At 3,000 km (1,900 mi) long, the Brahmaputra is an important river forirrigation and transportation in the region.[1][2] The average depth of the river is 30 m (100 ft) and its maximum depth is 135 m (440 ft) (atSadiya).[8] The river is prone to catastrophic flooding in the spring when the Himalayan snow melts. The average discharge of the Brahmaputra is about ~22,000 m3/s (780,000 cu ft/s),[1][6] and floods reach about 103,000 m3/s (3,600,000 cu ft/s).[1][9] It is a classic example of abraided river and is highly susceptible tochannel migration andavulsion.[10] It is also one of the few rivers in the world that exhibits atidal bore. It is navigable for most of its length.
The Brahmaputra drains the Himalayas east of the Indo-Nepal border, south-central portion of the Tibetan plateau above theGanga basin, south-eastern portion of Tibet, the Patkai hills, the northern slopes of theMeghalaya hills, the Assam plains, and northern Bangladesh. The basin, especially south of Tibet, is characterized by high levels of rainfall.Kangchenjunga (8,586 m) is the highest point within the Brahmaputra basin and the only peak above 8,000 m.
The Brahmaputra's upper course was long unknown, and its identity with the Yarlung Tsangpo was only established by exploration in 1884–1886. The river is often called the Tsangpo-Brahmaputra river.[citation needed]
The lower reaches are sacred toHindus. While most rivers on the Indian subcontinent have female names, this river has a rare male name. Brahmaputra means "son ofBrahma" inSanskrit.[11]
It is known by various names in different regional languages:Brôhmôputrô inAssamese;Tibetan:ཡར་ཀླུངས་གཙང་པོ་,Wylie:yar klung gtsang poYarlung Tsangpo;simplified Chinese:雅鲁藏布江;traditional Chinese:雅魯藏布江;pinyin:Yǎlǔzàngbù Jiāng. It is also called Tsangpo-Brahmaputra and red river of India (when referring to the whole river including the stretch within theTibet Autonomous Region).[12] In its Tibetan and Indian names, the river is unusually masculine in gender.[13]
The upper reaches of the Brahmaputra River, known as theYarlung Tsangpo from the Tibetan language, originates on theAngsi Glacier, near Mount Kailash, located on the northern side of theHimalayas inBurang County ofTibet. The source of the river was earlier thought to be on the Chemayungdung glacier, which covers the slopes of the Himalayas about 60 mi (97 km) southeast ofLake Manasarovar in southwestern Tibet.
From its source, the river runs for nearly 1,100 km (680 mi) in a generally easterly direction between the main range of the Himalayas to the south and theKailas Range to the north.
In Tibet, the Tsangpo receives a number of tributaries. The most important left-bank tributaries are the Raka Zangbo (Raka Tsangpo), which joins the river west ofXigazê (Shigatse), and theLhasa (Kyi), which flows past the Tibetan capital ofLhasa and joins the Tsangpo atQüxü. TheNyang River joins the Tsangpo from the north at Zela (Tsela Dzong). On the right bank, a second river called the Nyang Qu (Nyang Chu) meets the Tsangpo at Xigazê.
After passing Pi (Pe) in Tibet, the river turns suddenly to the north and northeast and cuts a course through a succession of great narrow gorges between the mountainous massifs ofGyala Peri andNamcha Barwa in a series of rapids and cascades. Thereafter, the river turns south and southwest and flows through a deep gorge (the "Yarlung Tsangpo Grand Canyon") across the eastern extremity of the Himalayas with canyon walls that extend upward for 5,000 m (16,000 ft) and more on each side. During that stretch, the river crosses the China-India line of actual control to enter northern Arunachal Pradesh, where it is known as the Dihang (or Siang) River, and turns more southerly.
Brahmaputra basin inIndiaA view of sunset in the Brahmaputra from Dibrugarh
The Yarlung Tsangpo leaves the part of Tibet to enter Indian state ofArunachal Pradesh, where the river is called Siang. It makes a very rapid descent from its original height in Tibet and finally appears in the plains, where it is called Dihang. It flows for about 35 km (22 mi) southward after which, it is joined by theDibang River and theLohit River at the head of the Assam Valley. Below the Lohit, the river is called Brahmaputra and Doima (mother of water) and Burlung-Buthur by nativeBodo tribals, it then enters the state ofAssam, and becomes very wide—as wide as 20 km (12 mi) in parts of Assam.
