Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bridgman's thermodynamic equations

From Wikipedia, the free encyclopedia
Thermodynamics
The classicalCarnot heat engine

Inthermodynamics,Bridgman's thermodynamic equations are a basic set of thermodynamic equations, derived using a method of generating multiple thermodynamic identities involving a number of thermodynamic quantities. The equations are named after the American physicistPercy Williams Bridgman. (See also theexact differential article for general differential relationships).

The extensive variables of the system are fundamental. Only theentropyS , thevolumeV  and the four most common thermodynamic potentials will be considered. The four most common thermodynamic potentials are:

Internal energyU
EnthalpyH
Helmholtz free energyA
Gibbs free energyG

The first derivatives of the internal energy with respect to its (extensive) natural variablesS  andV  yields the intensive parameters of the system - ThepressureP  and thetemperatureT . For a simple system in which theparticle numbers are constant, the second derivatives of the thermodynamic potentials can all be expressed in terms of only threematerial properties

heat capacity (constant pressure)CP
Coefficient of thermal expansionα
Isothermal compressibilityβT

Bridgman's equations are a series of relationships between all of the above quantities.

Introduction

[edit]

Many thermodynamic equations are expressed in terms of partial derivatives. For example, the expression for the heat capacity at constant pressure is:

CP=(HT)P{\displaystyle C_{P}=\left({\frac {\partial H}{\partial T}}\right)_{P}}

which is the partial derivative of the enthalpy with respect to temperature while holding pressure constant. We may write this equation as:

CP=(H)P(T)P{\displaystyle C_{P}={\frac {(\partial H)_{P}}{(\partial T)_{P}}}}

This method of rewriting the partial derivative was described by Bridgman (and also Lewis & Randall), and allows the use of the following collection of expressions to express many thermodynamic equations. For example from the equations below we have:

(H)P=CP{\displaystyle (\partial H)_{P}=C_{P}}

and

(T)P=1{\displaystyle (\partial T)_{P}=1}

Dividing, we recover the proper expression for CP.

The following summary restates various partial terms in terms of the thermodynamic potentials, the state parameters S, T, P, V, and the following threematerial properties which are easily measured experimentally.

(VT)P=αV{\displaystyle \left({\frac {\partial V}{\partial T}}\right)_{P}=\alpha V}
(VP)T=βTV{\displaystyle \left({\frac {\partial V}{\partial P}}\right)_{T}=-\beta _{T}V}
(HT)P=CP=cPN{\displaystyle \left({\frac {\partial H}{\partial T}}\right)_{P}=C_{P}=c_{P}N}

Bridgman's thermodynamic equations

[edit]

Note that Lewis and Randall use F and E for the Gibbs energy and internal energy, respectively, rather than G and U which are used in this article.

(T)P=(P)T=1{\displaystyle (\partial T)_{P}=-(\partial P)_{T}=1}
(V)P=(P)V=(VT)P{\displaystyle (\partial V)_{P}=-(\partial P)_{V}=\left({\frac {\partial V}{\partial T}}\right)_{P}}
(S)P=(P)S=CpT{\displaystyle (\partial S)_{P}=-(\partial P)_{S}={\frac {C_{p}}{T}}}
(U)P=(P)U=CPP(VT)P{\displaystyle (\partial U)_{P}=-(\partial P)_{U}=C_{P}-P\left({\frac {\partial V}{\partial T}}\right)_{P}}
(H)P=(P)H=CP{\displaystyle (\partial H)_{P}=-(\partial P)_{H}=C_{P}}
(G)P=(P)G=S{\displaystyle (\partial G)_{P}=-(\partial P)_{G}=-S}
(A)P=(P)A=SP(VT)P{\displaystyle (\partial A)_{P}=-(\partial P)_{A}=-S-P\left({\frac {\partial V}{\partial T}}\right)_{P}}
(V)T=(T)V=(VP)T{\displaystyle (\partial V)_{T}=-(\partial T)_{V}=-\left({\frac {\partial V}{\partial P}}\right)_{T}}
(S)T=(T)S=(VT)P{\displaystyle (\partial S)_{T}=-(\partial T)_{S}=\left({\frac {\partial V}{\partial T}}\right)_{P}}
(U)T=(T)U=T(VT)P+P(VP)T{\displaystyle (\partial U)_{T}=-(\partial T)_{U}=T\left({\frac {\partial V}{\partial T}}\right)_{P}+P\left({\frac {\partial V}{\partial P}}\right)_{T}}
(H)T=(T)H=V+T(VT)P{\displaystyle (\partial H)_{T}=-(\partial T)_{H}=-V+T\left({\frac {\partial V}{\partial T}}\right)_{P}}
(G)T=(T)G=V{\displaystyle (\partial G)_{T}=-(\partial T)_{G}=-V}
(A)T=(T)A=P(VP)T{\displaystyle (\partial A)_{T}=-(\partial T)_{A}=P\left({\frac {\partial V}{\partial P}}\right)_{T}}
(S)V=(V)S=CPT(VP)T+(VT)P2{\displaystyle (\partial S)_{V}=-(\partial V)_{S}={\frac {C_{P}}{T}}\left({\frac {\partial V}{\partial P}}\right)_{T}+\left({\frac {\partial V}{\partial T}}\right)_{P}^{2}}
(U)V=(V)U=CP(VP)T+T(VT)P2{\displaystyle (\partial U)_{V}=-(\partial V)_{U}=C_{P}\left({\frac {\partial V}{\partial P}}\right)_{T}+T\left({\frac {\partial V}{\partial T}}\right)_{P}^{2}}
(H)V=(V)H=CP(VP)T+T(VT)P2V(VT)P{\displaystyle (\partial H)_{V}=-(\partial V)_{H}=C_{P}\left({\frac {\partial V}{\partial P}}\right)_{T}+T\left({\frac {\partial V}{\partial T}}\right)_{P}^{2}-V\left({\frac {\partial V}{\partial T}}\right)_{P}}
(G)V=(V)G=V(VT)PS(VP)T{\displaystyle (\partial G)_{V}=-(\partial V)_{G}=-V\left({\frac {\partial V}{\partial T}}\right)_{P}-S\left({\frac {\partial V}{\partial P}}\right)_{T}}
(A)V=(V)A=S(VP)T{\displaystyle (\partial A)_{V}=-(\partial V)_{A}=-S\left({\frac {\partial V}{\partial P}}\right)_{T}}
(U)S=(S)U=PCPT(VP)T+P(VT)P2{\displaystyle (\partial U)_{S}=-(\partial S)_{U}={\frac {PC_{P}}{T}}\left({\frac {\partial V}{\partial P}}\right)_{T}+P\left({\frac {\partial V}{\partial T}}\right)_{P}^{2}}
(H)S=(S)H=VCPT{\displaystyle (\partial H)_{S}=-(\partial S)_{H}=-{\frac {VC_{P}}{T}}}
(G)S=(S)G=VCPT+S(VT)P{\displaystyle (\partial G)_{S}=-(\partial S)_{G}=-{\frac {VC_{P}}{T}}+S\left({\frac {\partial V}{\partial T}}\right)_{P}}
(A)S=(S)A=PCPT(VP)T+P(VT)P2+S(VT)P{\displaystyle (\partial A)_{S}=-(\partial S)_{A}={\frac {PC_{P}}{T}}\left({\frac {\partial V}{\partial P}}\right)_{T}+P\left({\frac {\partial V}{\partial T}}\right)_{P}^{2}+S\left({\frac {\partial V}{\partial T}}\right)_{P}}
(H)U=(U)H=VCP+PV(VT)PPCP(VP)TPT(VT)P2{\displaystyle (\partial H)_{U}=-(\partial U)_{H}=-VC_{P}+PV\left({\frac {\partial V}{\partial T}}\right)_{P}-PC_{P}\left({\frac {\partial V}{\partial P}}\right)_{T}-PT\left({\frac {\partial V}{\partial T}}\right)_{P}^{2}}
(G)U=(U)G=VCP+PV(VT)P+ST(VT)P+SP(VP)T{\displaystyle (\partial G)_{U}=-(\partial U)_{G}=-VC_{P}+PV\left({\frac {\partial V}{\partial T}}\right)_{P}+ST\left({\frac {\partial V}{\partial T}}\right)_{P}+SP\left({\frac {\partial V}{\partial P}}\right)_{T}}
(A)U=(U)A=P(CP+S)(VP)T+PT(VT)P2+ST(VT)P{\displaystyle (\partial A)_{U}=-(\partial U)_{A}=P(C_{P}+S)\left({\frac {\partial V}{\partial P}}\right)_{T}+PT\left({\frac {\partial V}{\partial T}}\right)_{P}^{2}+ST\left({\frac {\partial V}{\partial T}}\right)_{P}}
(G)H=(H)G=V(CP+S)+TS(VT)P{\displaystyle (\partial G)_{H}=-(\partial H)_{G}=-V(C_{P}+S)+TS\left({\frac {\partial V}{\partial T}}\right)_{P}}
(A)H=(H)A=[S+P(VT)P][VT(VT)P]+PCP(VP)T{\displaystyle (\partial A)_{H}=-(\partial H)_{A}=-\left[S+P\left({\frac {\partial V}{\partial T}}\right)_{P}\right]\left[V-T\left({\frac {\partial V}{\partial T}}\right)_{P}\right]+PC_{P}\left({\frac {\partial V}{\partial P}}\right)_{T}}
(A)G=(G)A=S[V+P(VP)T]PV(VT)P{\displaystyle (\partial A)_{G}=-(\partial G)_{A}=-S\left[V+P\left({\frac {\partial V}{\partial P}}\right)_{T}\right]-PV\left({\frac {\partial V}{\partial T}}\right)_{P}}

See also

[edit]

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bridgman%27s_thermodynamic_equations&oldid=1032187446"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp