| ||||||||||||||||||||||||||||||||||||||
Standard atomic weightAr°(Cs) | ||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Caesium (55Cs) has 41 knownisotopes, ranging inmass number from 112 to 152. Only one isotope,133Cs, is stable.[5] The longest-livedradioisotopes are135Cs with a half-life of 1.33 million years,137
Cs
with a half-life of 30.1671 years and134Cs with a half-life of 2.0652 years.[6] All other isotopes have half-lives less than 2 weeks, most under an hour.
Beginning in 1945 with the commencement ofnuclear testing, caesium radioisotopes were released into theatmosphere where caesium is absorbed readily into solution and is returned to the surface of the Earth as a component ofradioactive fallout. Once caesium enters the ground water, it is deposited on soil surfaces and removed from the landscape primarily by particle transport. As a result, the input function of these isotopes can be estimated as a function of time.
Nuclide [n 1] | Z | N | Isotopic mass(Da)[7] [n 2][n 3] | Half-life[1] | Decay mode[1] [n 4] | Daughter isotope [n 5][n 6] | Spin and parity[1] [n 7][n 8] | Isotopic abundance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 8] | |||||||||||||||||||
112Cs | 55 | 57 | 111.95017(12)# | 490(30) μs | p (>99.74%) | 111Xe | 1+# | ||||||||||||
α (<0.26%) | 108I | ||||||||||||||||||
113Cs | 55 | 58 | 112.9444285(92) | 16.94(9) μs | p | 112Xe | (3/2+) | ||||||||||||
114Cs | 55 | 59 | 113.941292(91) | 570(20) ms | β+ (91.1%) | 114Xe | (1+) | ||||||||||||
β+, p (8.7%) | 113I | ||||||||||||||||||
β+, α (0.19%) | 110Te | ||||||||||||||||||
α (0.018%) | 110I | ||||||||||||||||||
115Cs | 55 | 60 | 114.93591(11)# | 1.4(8) s | β+ (99.93%) | 115Xe | 9/2+# | ||||||||||||
β+, p (0.07%) | 114I | ||||||||||||||||||
116Cs | 55 | 61 | 115.93340(11)# | 700(40) ms | β+ (99.67%) | 116Xe | (1+) | ||||||||||||
β+, p (0.28%) | 115I | ||||||||||||||||||
β+, α (0.049%) | 112Te | ||||||||||||||||||
116mCs[n 9] | 100(60)# keV | 3.85(13) s | β+ (99.56%) | 116Xe | (7+) | ||||||||||||||
β+, p (0.44%) | 115I | ||||||||||||||||||
β+, α (0.0034%) | 112Te | ||||||||||||||||||
117Cs | 55 | 62 | 116.928617(67) | 8.4(6) s | β+ | 117Xe | 9/2+# | ||||||||||||
117mCs[n 9] | 150(80)# keV | 6.5(4) s | β+ | 117Xe | 3/2+# | ||||||||||||||
118Cs | 55 | 63 | 117.926560(14) | 14(2) s | β+ (99.98%) | 118Xe | 2(−)[8] | ||||||||||||
β+, p (0.021%) | 117I | ||||||||||||||||||
β+, α (0.0012%) | 114Te | ||||||||||||||||||
118m1Cs[8][n 9] | X keV | 17(3) s | β+ (99.98%) | 118Xe | (7−) | ||||||||||||||
β+, p (0.021%) | 117I | ||||||||||||||||||
β+, α (0.0012%) | 114Te | ||||||||||||||||||
118m2Cs[8][n 9] | Y keV | (6+) | |||||||||||||||||
118m3Cs[8][n 9] | 65.9 keV | IT | 118Cs | (3−) | |||||||||||||||
118m4Cs[8] | 125.9+X keV | 550(60) ns | IT | 118m1Cs | (7+) | ||||||||||||||
118m5Cs[8] | 195.2+X keV | <500 ns | IT | 118m4Cs | (8+) | ||||||||||||||
119Cs | 55 | 64 | 118.9223 77(15) | 43.0(2) s | β+ | 119Xe | 9/2+ | ||||||||||||
β+, α (<2×10−6%) | 115Te | ||||||||||||||||||
119mCs[n 9] | 50(30)# keV | 30.4(1) s | β+ | 119Xe | 3/2+ | ||||||||||||||
120Cs | 55 | 65 | 119.920677(11) | 60.4(6) s | β+ | 120Xe | 2+ | ||||||||||||
β+, α (<2×10−5%) | 116Te | ||||||||||||||||||
β+, p (<7×10−6%) | 119I | ||||||||||||||||||
120mCs[n 9] | 100(60)# keV | 57(6) s | β+ | 120Xe | (7−) | ||||||||||||||
β+, α (<2×10−5%) | 116Te | ||||||||||||||||||
β+, p (<7×10−6%) | 119I | ||||||||||||||||||
121Cs | 55 | 66 | 120.917227(15) | 155(4) s | β+ | 121Xe | 3/2+ | ||||||||||||
121mCs | 68.5(3) keV | 122(3) s | β+ (83%) | 121Xe | 9/2+ | ||||||||||||||
IT (17%) | 121Cs | ||||||||||||||||||
122Cs | 55 | 67 | 121.916108(36) | 21.18(19) s | β+ | 122Xe | 1+ | ||||||||||||
β+, α (<2×10−7%) | 118Te | ||||||||||||||||||
122m1Cs | 45.87(12) keV | >1 μs | IT | 122Cs | 3+ | ||||||||||||||
122m2Cs | 140(30) keV | 3.70(11) min | β+ | 122Xe | 8− | ||||||||||||||
122m3Cs | 127.07(16) keV | 360(20) ms | IT | 122Cs | 5− | ||||||||||||||
123Cs | 55 | 68 | 122.912996(13) | 5.88(3) min | β+ | 123Xe | 1/2+ | ||||||||||||
123m1Cs | 156.27(5) keV | 1.64(12) s | IT | 123Cs | 11/2− | ||||||||||||||
123m2Cs | 252(6) keV | 114(5) ns | IT | 123Cs | (9/2+) | ||||||||||||||
124Cs | 55 | 69 | 123.9122474(98) | 30.9(4) s | β+ | 124Xe | 1+ | ||||||||||||
124mCs | 462.63(14) keV | 6.41(7) s | IT (99.89%) | 124Cs | (7)+ | ||||||||||||||
β+ (0.11%) | 124Xe | ||||||||||||||||||
125Cs | 55 | 70 | 124.9097260(83) | 44.35(29) min | β+ | 125Xe | 1/2+ | ||||||||||||
125mCs | 266.1(11) keV | 900(30) ms | IT | 125Cs | (11/2−) | ||||||||||||||
126Cs | 55 | 71 | 125.909446(11) | 1.64(2) min | β+ | 126Xe | 1+ | ||||||||||||
126m1Cs | 273.0(7) keV | ~1 μs | IT | 126Cs | (4−) | ||||||||||||||
126m2Cs | 596.1(11) keV | 171(14) μs | IT | 126Cs | 8−# | ||||||||||||||
127Cs | 55 | 72 | 126.9074175(60) | 6.25(10) h | β+ | 127Xe | 1/2+ | ||||||||||||
127mCs | 452.23(21) keV | 55(3) μs | IT | 127Cs | (11/2)− | ||||||||||||||
128Cs | 55 | 73 | 127.9077485(57) | 3.640(14) min | β+ | 128Xe | 1+ | ||||||||||||
129Cs | 55 | 74 | 128.9060659(49) | 32.06(6) h | β+ | 129Xe | 1/2+ | ||||||||||||
129mCs | 575.40(14) keV | 718(21) ns | IT | 127Cs | (11/2−) | ||||||||||||||
130Cs | 55 | 75 | 129.9067093(90) | 29.21(4) min | β+ (98.4%) | 130Xe | 1+ | ||||||||||||
β− (1.6%) | 130Ba | ||||||||||||||||||
130mCs | 163.25(11) keV | 3.46(6) min | IT (99.84%) | 130Cs | 5− | ||||||||||||||
β+ (0.16%) | 130Xe | ||||||||||||||||||
131Cs | 55 | 76 | 130.90546846(19) | 9.689(16) d | EC | 131Xe | 5/2+ | ||||||||||||
132Cs | 55 | 77 | 131.9064378(11) | 6.480(6) d | β+ (98.13%) | 132Xe | 2+ | ||||||||||||
β− (1.87%) | 132Ba | ||||||||||||||||||
133Cs[n 10][n 11] | 55 | 78 | 132.905451958(8) | Stable | 7/2+ | 1.0000 | |||||||||||||
134Cs[n 11] | 55 | 79 | 133.906718501(17) | 2.0650(4) y | β− | 134Ba | 4+ | ||||||||||||
EC (3.0×10−4%) | 134Xe | ||||||||||||||||||
134mCs | 138.7441(26) keV | 2.912(2) h | IT | 134Cs | 8− | ||||||||||||||
135Cs[n 11] | 55 | 80 | 134.90597691(39) | 1.33(19)×106 y | β− | 135Ba | 7/2+ | ||||||||||||
135mCs | 1632.9(15) keV | 53(2) min | IT | 135Cs | 19/2− | ||||||||||||||
136Cs | 55 | 81 | 135.9073114(20) | 13.01(5) d | β− | 136Ba | 5+ | ||||||||||||
136mCs | 517.9(1) keV | 17.5(2) s | β−? | 136Ba | 8− | ||||||||||||||
IT? | 136Cs | ||||||||||||||||||
137Cs[n 11] | 55 | 82 | 136.90708930(32) | 30.04(4) y | β− (94.70%)[9] | 137mBa | 7/2+ | ||||||||||||
β− (5.30%)[9] | 137Ba | ||||||||||||||||||
138Cs | 55 | 83 | 137.9110171(98) | 33.5(2) min | β− | 138Ba | 3− | ||||||||||||
138mCs | 79.9(3) keV | 2.91(10) min | IT (81%) | 138Cs | 6− | ||||||||||||||
β− (19%) | 138Ba | ||||||||||||||||||
139Cs | 55 | 84 | 138.9133638(34) | 9.27(5) min | β− | 139Ba | 7/2+ | ||||||||||||
140Cs | 55 | 85 | 139.9172837(88) | 63.7(3) s | β− | 140Ba | 1− | ||||||||||||
140mCs | 13.931(21) keV | 471(51) ns | IT | 140Cs | (2)− | ||||||||||||||
141Cs | 55 | 86 | 140.9200453(99) | 24.84(16) s | β− (99.97%) | 141Ba | 7/2+ | ||||||||||||
β−,n (0.0342%) | 140Ba | ||||||||||||||||||
142Cs | 55 | 87 | 141.9242995(76) | 1.687(10) s | β− (99.91%) | 142Ba | 0− | ||||||||||||
β−, n (0.089%) | 141Ba | ||||||||||||||||||
143Cs | 55 | 88 | 142.9273473(81) | 1.802(8) s | β− (98.38%) | 143Ba | 3/2+ | ||||||||||||
β−, n (1.62%) | 142Ba | ||||||||||||||||||
144Cs | 55 | 89 | 143.932075(22) | 994(6) ms | β− (97.02%) | 144Ba | 1− | ||||||||||||
β−, n (2.98%) | 143Ba | ||||||||||||||||||
144mCs | 92.2(5) keV | 1.1(1) μs | IT | 144Cs | (4−) | ||||||||||||||
145Cs | 55 | 90 | 144.9355289(97) | 582(4) ms | β− (87.2%) | 145Ba | 3/2+ | ||||||||||||