The reason for such an unusual course and drastic change is that the riveris antecedent to the Himalayas, meaning that it had existed before them and hasentrenched itself since they started rising.
The Dihang, winding out of the mountains, turns towards the southeast and descends into a low-lying basin as it enters northeastern Assam state. Just west of the town of Sadiya, the river again turns to the southwest and is joined by two mountain streams, the Lohit, and the Dibang. Below that confluence, about 1,450 km (900 mi) from the Bay of Bengal, the river becomes known conventionally as the Brahmaputra ("Son of Brahma"). In Assam, the river is mighty, even in the dry season, and during the rains, its banks are more than 8 km (5.0 mi) apart. As the river follows its braided 700 km (430 mi) course through the valley, it receives several rapidly flowing Himalayan streams, including the Subansiri, Kameng, Bhareli, Dhansiri, Manas, Champamati, Saralbhanga, and Sankosh Rivers. The main tributaries from the hills and from the plateau to the south are the Burhi Dihing, the Disang, the Dikhu, and the Kopili.
BetweenDibrugarh andLakhimpur Districts, the river divides into two channels—the northern Kherkutia channel and the southern Brahmaputra channel. The two channels join again about 100 km (62 mi) downstream, forming theMajuli island, which is the largest river island in the world.[14] AtGuwahati, near the ancient pilgrimage centre ofHajo, the Brahmaputra cuts through the rocks of theShillong Plateau, and is at its narrowest at 1 km (1,100 yd) bank-to-bank. The terrain of this area made it logistically ideal for theBattle of Saraighat, the military confrontation between the Mughal Empire and the Ahom Kingdom in March 1671. The first combined railroad/roadway bridge across the Brahmaputra was constructed atSaraighat. It was opened to traffic in April 1962.
In Bangladesh, the Brahmaputra is joined by theTeesta River (or Tista), one of its largest tributaries. Below the Tista, the Brahmaputra splits into twodistributary branches. The western branch, which contains the majority of the river's flow, continues due south as the Jamuna (Jomuna) to merge with the lower Ganga, called thePadma River (Pôdma). The eastern branch, formerly the larger, but now much smaller, is called the lower orOld Brahmaputra (Brommoputro). It curves southeast to join theMeghna River nearDhaka. The Padma and Meghna converge nearChandpur and flow out into the Bay of Bengal. This final part of the river is called Meghna.[15]
The Brahmaputra enters the plains of Bangladesh after turning south around the Garo Hills below Dhuburi, India. After flowing past Chilmari, Bangladesh, it is joined on its right bank by the Tista River and then follows a 240 km (150 mi) course due south as the Jamuna River. (South of Gaibanda, the Old Brahmaputra leaves the left bank of the mainstream and flows past Jamalpur and Mymensingh to join the Meghna River at Bhairab Bazar.) Before its confluence with the Ganga, the Jamuna receives the combined waters of theBaral,Atrai, andHurasagar Rivers on its right bank and becomes the point of departure of the largeDhaleswari River on its left bank. A tributary of the Dhaleswari, the Buriganga ("Old Ganga"), flows past Dhaka, the capital of Bangladesh, and joins the Meghna River above Munshiganj.[15]
The Jamuna joins with the Ganga north of Goalundo Ghat, below which, as the Padma, their combined waters flow to the southeast for a distance of about 120 km (75 mi). After several smaller channels branch off to feed the Ganga-Brahmaputra delta to the south, the main body of the Padma reaches its confluence with the Meghna River near Chandpur and then enters the Bay of Bengal through the Meghna estuary and lesser channels flowing through the delta. The growth of the Ganga-Brahmaputra Delta is dominated by tidal processes.[15]
TheGanga Delta, fed by the waters of numerous rivers, including the Ganga and Brahmaputra, is 105,000 km2 (41,000 sq mi), one of the largestriver deltas in the world.[16]
TheGanges–Brahmaputra–Meghna system has the second-greatest average discharge of the world's rivers—roughly ~44,000 m3/s (1,600,000 cu ft/s), and the river Brahmaputra alone supplies about 50% of the total discharge.[17][1] The rivers' combined suspended sediment load of about 1.87 billion tonnes (1.84 billion tons) per year is the world's highest.[6][18]
In the past, the lower course of the Brahmaputra was different and passed through theJamalpur andMymensingh districts. In an 8.8 magnitudeearthquake on 2 April 1762, however, the main channel of the Brahmaputra at Bhahadurabad point was switched southwards and opened asJamuna due to the result of tectonic uplift of theMadhupur tract.[19]
Rising temperatures significantly contribute to snow melting in the upper Brahmaputra catchment.[20] The discharge of the Brahmaputra River is significantly influenced by the melting of snow in the upper part of its catchment area. This increase in river flow, caused by the substantial retreat of snow, leads to a higher downstream discharge. Such a rise in discharge often results in severe catastrophic issues, including flooding and erosion.
