeV48Ca beam".Physics Letters B.542 (1–2):49–54.Bibcode:2002PhLB..542...49N.doi:10.1016/S0370-2693(02)02337-7.
  25. ^Oganessian, Yu. Ts.; et al. (October 2006)."Synthesis of the isotopes of elements 118 and 116 in the249Cf and245Cm +48Ca fusion reactions".Physical Review C.74 (4): 044602.Bibcode:2006PhRvC..74d4602O.doi:10.1103/PhysRevC.74.044602.
  26. ^abTarasov, O. B.; Ahn, D. S.; Bazin, D.; et al. (11 July 2018)."Discovery of60Ca and Implications For the Stability of70Ca".Physical Review Letters.121 (2): 022501.doi:10.1103/PhysRevLett.121.022501.PMID 30085743.
  27. ^Neufcourt, Léo; Cao, Yuchen; Nazarewicz, Witold; et al. (14 February 2019). "Neutron Drip Line in the Ca Region from Bayesian Model Averaging".Physical Review Letters.122 (6): 062502.arXiv:1901.07632.doi:10.1103/PhysRevLett.122.062502.PMID 30822058.
  28. ^Gade, A.; Janssens, R. V. F.; Weisshaar, D.; et al. (21 March 2014). "Nuclear Structure TowardsN = 4060Ca: In-Beam γ -Ray Spectroscopy of58, 60Ti".Physical Review Letters.112 (11): 112503.arXiv:1402.5944.doi:10.1103/PhysRevLett.112.112503.PMID 24702356.
  29. ^abCortés, M.L.; Rodriguez, W.; Doornenbal, P.; et al. (January 2020)."Shell evolution ofN = 40 isotones towards60Ca: First spectroscopy of62Ti".Physics Letters B.800: 135071.arXiv:1912.07887.doi:10.1016/j.physletb.2019.135071.
  30. ^Chen, S.; Browne, F.; Doornenbal, P.; et al. (August 2023)."Level structures of56, 58Ca cast doubt on a doubly magic60Ca".Physics Letters B.843: 138025.arXiv:2307.07077.doi:10.1016/j.physletb.2023.138025.

Further reading

[edit]

External links

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_calcium&oldid=1255804522#Calcium-54"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp