Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of caesium

From Wikipedia, the free encyclopedia
(Redirected fromCaesium-134)

Isotopes ofcaesium (55Cs)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
131Cssynth9.7 dε131Xe
133Cs100%stable
134Cssynth2.0648 yε134Xe
β134Ba
135Cstrace1.33×106 yβ135Ba
137Cssynth30.04 y[2]β137Ba
Standard atomic weightAr°(Cs)

Caesium (55Cs) has 41 knownisotopes, ranging inmass number from 112 to 152. Only one isotope,133Cs, is stable.[5] The longest-livedradioisotopes are135Cs with a half-life of 1.33 million years,137
Cs
with a half-life of 30.1671 years and134Cs with a half-life of 2.0652 years.[6] All other isotopes have half-lives less than 2 weeks, most under an hour.

Beginning in 1945 with the commencement ofnuclear testing, caesium radioisotopes were released into theatmosphere where caesium is absorbed readily into solution and is returned to the surface of the Earth as a component ofradioactive fallout. Once caesium enters the ground water, it is deposited on soil surfaces and removed from the landscape primarily by particle transport. As a result, the input function of these isotopes can be estimated as a function of time.

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[7]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5][n 6]
Spin and
parity[1]
[n 7][n 8]
Isotopic
abundance
Excitation energy[n 8]
112Cs5557111.95017(12)#490(30) μsp (>99.74%)111Xe1+#
α (<0.26%)108I
113Cs5558112.9444285(92)16.94(9) μsp112Xe(3/2+)
114Cs5559113.941292(91)570(20) msβ+ (91.1%)114Xe(1+)
β+, p (8.7%)113I
β+, α (0.19%)110Te
α (0.018%)110I
115Cs5560114.93591(11)#1.4(8) sβ+ (99.93%)115Xe9/2+#
β+, p (0.07%)114I
116Cs5561115.93340(11)#700(40) msβ+ (99.67%)116Xe(1+)
β+, p (0.28%)115I
β+, α (0.049%)112Te
116mCs[n 9]100(60)# keV3.85(13) sβ+ (99.56%)116Xe(7+)
β+, p (0.44%)115I
β+, α (0.0034%)112Te
117Cs5562116.928617(67)8.4(6) sβ+117Xe9/2+#
117mCs[n 9]150(80)# keV6.5(4) sβ+117Xe3/2+#
118Cs5563117.926560(14)14(2) sβ+ (99.98%)118Xe2(−)[8]
β+, p (0.021%)117I
β+, α (0.0012%)114Te
118m1Cs[8][n 9]X keV17(3) sβ+ (99.98%)118Xe(7−)
β+, p (0.021%)117I
β+, α (0.0012%)114Te
118m2Cs[8][n 9]Y keV(6+)
118m3Cs[8][n 9]65.9 keVIT118Cs(3−)
118m4Cs[8]125.9+X keV550(60) nsIT118m1Cs(7+)
118m5Cs[8]195.2+X keV<500 nsIT118m4Cs(8+)
119Cs5564118.9223 77(15)43.0(2) sβ+119Xe9/2+
β+, α (<2×10−6%)115Te
119mCs[n 9]50(30)# keV30.4(1) sβ+119Xe3/2+
120Cs5565119.920677(11)60.4(6) sβ+120Xe2+
β+, α (<2×10−5%)116Te
β+, p (<7×10−6%)119I
120mCs[n 9]100(60)# keV57(6) sβ+120Xe(7−)
β+, α (<2×10−5%)116Te
β+, p (<7×10−6%)119I
121Cs5566120.917227(15)155(4) sβ+121Xe3/2+
121mCs68.5(3) keV122(3) sβ+ (83%)121Xe9/2+
IT (17%)121Cs
122Cs5567121.916108(36)21.18(19) sβ+122Xe1+
β+, α (<2×10−7%)118Te
122m1Cs45.87(12) keV>1 μsIT122Cs3+
122m2Cs140(30) keV3.70(11) minβ+122Xe8−
122m3Cs127.07(16) keV360(20) msIT122Cs5−
123Cs5568122.912996(13)5.88(3) minβ+123Xe1/2+