Rowing competition ofSualkuchi at Brahmaputra River
The Brahmaputra River is characterized by its significant rates of sediment discharge, the large and variable flows, along with its rapid channel aggradations and accelerated rates of basin denudation. Over time, the deepening of the Bengal Basin caused by erosion will result in the increase in hydraulic radius, and hence allowing for the huge accumulation of sediments fed from the Himalayan erosion by efficient sediment transportation. The thickness of the sediment accumulated above the Precambrian basement has increased over the years from a few hundred meters to over 18 km (11 mi) in the Bengal fore-deep to the south. The ongoing subsidence of the Bengal Basin and the high rate of Himalayan uplift continues to contribute to the large water and sediment discharges of fine sand and silt, with 1% clay, in the Brahmaputra River.
Climatic change plays a crucial role in affecting the basin hydrology. Throughout the year, there is a significant rise in hydrograph, with a broad peak between July and September. The Brahmaputra River experiences two high-water seasons, one in early summer caused by snowmelt in the mountains, and one in late summer caused by runoff from monsoon rains. The river flow is strongly influenced by snow and ice melting of the glaciers, which are located mainly on the eastern Himalaya regions in the upstream parts of the basin. The snow and glacier melt contribution to the total annual runoff is about 27%, while the annual rainfall contributes to about 1.9 m (6 ft 3 in) and 22,000 m3/s (780,000 cu ft/s) of discharge.[1] The highest recorded daily discharge in the Brahmaputra at Pandu was 72,726 m3/s (2,568,300 cu ft/s) August 1962 while the lowest was 1,757 m3/s (62,000 cu ft/s) in February 1968. The increased rates of snow and glacial melt are likely to increase summer flows in some river systems for a few decades, followed by a reduction in flow as the glaciers disappear and snowfall diminishes. This is particularly true for the dry season when water availability is crucial for the irrigation systems.
The course of the Brahmaputra River has changed drastically in the past two and a half centuries, moving its river course westwards for a distance of about 80 km (50 mi), leaving its old river course, appropriately named the old Brahmaputra river, behind. In the past, the floodplain of the old river course had soils which were more properly formed compared to graded sediments on the operating Jamuna river. This change of river course resulted in modifications to the soil-forming process, which include acidification, the breakdown of clays and buildup of organic matter, with the soils showing an increasing amount of biotic homogenization, mottling, the coating around Peds and maturing soil arrangement, shape and pattern. In the future, the consequences of local ground subsidence coupled with flood prevention propositions, for instance, localised breakwaters, that increase flood-plain water depths outside the water breakers, may alter the water levels of the floodplains. Throughout the years, bars, scroll bars, and sand dunes are formed at the edge of the flood plain by deposition. The height difference of the channel topography is often not more than 1–2 m (3–7 ft). Furthermore, flooding over the history of the river has caused the formation of river levees due to deposition from the overbank flow. The height difference between the levee top and the surrounding floodplains is typically 1 m (3 ft) along small channels and 2–3 m (7–10 ft) along major channels. Crevasse splay, a sedimentary fluvial deposit which forms when a stream breaks its natural or artificial levees and deposits sediment on a floodplain, are often formed due to a breach in the levee, forming a lobe of sediments which progrades onto the adjacent floodplain. Lastly, flood basins are often formed between the levees of adjacent rivers.