β−, n (12.8%) | 144Ba | ||||||||||||||||||
145mCs | 762.9(4) keV | 0.5(1) μs | IT | 145Cs | 13/2# | ||||||||||||||
146Cs | 55 | 91 | 145.9406219(31) | 321.6(9) ms | β− (85.8%) | 146Ba | 1− | ||||||||||||
β−, n (14.2%) | 145Ba | ||||||||||||||||||
146mCs | 46.7(1) keV | 1.25(5) μs | IT | 146Cs | 4−# | ||||||||||||||
147Cs | 55 | 92 | 146.9442615(90) | 230.5(9) ms | β− (71.5%) | 147Ba | (3/2+) | ||||||||||||
β−, n (28.5%) | 146Ba | ||||||||||||||||||
147mCs | 701.4(4) keV | 190(20) ns | IT | 147Cs | 13/2# | ||||||||||||||
148Cs | 55 | 93 | 147.949639(14) | 151.8(10) ms | β− (71.3%) | 148Ba | (2−) | ||||||||||||
β−, n (28.7%) | 147Ba | ||||||||||||||||||
148mCs | 45.2(1) keV | 4.8(2) μs | IT | 148Cs | 4−# | ||||||||||||||
149Cs | 55 | 94 | 148.95352(43)# | 112.3(25) ms | β− (75%) | 149Ba | 3/2+# | ||||||||||||
β−, n (25%) | 148Ba | ||||||||||||||||||
150Cs | 55 | 95 | 149.95902(43)# | 81.0(26) ms | β− (~56%) | 150Ba | (2−) | ||||||||||||
β−, n (~44%) | 149Ba | ||||||||||||||||||
151Cs | 55 | 96 | 150.96320(54)# | 59(19) ms | β− | 151Ba | 3/2+# | ||||||||||||
This table header & footer: |
EC: | Electron capture |
IT: | Isomeric transition |
n: | Neutron emission |
p: | Proton emission |
Caesium-131, introduced in 2004 forbrachytherapy byIsoray,[10] has ahalf-life of 9.7 days and 30.4 keV energy.
Caesium-133 is the only stableisotope of caesium. TheSI base unit of time, thesecond, is defined by aspecific caesium-133 transition. Since 1967, the official definition of a second is:
The second, symbol s, is defined by taking the fixed numerical value of the caesium frequency,ΔνCs, the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom,[11] to be9192631770Hz, which is equal to s−1.
Caesium-134 has ahalf-life of 2.0652 years. It is produced both directly (at a very small yield because134Xe is stable) as afission product and vianeutron capture from nonradioactive133Cs (neutron capturecross section 29barns), which is a common fission product. Caesium-134 is not produced viabeta decay of other fission productnuclides of mass 134 since beta decay stops at stable134Xe. It is also not produced bynuclear weapons because133Cs is created by beta decay of original fission products only long after the nuclear explosion is over.
The combined yield of133Cs and134Cs is given as 6.7896%. The proportion between the two will change with continued neutron irradiation.134Cs also captures neutrons with a cross section of 140 barns, becoming long-lived radioactive135Cs.