123m1Cs156.27(5) keV1.64(12) sIT123Cs11/2−
123m2Cs252(6) keV114(5) nsIT123Cs(9/2+)
124Cs5569123.9122474(98)30.9(4) sβ+124Xe1+
124mCs462.63(14) keV6.41(7) sIT (99.89%)124Cs(7)+
β+ (0.11%)124Xe
125Cs5570124.9097260(83)44.35(29) minβ+125Xe1/2+
125mCs266.1(11) keV900(30) msIT125Cs(11/2−)
126Cs5571125.909446(11)1.64(2) minβ+126Xe1+
126m1Cs273.0(7) keV~1 μsIT126Cs(4−)
126m2Cs596.1(11) keV171(14) μsIT126Cs8−#
127Cs5572126.9074175(60)6.25(10) hβ+127Xe1/2+
127mCs452.23(21) keV55(3) μsIT127Cs(11/2)−
128Cs5573127.9077485(57)3.640(14) minβ+128Xe1+
129Cs5574128.9060659(49)32.06(6) hβ+129Xe1/2+
129mCs575.40(14) keV718(21) nsIT127Cs(11/2−)
130Cs5575129.9067093(90)29.21(4) minβ+ (98.4%)130Xe1+
β (1.6%)130Ba
130mCs163.25(11) keV3.46(6) minIT (99.84%)130Cs5−
β+ (0.16%)130Xe
131Cs5576130.90546846(19)9.689(16) dEC131Xe5/2+
132Cs5577131.9064378(11)6.480(6) dβ+ (98.13%)132Xe2+
β (1.87%)132Ba
133Cs[n 10][n 11]5578132.905451958(8)Stable7/2+1.0000
134Cs[n 11]5579133.906718501(17)2.0650(4) yβ134Ba4+
EC (3.0×10−4%)134Xe
134mCs138.7441(26) keV2.912(2) hIT134Cs8−
135Cs[n 11]5580134.90597691(39)1.33(19)×106 yβ135Ba7/2+
135mCs1632.9(15) keV53(2) minIT135Cs19/2−
136Cs5581135.9073114(20)13.01(5) dβ136Ba5+
136mCs517.9(1) keV17.5(2) sβ?136Ba8−
IT?136Cs
137Cs[n 11]5582136.90708930(32)30.04(4) yβ (94.70%)[9]137mBa7/2+
β (5.30%)[9]137Ba
138Cs5583137.9110171(98)33.5(2) minβ138Ba3−
138mCs79.9(3) keV2.91(10) minIT (81%)138Cs6−
β (19%)138Ba
139Cs5584138.9133638(34)9.27(5) minβ139Ba7/2+
140Cs5585139.9172837(88)63.7(3) sβ140Ba1−
140mCs13.931(21) keV471(51) nsIT140Cs(2)−
141Cs5586140.9200453(99)24.84(16) sβ (99.97%)141Ba7/2+
β,n (0.0342%)140Ba
142Cs5587141.9242995(76)1.687(10) sβ (99.91%)142Ba0−
β, n (0.089%)141Ba
143Cs5588142.9273473(81)1.802(8) sβ (98.38%)143Ba3/2+
β, n (1.62%)142Ba
144Cs5589143.932075(22)994(6) msβ (97.02%)144Ba1−
β, n (2.98%)143Ba
144mCs92.2(5) keV1.1(1) μsIT144Cs(4−)
145Cs5590144.9355289(97)582(4) msβ (87.2%)145Ba3/2+
β, n (12.8%)144Ba
145mCs762.9(4) keV0.5(1) μsIT145Cs13/2#
146Cs5591145.9406219(31)321.6(9) msβ (85.8%)146Ba1−
β, n (14.2%)145Ba
146mCs46.7(1) keV1.25(5) μsIT146Cs4−#
147Cs5592146.9442615(90)230.5(9) msβ (71.5%)147Ba(3/2+)
β, n (28.5%)146Ba
147mCs701.4(4) keV190(20) nsIT147Cs13/2#
148Cs5593147.949639(14)151.8(10) msβ (71.3%)148Ba(2−)
β, n (28.7%)147Ba
148mCs45.2(1) keV4.8(2) μsIT148Cs4−#
149Cs5594148.95352(43)#112.3(25) msβ (75%)149Ba3/2+#
β, n (25%)148Ba
150Cs5595149.95902(43)#81.0(26) msβ (~56%)150Ba(2−)
β, n (~44%)149Ba
151Cs5596150.96320(54)#59(19) msβ151Ba3/2+#
This table header & footer:
  1. ^mCs – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  5. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^abcdefgOrder of ground state and isomer is uncertain.
  10. ^Used to define thesecond
  11. ^abcdFission product

Caesium-131

[edit]

Caesium-131, introduced in 2004 forbrachytherapy byIsoray,[10] has ahalf-life of 9.7 days and 30.4 keV energy.