During the monsoon season (June–October), floods are a very common occurrence. Deforestation in the Brahmaputra watershed has resulted in increased siltation levels, flash floods, and soil erosion in critical downstream habitat, such as theKaziranga National Park in middle Assam. Occasionally, massive flooding causes huge losses to crops, life, and property. Periodic flooding is a natural phenomenon which is ecologically important because it helps maintain the lowland grasslands and associated wildlife. Periodic floods also deposit fresh alluvium, replenishing the fertile soil of the Brahmaputra River Valley. Thus flooding, agriculture, and agricultural practices are closely connected.[21][22][23]
The effects of flooding can be devastating and cause significant damage to crops and houses, serious bank erosive with consequent loss of homesteads, school and land, and loss of many lives, livestock, and fisheries. During the 1998 flood, over 70% of the land area of Bangladesh was inundated, affecting 31 million people and 1 million homesteads. In the 1998 flood which had an unusually long duration from July to September, claimed 918 human lives and was responsible for damaging 1,600 km (990 mi) of roads and 6,000 km (3,700 mi) embankments, and affecting 6,000 km2 (2,300 sq mi) of standing crops. The 2004 floods, over 25% of the population of Bangladesh or 36 million people, were affected by the floods; 800 people died; 952 000 houses were destroyed and 1.4 million were badly damaged; 24 000 educational institutions were affected including the destruction of 1200 primary schools, 2 million governments and private tube wells were affected, over 3 million latrines were damaged or washed away, this increases the risks of waterborne diseases including diarrhea and cholera. Also, 1.1 million ha (2.7 million acres) of the rice crop was submerged and lost before it could be harvested, with 7% of the yearlyaus (early season) rice crop lost; 270,000 ha (670,000 acres) of grazing land was affected, 5600 livestock perished together with 254 00 poultry and 63 million tonnes (69 million short tons) of lost fish production.
Flood-control measures are taken by the water resource department and the Brahmaputra Board, but until now the flood problem remains unsolved. At least a third of the land ofMajuli Island has been eroded by the river. Recently, it is suggested that a highway protected by concrete mat along the river bank and excavation of the river bed can curb this menace. This project, named the Brahmaputra River Restoration Project, is yet to be implemented by the government. Recently the Central Government approved the construction of Brahmaputra Express Highways.
The course of the Brahmaputra River has changed dramatically over the past 250 years, with evidence of large-scale avulsion, in the period 1776–1850, of 80 km (50 mi) from east of the Madhupur tract to the west of it. Prior to 1843, the Brahmaputra flowed within the channel now termed the"Old Brahmaputra". The banks of the river are mostly weakly cohesive sand and silts, which usually erodes through large scale slab failure, where previously deposited materials undergo scour and bank erosion during flood periods. Presently, the river's erosion rate has decreased to 30 m (98 ft) per year as compared to 150 m (490 ft) per year from 1973 to 1992. This erosion has, however, destroyed so much land that it has caused 0.7 million people to become homeless due to loss of land.
Several studies have discussed the reasons for the avulsion of the river into its present course, and have suggested a number of reasons including tectonic activity, switches in the upstream course of the Teesta River, the influence of increased discharge, catastrophic floods and river capture into an old river course. From an analysis of maps of the river between 1776 and 1843, it was concluded in a study that the river avulsion was more likely gradual than catastrophic and sudden, and may have been generated by bank erosion, perhaps around a large mid-channel bar, causing a diversion of the channel into the existing floodplain channel.
The Brahmaputra channel is governed by the peak and low flow periods during which its bed undergoes tremendous modification. The Brahmaputra's bank line migration is inconsistent with time. The Brahmaputra river bed has widened significantly since 1916 and appears to be shifting more towards the south than towards the north. Together with the contemporary slow migration of the river, the left bank is being eroded away faster than the right bank.[24]
The Brahmaputra River experiences high levels ofbank erosion (usually via slab failure) andchannel migration caused by its strong current, lack of riverbank vegetation, and loose sand and silt which compose its banks. It is thus difficult to build permanent structures on the river, and protective structures designed to limit the river's erosional effects often face numerous issues during and after construction. In fact, a 2004 report[25] by the Bangladesh Disaster and Emergency Sub-Group (BDER) has stated that several of such protective systems have 'just failed'. However, some progress has been made in the form of construction works which stabilize sections of the river, albeit with the need for heavy maintenance. TheBangabandhu Bridge, the only bridge to span the river's major distributary, theJamuna, was thus opened in June 1998. Constructed at a narrow braid belt of the river, it is 4.8 km (3.0 mi) long with a platform 18.5 m (61 ft) wide, and it is used to carry railroad traffic as well as gas, power and telecommunication lines. Due to the variable nature of the river, the prediction of the river's future course is crucial in planning upstream engineering to prevent flooding on the bridge.
China built theZangmu Dam in the upper course of the Brahmaputra River in the Tibet region and it was operationalised on 13 October 2015.[26]
Brahmaputra River seen from aSPOT satelliteThe Brahmaputra and its tributaries in northeastern India and BangladeshJames Rennell's 1776 map shows the Brahmaputra's flow before an earthquake on 2 April 1762 and theTeesta River flowing in three channels to the Ganga before a flood in 1787.
TheKachari group called the river "Dilao", "Tilao".[27] Early Greek accounts of Curtius and Strabo give its name as Dyardanes (Ancient greek Δυαρδάνης) and Oidanes.[28] In the past, the course of the lower Brahmaputra was different and passed through theJamalpur andMymensingh districts. Some water still flows through that course, now called the Old Brahmaputra, as a distributary of the main channel.
A question about the river system inBangladesh is when and why the Brahmaputra changed its main course, at the site of the Jamuna and the "Old Brahmaputra" fork that can be seen by comparing modern maps to historic maps before the 1800s.[29] The Brahmaputra likely flowed directly south along its present main channel for much of the time since thelast glacial maximum, switching back and forth between the two courses several times throughout theHolocene.
One idea about the most recentavulsion is that the change in the course of the main waters of the Brahmaputra took place suddenly in 1787, the year of the heavy flooding of the river Tista.
In the middle of the 18th century, at least three fair-sized streams flowed between theRajshahi andDhaka Divisions, viz., the Daokoba, a branch of the Tista, the Monash or Konai, and the Salangi. The Lahajang and the Elengjany were also important rivers. In Renault's time, the Brahmaputra as a first step towards securing a more direct course to the sea by leaving the Mahdupur Jungle to the east began to send a considerable volume of water down the Jinai or Jabuna from Jamalpur into theMonash and Salangi. These rivers gradually coalesced and kept shifting to the west till they met the Daokoba, which was showing an equally rapid tendency to cut towards the east. The junction of these rivers gave the Brahmaputra a course worthy of her immense power, and the rivers to right and left silted up. In Renault's Altas they very much resemble the rivers of Jessore, which dried up after the hundred-mouthed Ganga had cut her new channel to join the Meghna at the south of theMunshiganj subdivision.
In 1809,Francis Buchanan-Hamilton wrote that the new channel between Bhawanipur and Dewanranj "was scarcely inferior to the mighty river, and threatens to sweep away the intermediate country". By 1830, the old channel had been reduced to its present insignificance. It was navigable by country boats throughout the year and by launches only during rains, but at the point as low as Jamalpur it was formidable throughout the cold weather. Similar was the position for two or three months just below Mymensingh also.
The waters of the River Brahmaputra are shared by Tibet, India, and Bangladesh. In the 1990s and 2000s, there was repeated speculation that mentioned Chinese plans to build a dam at the Great Bend, with a view to diverting the waters to the north of the country. This has been denied by the Chinese government for many years.[30] At the Kathmandu Workshop ofStrategic Foresight Group in August 2009 on Water Security in the Himalayan Region, which brought together in a rare development leading hydrologists from the basin countries, the Chinese scientists argued that it was not feasible for China to undertake such a diversion.[31] However, on 22 April 2010, China confirmed that it was indeed building theZangmu Dam on the Brahmaputra in Tibet,[30] but assured India that the project would not have any significant effect on the downstream flow to India.[32] This claim has also been reiterated by the Government of India, in an attempt to assuage domestic criticism of Chinese dam construction on the river, but is one that remains hotly debated.[33] Recent years have seen an intensification of grassroots opposition, especially in the state of Assam, against Chinese upstream dam building, as well as growing criticism of the Indian government for its perceived failure to respond appropriately to Chinesehydropower plans.[34]
In a meeting of scientists at Dhaka at 2010, 25 leading experts from the basin countries issued a Dhaka Declaration on Water Security[35] calling for the exchange of information in low-flow periods, and other means of collaboration. Even though the 1997 UN Watercourses Convention does not prevent any of the basin countries from building a dam upstream, customary law offers some relief to the lower riparian countries. There is also the potential for China, India, and Bangladesh to cooperate on transboundary water navigation.