Caesium-134 undergoesbeta decay (β−), producing134Ba directly and emitting on average 2.23gamma ray photons (mean energy 0.698MeV).[6]
Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
---|---|---|---|---|
(Ma) | (%)[a 2] | (keV) | ||
99Tc | 0.211 | 6.1385 | 294 | β |
126Sn | 0.230 | 0.1084 | 4050[a 3] | βγ |
79Se | 0.327 | 0.0447 | 151 | β |
135Cs | 1.33 | 6.9110[a 4] | 269 | β |
93Zr | 1.53 | 5.4575 | 91 | βγ |
107Pd | 6.5 | 1.2499 | 33 | β |
129I | 16.14 | 0.8410 | 194 | βγ |
Caesium-135 is a mildlyradioactive isotope of caesium with a half-life of 1.33 million years. It decays via emission of a low-energy beta particle into the stable isotope barium-135. Caesium-135 is one of the sevenlong-lived fission products and the only alkaline one. In most types ofnuclear reprocessing, it stays with themedium-lived fission products (including137
Cs which can only be separated from135
Cs viaisotope separation) rather than with other long-lived fission products. Except in theMolten salt reactor, where135
Cs is created as a completely separate stream outside the fuel (after the decay of bubble-separated135
Cs). The lowdecay energy, lack ofgamma radiation, and long half-life of135Cs make this isotope much less hazardous than137Cs or134Cs.
Its precursor135Xe has a highfission product yield (e.g., 6.3333% for235U andthermal neutrons) but also has the highest knownthermal neutron capture cross section of any nuclide. Because of this, much of the135Xe produced in currentthermal reactors (as much as >90% at steady-state full power)[12] will be converted to extremely long-lived (half-life on the order of 1021 years)136
Xe before it can decay to135
Cs despite the relatively short half life of135
Xe. Little or no135
Xe will be destroyed by neutron capture after a reactor shutdown, or in amolten salt reactor that continuously removes xenon from its fuel, afast neutron reactor, or a nuclear weapon. Thexenon pit is a phenomenon of excess neutron absorption through135
Xe buildup in the reactor after a reduction in power or a shutdown and is often managed by letting the135
Xe decay away to a level at which neutron flux can be safely controlled viacontrol rods again.
A nuclear reactor will also produce much smaller amounts of135Cs from the nonradioactive fission product133Cs by successive neutron capture to134Cs and then135Cs.
The thermal neutron capture cross section andresonance integral of135Cs are8.3 ± 0.3 and38.1 ± 2.6barns respectively.[13] Disposal of135Cs bynuclear transmutation is difficult, because of the low cross section as well as because neutron irradiation of mixed-isotope fission caesium produces more135Cs from stable133Cs. In addition, the intense medium-term radioactivity of137Cs makes handling of nuclear waste difficult.[14]
Caesium-136 has a half-life of 13.01 days.[5] It is produced both directly (at a very small yield because136Xe isbeta-stable) as a fission product and via neutron capture from long-lived135Cs,[15] which is a common fission product. It is also not produced by nuclear weapons because135Cs is created by beta decay of original fission products only long after the nuclear explosion is over. Caesium-136 undergoes beta decay (β−), producing136Ba directly.[5]
Caesium-137, with a half-life of 30.17 years, is one of the two principalmedium-lived fission products, along with90Sr, which are responsible for most of theradioactivity ofspent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from theChernobyl accident and is a major health concern for decontaminating land near theFukushima nuclear power plant.[16]137Cs beta decays to barium-137m (a short-livednuclear isomer) then to nonradioactivebarium-137. Caesium-137 does not emit gamma radiation directly, all observed radiation is due to the daughter isotope barium-137m.
137Cs has a very low rate of neutron capture and cannot yet be feasibly disposed of in this way unless advances in neutron beam collimation (not otherwise achievable by magnetic fields), uniquely available only from withinmuon catalyzed fusion experiments (not in the other forms ofAccelerator Transmutation of Nuclear Waste) enables production of neutrons at high enough intensity to offset and overcome these low capture rates; until then, therefore,137Cs must simply be allowed to decay.
137Cs has been used as atracer in hydrologic studies, analogous to the use of3H.
The other isotopes have half-lives from a few days to fractions of a second. Almost all caesium produced from nuclear fission comes from beta decay of originally more neutron-rich fission products, passing throughisotopes of iodine thenisotopes of xenon. Because these elements are volatile and can diffuse through nuclear fuel or air, caesium is often created far from the original site of fission.