Caesium-133

[edit]

Caesium-133 is the only stableisotope of caesium. TheSI base unit of time, thesecond, is defined by aspecific caesium-133 transition. Since 1967, the official definition of a second is:

The second, symbol s, is defined by taking the fixed numerical value of the caesium frequency,ΔνCs, the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom,[11] to be9192631770Hz, which is equal to s−1.

Caesium-134

[edit]

Caesium-134 has ahalf-life of 2.0652 years. It is produced both directly (at a very small yield because134Xe is stable) as afission product and vianeutron capture from nonradioactive133Cs (neutron capturecross section 29barns), which is a common fission product. Caesium-134 is not produced viabeta decay of other fission productnuclides of mass 134 since beta decay stops at stable134Xe. It is also not produced bynuclear weapons because133Cs is created by beta decay of original fission products only long after the nuclear explosion is over.

The combined yield of133Cs and134Cs is given as 6.7896%. The proportion between the two will change with continued neutron irradiation.134Cs also captures neutrons with a cross section of 140 barns, becoming long-lived radioactive135Cs.

Caesium-134 undergoesbeta decay), producing134Ba directly and emitting on average 2.23gamma ray photons (mean energy 0.698MeV).[6]

Caesium-135

[edit]
Nuclidet12YieldQ[a 1]βγ
(Ma)(%)[a 2](keV)
99Tc0.2116.1385294β
126Sn0.2300.10844050[a 3]βγ
79Se0.3270.0447151β
135Cs1.336.9110[a 4]269β
93Zr1.535.457591βγ
107Pd6.5  1.249933β
129I16.14  0.8410194βγ
  1. ^Decay energy is split amongβ,neutrino, andγ if any.
  2. ^Per 65 thermal neutron fissions of235U and 35 of239Pu.
  3. ^Has decay energy 380 keV, but its decay product126Sb has decay energy 3.67 MeV.
  4. ^Lower in thermal reactors because135Xe, its predecessor,readily absorbs neutrons.

Caesium-135 is a mildlyradioactive isotope of caesium with a half-life of 1.33 million years. It decays via emission of a low-energy beta particle into the stable isotope barium-135. Caesium-135 is one of the sevenlong-lived fission products and the only alkaline one. In most types ofnuclear reprocessing, it stays with themedium-lived fission products (including137
Cs
which can only be separated from135
Cs
viaisotope separation) rather than with other long-lived fission products. Except in theMolten salt reactor, where135
Cs
is created as a completely separate stream outside the fuel (after the decay of bubble-separated135
Cs
). The lowdecay energy, lack ofgamma radiation, and long half-life of135Cs make this isotope much less hazardous than137Cs or134Cs.

Its precursor135Xe has a highfission product yield (e.g., 6.3333% for235U andthermal neutrons) but also has the highest knownthermal neutron capture cross section of any nuclide. Because of this, much of the135Xe produced in currentthermal reactors (as much as >90% at steady-state full power)[12] will be converted to extremely long-lived (half-life on the order of 1021 years)136
Xe
before it can decay to135
Cs
despite the relatively short half life of135
Xe
. Little or no135
Xe
will be destroyed by neutron capture after a reactor shutdown, or in amolten salt reactor that continuously removes xenon from its fuel, afast neutron reactor, or a nuclear weapon. Thexenon pit is a phenomenon of excess neutron absorption through135
Xe
buildup in the reactor after a reduction in power or a shutdown and is often managed by letting the135
Xe
decay away to a level at which neutron flux can be safely controlled viacontrol rods again.

A nuclear reactor will also produce much smaller amounts of135Cs from the nonradioactive fission product133Cs by successive neutron capture to134Cs and then135Cs.

The thermal neutron capture cross section andresonance integral of135Cs are8.3 ± 0.3 and38.1 ± 2.6barns respectively.[13] Disposal of135Cs bynuclear transmutation is difficult, because of the low cross section as well as because neutron irradiation of mixed-isotope fission caesium produces more135Cs from stable133Cs. In addition, the intense medium-term radioactivity of137Cs makes handling of nuclear waste difficult.[14]

Caesium-136

[edit]

Caesium-136 has a half-life of 13.01 days.[5] It is produced both directly (at a very small yield because136Xe isbeta-stable) as a fission product and via neutron capture from long-lived135Cs,[15] which is a common fission product. It is also not produced by nuclear weapons because135Cs is created by beta decay of original fission products only long after the nuclear explosion is over. Caesium-136 undergoes beta decay (β−), producing136Ba directly.[5]

Caesium-137

[edit]
Main article:Caesium-137

Caesium-137, with a half-life of 30.17 years, is one of the two principalmedium-lived fission products, along with90Sr, which are responsible for most of theradioactivity ofspent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from theChernobyl accident and is a major health concern for decontaminating land near theFukushima nuclear power plant.[16]137Cs beta decays to barium-137m (a short-livednuclear isomer) then to nonradioactivebarium-137. Caesium-137 does not emit gamma radiation directly, all observed radiation is due to the daughter isotope barium-137m.