Silhouette of a fisherman on boat during sunset at Brahmaputra River
People fishing in the Brahmaputra River
The lives of many millions of Indian and Bangladeshi citizens are reliant on the Brahmaputra River. Its delta is home to 130 million people and 600 000 people live on the riverine islands. These people rely on the annual 'normal' flood to bring moisture and fresh sediments to the floodplain soils, hence providing the necessities for agricultural and marine farming. In fact, two of the three seasonal rice varieties (aus and aman) cannot survive without the floodwater. Furthermore, the fish caught both on the floodplain during flood season and from the many floodplain ponds are the main source of protein for many rural populations.
Brahmaputra and Ganges floodwaters can be supplied to most lands in India by constructing acoastal reservoir to store water on the Bay of Bengal sea area.[36]
Ranaghat Bridge or Churni River Bridge on Brahmaputra River near Pasighat in Arunachal Pradesh
From east to west till Parashuram Kund, then from southwest to northeast from Parshuram Kund to Patum, finally from east to southwest from Parshuram Kund to Burhidhing:
9 new bridges, including 3 bridges in Guwahati (New Saraighat bridge parallel to the old bridge, and 2 new bridges in greenfield locations at Bharalumukh and Kurua), 1 new bridge in Tezpur parallel to the old bridge, and 5 greenfield bridges in new locations (Dhubri, Bijoynagar, Gohpur tunnel, Nemtighat, & Sivasagar) elsewhere in Assam have been approved. 5 of these were announced in 2017 by India's Minister forMoRTH,Nitin Gadkari.[37][38][39]
From west to east:
Dhubri:Dhubri-Phulbari bridge, road and rail bridge in Assam, near tri-junction of east Meghalaya, west Assam and north Bangladesh[38][39] 12,625 metres (41,421 ft)
Guwahati: New Saraighat Bridge is rail-cum-road bridge parallel to old bridge, will be completed by December 2023.[41]
Guwahati:Kumar Bhaskar Varma Setu, 4,050 metres (13,290 ft) in central Guwahati connecting North Guwahati with Guwahati (Pan Bazar and Bharalmukh).[40]
Guwahati: Narangi-Kurua bridge, 675 metres (2,215 ft) east of Guwahati was approved in 2022.[42]
Tezpur: Bhomoraguri-Tezpur Bridge (few meters parallel to existingKalia Bhomara Bridge at Bhomoraguri suburb ofTezpur town in Assam,[39] 3,250 metres (10,660 ft) was partially complete in 2021.
Jorhat-Majuli bridge: Jorhat-Majuli bridge atJorhat on Brahmaputra in Assam The Jorhat-Majuli bridege combined with Louit Khablu Bridge on a tributary will connect Jorhat withBihpuria andNarayanpur. When completed, it will be about 8.25 km in length.[38][39]
Sivasagar: Disangmukh-Tekeliphuta Bridge between Disangmukh-Tekeliphuta near Sivasagar in Assam[38][39] 2.8 km
Bridges on Brahmaputra: These will reduce risk of blockades, logistics cost, travel time, boost economy, and enable India'sLook-East andNeighbourhood-first connectivity.
Barpeta-Nitarkhola Reserve bridge: half-way between Narnarayan Setu (Jogighopa) andGuwahati bridge, will reduce 140 km distance by 100 km to 40 km, vital for east Assam connectivity to south Assam, Meghalaya, Bangladesh and Tripura.
Narayanpur-Majuli Bridge to connect Narayanpur and Bodti Miri to Majuli Bridge. There is existing NH bridge near Gogamukh in north, another under construction Majuli-North Lakhimpur NH bridge in centre, and Narayanpur-Majuli Bridge in south will be third bridge.
Bridges on Manas and Beki rivers: between Chapar and Barpeta on greenfield expressway
Numaligarh-Gohpur under-river tunnel.[44] The 15.6 km long tunnel, 22 metres below the river bed, will have 18 km approach roads to connect theNH-52 and Numaligarh onNH-37. This total ~33 km route will boost economy and strategic defence connectivity, protectKaziranga National Park by diverting traffic away from the congested 2-lane highway through the park, shorten 223 km 6 hour long Gohpur-Numaligarh route to 35 km and 30 minutes, This twin tube tunnel, with an under road water drainage and overhead ventilation fans, will have inter-connectivity the twin tubs for evacuation. It will be equipped with sensors, CCTV, automated safety and traffic control systems. It will cost Rs 12,807 crore (US$1.7 billion in 2021).[45]
Bangabandhu Railway Bridge is under contraction railway bridge over Bramhmaputra River. It is connect Bangabandhu Bridge East Railway Station to Bangabandhu West Railway station
Gaibandha-Bakshiganj Bridge, road and rail bridge to connect existing rail and road heads atGaibandha-Bakshiganj on either side of the river. It will connect southwest Meghalaya (India) & south Assam (Silchar, India) toBogura (Bangladesh),Malda (India),Bhagalpur (India) as an alternative to the chicken-neckSiliguri Corridor.
Shivalya-Golanda-Bhagulpur Bridge, road and rail bridge to connect existing rail and road heads atSiraiganj-Tangail on either side of the river.
Chandpur Bridge, rail and road bridge to connect Northeast India (Aizawal-Rikhawdar in Mizoram & Udaipur in Tripura) to Bangladesh (Cumilla-Khulna) andKolkata.
In course of last 64 years, since Tibet became part of China as an Autonomous region, at least 10 Bridges have been built on Brahmaputra River. Currently as per satellite imagery, only 4–5 bridges built on River Brahmaputra have been confirmed. These are as follows as per Google Map Satellite View:-
Ziajhulinzhen Bridge, Built in 2009–2012 at 4,350 metres (14,270 ft), this is the Second longest Bridge on Brahmaputra river.
Nyingchi Bridge, built in 2014 to connect Nyingchi with Lhasa by railway, this bridge is 750 metres (2,460 ft) long.
Lasahe Bridge, built over Lhasa River, this road bridge is 929 metres (3,048 ft) long.
Shigatse Bridge, this 2,750 metres (9,020 ft) long bridge built over Yarlung Tsangpo (Brahmaputra) River to connect Lhasa with Shigatse by both road & Rail.
Lhatse Bridge, this 2,250 metres (7,380 ft) long bridge built over Yarlung Tsangpo (Brahmaputra) River to connect Kailash-Mansarovar region with Lhasa by Road.
Shannan Bridge, this 2,000 metres (6,600 ft) long bridge built over Yarlung Tsangpo (Brahmaputra) River to connect Lhasa with Nyingchi by road.
Shangri Bridge, this 1,500 metres (4,900 ft) long bridge built over Yarlung Tsangpo (Brahmaputra) River to connect Lhasa with Nyingchi by road.
3 more Bridges over Yarlung Tsangpo (Brahmaputra) River is in Tibet (China) Autonomous Region, but details are unknown.
^Gopal, Madan (1990). K.S. Gautam (ed.).India through the ages. Publication Division, Ministry of Information and Broadcasting, Government of India. p. 80.
^Michael Buckley (30 March 2015)."The Price of Damming Tibet's Rivers".The New York Times. p. A25.Archived from the original on 31 March 2015. Retrieved1 April 2015.Two of the continent's wildest rivers have their sources in Tibet: the Salween and the Brahmaputra Though yes they are under threat from retreating glaciers, a more immediate concern is Chinese engineering plans. A cascade of five large dams is planned for both the Salween, which now flows freely, and the Brahmaputra, where one dam is already operational.
^Das, D.C. 2000. Agricultural Landuse and Productivity Pattern in Lower Brahmaputra valley (1970–71 and 1994–95). PhD Thesis, Department of Geography, North Eastern Hill University, Shillong.
^Mipun, B.S. 1989. Impact of Migrants and Agricultural Changes in the Lower Brahmaputra Valley : A Case Study of Darrang District. Unpublished PhD Thesis, Department of Geography, North Eastern Hill University, Shillong.
^Yeophantong, Pichamon (2017). "River activism, policy entrepreneurship and transboundary water disputes in Asia".Water International.42 (2):163–186.doi:10.1080/02508060.2017.1279041.S2CID157181000.
Rahaman, M. M.; Varis, O. (2009). "Integrated Water Management of the Brahmaputra Basin: Perspectives and Hope for Regional Development".Natural Resources Forum.33 (1):60–75.doi:10.1111/j.1477-8947.2009.01209.x.
"The Brahmaputra", a detailed study of the river by renowned writer Arup Dutta. (Published by National Book Trust, New Delhi, India)
Émilie Crémin. Entre mobilité et sédentarité : les Mising, "peuple du fleuve", face à l'endiguement du Brahmapoutre (Assam, Inde du Nord-Est). Milieux et Changements globaux. Université Paris 8 Vincennes Saint-Denis, 2014. Français.https://tel.archives-ouvertes.fr/tel-01139754