137Cs has a very low rate of neutron capture and cannot yet be feasibly disposed of in this way unless advances in neutron beam collimation (not otherwise achievable by magnetic fields), uniquely available only from withinmuon catalyzed fusion experiments (not in the other forms ofAccelerator Transmutation of Nuclear Waste) enables production of neutrons at high enough intensity to offset and overcome these low capture rates; until then, therefore,137Cs must simply be allowed to decay.

137Cs has been used as atracer in hydrologic studies, analogous to the use of3H.

Other isotopes of caesium

[edit]

The other isotopes have half-lives from a few days to fractions of a second. Almost all caesium produced from nuclear fission comes from beta decay of originally more neutron-rich fission products, passing throughisotopes of iodine thenisotopes of xenon. Because these elements are volatile and can diffuse through nuclear fuel or air, caesium is often created far from the original site of fission.

References

[edit]
  1. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"NIST Radionuclide Half-Life Measurements".NIST. Retrieved2011-03-13.
  3. ^"Standard Atomic Weights: Caesium".CIAAW. 2013.
  4. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  5. ^abc"NNDC | National Nuclear Data Center".www.nndc.bnl.gov. Retrieved2025-02-22.
  6. ^ab"Characteristics of Caesium-134 and Caesium-137". Japan Atomic Energy Agency. Archived fromthe original on 2016-03-04. Retrieved2014-10-23.
  7. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  8. ^abcdefZheng, K. K.; Petrache, C. M.; Zhang, Z. H.; Astier, A.; Lv, B. F.; Greenlees, P. T.; Grahn, T.; Julin, R.; Juutinen, S.; Luoma, M.; Ojala, J.; Pakarinen, J.; Partanen, J.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Tann, H.; Uusitalo, J.; Zimba, G.; Cederwall, B.; Aktas, ö.; Ertoprak, A.; Zhang, W.; Guo, S.; Liu, M. L.; Zhou, X. H.; Kuti, I.; Nyakó, B. M.; Sohler, D.; Timár, J.; Andreoiu, C.; Doncel, M.; Joss, D. T.; Page, R. D. (21 October 2021)."Rich band structure and multiple long-lived isomers in the odd-odd Cs 118 nucleus".Physical Review C.104 (4).doi:10.1103/PhysRevC.104.044325. Retrieved29 December 2024.
  9. ^abBrowne, E.; Tuli, J.K. (October 2007). "Nuclear Data Sheets for A = 137".Nuclear Data Sheets.108 (10):2173–2318.doi:10.1016/j.nds.2007.09.002.
  10. ^Isoray."Why Cesium-131". Archived fromthe original on 2019-06-30. Retrieved2017-12-05.
  11. ^Although the phase used here is more terse than in the previous definition, it still has the same meaning. This is made clear in the 9th SI Brochure, which almost immediately after the definition on p. 130 states: "The effect of this definition is that the second is equal to the duration of9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the unperturbed ground state of the133Cs atom."
  12. ^John L. Groh (2004)."Supplement to Chapter 11 of Reactor Physics Fundamentals"(PDF). CANTEACH project. Archived fromthe original(PDF) on 10 June 2011. Retrieved14 May 2011.
  13. ^Hatsukawa, Y.; Shinohara, N; Hata, K.; et al. (1999). "Thermal neutron cross section and resonance integral of the reaction of135Cs(n,γ)136Cs: Fundamental data for the transmutation of nuclear waste".Journal of Radioanalytical and Nuclear Chemistry.239 (3):455–458.doi:10.1007/BF02349050.S2CID 97425651.
  14. ^Ohki, Shigeo; Takaki, Naoyuki (2002)."Transmutation of Cesium-135 With Fast Reactors"(PDF).Proceedings of the Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning & Transmutation, Cheju, Korea.
  15. ^"NGAtlas/ZV".www-nds.iaea.org. Retrieved2025-02-22.
  16. ^Dennis (1 March 2013). "Cooling a Hot Zone".Science.339 (6123):1028–1029.doi:10.1126/science.339.6123.1028.PMID 23449572.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_caesium&oldid=1277085892#Caesium-134"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp