Botryosphaeran is anexopolysaccharide (EPS) produced by theascomyceteous fungusBotryosphaeria rhodina.[1][2] Characterization of the chemical structure of botryosphaeran showed this EPS to be a (1→3)(1→6)-β-D-glucan.[3] This particularβ-glucan can be produced by several strains ofBotryosphaeria rhodina that include: MAMB-05,[1] DABAC-P82,[4] and RCYU 30101.[5] Botryosphaeran exhibits interestingrheological properties and novel biological functions includinghypoglycaemia,hypocholesterolaemia, anti-atheroslerosis and anti-cancer activity, with potential commercial applications. Threecosmetic products formulated with botryosphaeran have been developed to promote skin health and treatskin conditions for future intended commercialization purposes.
The β-glucan, botryosphaeran, was discovered accidentally in 1994[1] while cultivatingBotryosphaeria rhodina MAMB-05 on nutrient media containing glucose to produce theenzyme,laccase. This fungal isolate produces a constitutive laccase that could be induced to higherenzyme titers by variouslignin-likearomatic compounds, and especiallyveratryl alcohol.[1][8] The fungus was found to be ligninolytic.[9][10]
Botryosphaeran is secreted by the fungus during growth and appears in the fermentation broth where its presence causes an increase in the broth'sviscosity. It can easily be extracted from the broth byprecipitation methods.[1]Veratryl alcohol, however, suppresses the formation of botryosphaeran.[11]
Botryosphaeran is produced under submerged fermentation conditions whenBotryosphaeria rhodina MAMB-05 is grown onnutrient media containing glucose and mineral salts.[1] Extracting the fermentation broth withalcohol causes the EPS (botryosphaeran) to precipitate from solution, and this can be separated bycentrifugation orfiltration.
The precipitate recovered can be lyophilized to a white fibrous material that is sparingly soluble in water. Alternatively, the recovered precipitate is resolubilized in water (gentle heating with stirring) to form a viscous solution that forms a firm gel when cooled to 5 °C. Solubilization of botryosphaeran can be enhanced throughchemical derivatization with variousfunctional groups.
The influence of the composition of the nutrient medium,[12] including nitrogen,[13] phosphate,[13] minerals, supplements (soybean oil,Tween 80),[14] and thecarbon source (carbohydrates),[12][15] is important in enhancing the production of botryosphaeran andbiomass during fermentation byBotryosphaeria rhodina MAMB-05.
Catabolite repression,[16] and the presence of β-glucan-hydrolyzing enzymes that attack botryosphaeran[17] during the fermentation process are critical and limit the production of botryosphaeran.
Statisticalfactorial design methods, such as theresponse surface methodology (RSM),[18][19] are effective in investigating complex fermentation parameters and their interactions to optimize metabolite production bymicroorganisms. RSM assists in defining the effects and interactions of thephysiological factors playing a role in biotechnological processes in the production of microbialmetabolites including exopolysaccharides such as β-glucans. Statistical methodologies reduce the number of experiments to provide sufficient information for statistically acceptable results.
The validation of the fermentation parameters by statistical factorial design improved botryosphaeran production byBotryosphaeria rhodina MAMB-05[13][14] over unoptimized conditions.[12]
Botryosphaeria rhodina MAMB-05 when grown on nutrient media containing different carbohydrate substrates produces afamily of botryosphaerans.[12][15] These β-glucans differ only in the extent and frequency ofside-chain substituents.
Botryosphaeran production can be enhanced whenBotryosphaeria rhodina MAMB-05 is cultivated on glucose media containing soybean oil and thesurfactant, Tween 80.[14]
The most attractive feature for the commercialization of botryosphaeran is the ease by which it can be produced by simple fermentation processes on low-cost nutrient media, and its subsequent isolation throughprecipitation with ethanol,[3][12][13] which all takes place on atime-scale of days compared to other commercial β-glucans available on the market. The latter are extracted fromfungal fruiting bodies (mushrooms, fungal brackets), spentBrewers yeast, andcereal grains (barley, oat) that can takeweeks-to-months to prepare.
Themycelium ofBotryosphaeria rhodina MAMB-05 is a rich source of β-glucans.[20]
The chemical structure of botryosphaeran was first described[3] in 2003, and was determined using the methods:methylation analysis, Smith degradation, Gas Chromatography-Mass Spectroscopy (GC-MS) and13C NMR.
Enzymes hydrolyzing botryosphaeran can be obtained by cultivatingBotryosphaeria rhodina MAMB-05,Trichoderma harzianum Rifai andAureobasidium pullulans 1WA1 on nutrient media containing either botryosphaeran,[23][24] or the biomass[17][24] derived fromBotryosphaeria rhodina MAMB-05, which is a rich source of β-glucans.[20]
Prebiotics such as the (1→3)-linked gluco-oligosaccharides are emerging asnutraceuticals for inclusion in foods. Botryosphaeran can serve as a source of conveniently generating these oligosaccharides through enzymatic hydrolysis.[21]
Methylation and Smith degradation analysis revealed that botryosphaeran constituted abackbone chain made up of (1→3)-β-linked glucose residues (i.e., it is a (1→3)-β-D-glucan) with β-(1→6)-linked glucose and di-glucose (gentiobiose) side-branches located at the C-6 position of glucose along the (1→3)-linked backbone chain.[3][4] The chemical structure of botryosphaeran is a (1→3)(1→6)-β-D-glucan.[3]13C NMR spectroscopy confirmed its structure.
The degree of branching of the family of botryosphaerans varies from 21 to 31%.[3][15] depending upon the carbohydrate source in the nutrient media during fermentation by the fungus, and this also affects themolecular weight (MW) of the botryosphaerans produced, which can be large (order of >1 x 106 daltons)[4][15]
Derivatization of botryosphaeran by carboxymethylation and sulfonylation[29][30] results in improved solubility in water, and diminishes its viscous nature in solution.
Related exopolysaccharides (β-glucans) from several strains ofBotryosphaeria rhodina (theteleomorphLasiodiplodiatheobromae[7]) isolated from rotting tropical fruits have been described,[31][32][33] The chemical structures of three β-glucans produced were characterized; a (1→3)(1→6)-β-D-glucan with a single glucose repeat substituent (frequency of 20%),[31] an unbranched (1→6)-β-glucan namedlasiodiplodan,[31][32][33] and a new (1→3)(1→6)-β-glucan with unique branches comprising gentiobiose andgentiotriose residues, but not glucose.[33]
Structural characterization of thecell wall (mycelium) ofBotryosphaeria rhodina MAMB-05 revealed the presence of three different D-glucans; a linear (1→6)-β-glucan, a branched (1→3)(1→6)-β-glucan with single glucose repeat branches (frequency of 18%), and aglycogen-like (1→4)(1→6)-α-glucan.[20]
The absence of mutagenicity and genotoxicity assessed by the micronucleus, Ames andMTT tests, and the Comet assay, established that botryosphaeran hasGRAS status (Generally Recommended As Safe), and is safe for use by humans and animals.
Botryosphaeran forms a viscous solution when dissolved in water that is stable to heat as occurs duringautoclaving (steamsterilization). When an aqueous solution of botryosphaeran is cooled to 5 °C, it forms a stronggel that is firm and transparent.
Botryosphaeran exhibits anin-vivo antioxidant role in theβ-cell line INS-1E derived from ratinsulinoma (tumor of thepancreas derived from β-cells).[42]Oxidative stress was induced byhydrogen peroxide (H2O2) in the INS-1E cells under highglucose, and botryosphaeran decreased this condition by reducing the production ofreactive oxygen species (ROS).[42]Apoptosis increased in the INS-1E cells treated with H2O2 in high glucose conditions, and treatment with botryosphaeran attenuated apoptosis.
Botryosphaeran exerts achemoprotective effect exhibiting strongantimutagenic (anticlastogenic) activity against thein-vivo DNA-damaging effect of cyclophosphamide in mice.,[35][43] and genotoxic damage bydoxorubicin infibroblasts and hepatocarcinoma cells,[38] bleomycin in human lymphocytes,[citation needed] and methyl methanesulfonate in Jurkat cells.[36]
Botryosphaeran exhibits hypoglycaemic activity (lowering of blood glucose levels) in rats in which diabetes was induced byintramuscular injection ofstreptozotocin, which selectively damages the pancreaticinsulin-secreting β-cells resulting intype-1 diabetes condition.[43]
Thecholesterol-lowering effect (hypocholesterolaemia) of β-glucans derived from oat and barley (β-(1→3)(1→4)-linked D-glucans) is well established.[44] Botryosphaeran exhibits hypocholesterolaemic activity lowering totalcholesterol andLow Density Lipoprotein (LDL)-cholesterol blood levels in rats preconditioned onhyperlipidaemic diets.[35][45]
The above data demonstrated the beneficial effects of botryosphaeran in reducing the stimulatory effect of obesity on dyslipidaemia and hepatic steatosis, and can play a potential role in the management of obesity comorbidities.
Studies on human carcinoma cell-lines: Jurkat (lymphocytes)[37] and breast (MCF-7)[46] demonstrated that botryosphaeran manifests anti-cancer activity.
^abcdefgDekker, Robert F.H; Barbosa, Aneli M (January 2001). "The effects of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp".Enzyme and Microbial Technology.28 (1):81–88.doi:10.1016/s0141-0229(00)00274-x.ISSN0141-0229.PMID11118601.
^Selbmann, L.; Crognale, S.; Petruccioli, M. (January 2002). "Exopolysaccharide production from Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82 on raw and hydrolysed starchy materials".Letters in Applied Microbiology.34 (1):51–55.doi:10.1046/j.1472-765x.2002.01042.x.ISSN0266-8254.PMID11849493.
^abcdefghBarbosa, Aneli M; Steluti, Rosângela M; Dekker, Robert F.H; Cardoso, Marilsa S; Corradi da Silva, M.L (July 2003). "Structural characterization of Botryosphaeran: a (1→3;1→6)-β-d-glucan produced by the ascomyceteous fungus, Botryosphaeria sp".Carbohydrate Research.338 (16):1691–1698.doi:10.1016/s0008-6215(03)00240-4.ISSN0008-6215.PMID12873424.
^abcSelbmann, Laura; Stingele, Francesca; Petruccioli, Maurizio (2003-09-01). "Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina".Antonie van Leeuwenhoek.84 (2):135–145.doi:10.1023/A:1025421401536.ISSN1572-9699.PMID14533717.S2CID12997014.
^Weng, Brian Bor-Chun; Lin, Yu-Chih; Hu, Chia-Wen; Kao, Ming-Yuan; Wang, Shih-Hao; Lo, Dan-Yuan; Lai, Tzu-Yuan; Kan, Lou-Sing; Chiou, Robin Yih-Yuan (April 2011). "Toxicological and immunomodulatory assessments of botryosphaeran (β-glucan) produced by Botryosphaeria rhodina RCYU 30101".Food and Chemical Toxicology.49 (4):910–916.doi:10.1016/j.fct.2010.10.036.ISSN0278-6915.PMID21185904.
^Barbosa, A.M.; Dekker, R.F.H.; Hardy, G.E. St (August 1996). "Veratryl alcohol as an inducer of laccase by an ascomycete, Botryosphaeria sp., when screened on the polymeric dye Poly R-478".Letters in Applied Microbiology.23 (2):93–96.doi:10.1111/j.1472-765x.1996.tb00038.x.ISSN0266-8254.S2CID84782439.
^Dekker, Robert F.H.; Barbosa, Aneli M.; Sargent, Keith (March 2002). "The effect of lignin-related compounds on the growth and production of laccases by the ascomycete, Botryosphaeria sp".Enzyme and Microbial Technology.30 (3):374–380.doi:10.1016/s0141-0229(01)00503-8.ISSN0141-0229.
^Dekker, Robert F.H.; Vasconcelos, Ana-Flora D.; Barbosa, Aneli M.; Giese, Ellen C.; Paccola-Meirelles, Luzia (2001-12-01). "A new role for veratryl alcohol: regulation of synthesis of lignocellulose-degrading enzymes in the ligninolytic ascomyceteous fungus, Botryosphaeria sp.; influence of carbon source".Biotechnology Letters.23 (24):1987–1993.doi:10.1023/A:1013742527550.ISSN1573-6776.S2CID11468117.
^abcdeSteluti, Rosangela M.; Giese, Ellen C.; Piggato, Mariane M.; Sumiya, Andressa F. G.; Covizzi, Luiz G.; Job, Aldo E.; Cardoso, Marilsa S.; De Lourdes Corradi Da Silva, Maria; Dekker, Robert F. H. (December 2004). "Comparison of Botryosphaeran production by the ascomyceteous fungusBotryosphaeria sp., grown on different carbohydrate carbon sources, and their partial structural features".Journal of Basic Microbiology.44 (6):480–486.doi:10.1002/jobm.200410415.ISSN0233-111X.PMID15558819.S2CID37841100.
^abcSilva, Cassiano C.; Dekker, Robert F.H.; Silva, Rui Sérgio S.F.; Silva, Maria de Lourdes Corradi da; Barbosa, Aneli M. (August 2007). "Effect of soybean oil and Tween 80 on the production of botryosphaeran by Botryosphaeria rhodina MAMB-05".Process Biochemistry.42 (8):1254–1258.doi:10.1016/j.procbio.2007.05.009.ISSN1359-5113.
^abcdDELOURDESCORRADIDASILVA, M; IZELI, N; MARTINEZ, P; SILVA, I; CONSTANTINO, C; CARDOSO, M; BARBOSA, A; DEKKER, R; DASILVA, G (2005-07-04). "Purification and structural characterisation of (1→3;1→6)-β--glucans (botryosphaerans) from grown on sucrose and fructose as carbon sources: a comparative study".Carbohydrate Polymers.61 (1):10–17.doi:10.1016/j.carbpol.2005.01.002.ISSN0144-8617.
^Crognale, Silvia; Bruno, Maria; Moresi, Mauro; Petruccioli, Maurizio (July 2007). "Enhanced production of β-glucan from Botryosphaeria rhodina using emulsified media or fan impellers".Enzyme and Microbial Technology.41 (1–2):111–120.doi:10.1016/j.enzmictec.2006.12.008.ISSN0141-0229.
^abGiese, Ellen C.; Dekker, Robert F.H.; Scarminio, Ieda S.; Barbosa, Aneli M.; da Silva, Roberto (January 2011). "Comparison of β-1,3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design".Biochemical Engineering Journal.53 (2):239–243.Bibcode:2011BioEJ..53..239G.doi:10.1016/j.bej.2010.10.013.hdl:11449/72299.ISSN1369-703X.
^P., Box, George E. (2005).Statistics for experimenters : design, innovation, and discovery. Hunter, J. Stuart, 1923-, Hunter, William Gordon, 1937- (2nd ed.). Hoboken, N.J.: Wiley-Interscience.ISBN978-0471718130.OCLC57286064.{{cite book}}: CS1 maint: multiple names: authors list (link)
^E., Bruns, R. (2006).Statistical design--chemometrics. Scarminio, I. S., Barros Neto, B. de. (1st ed.). Amsterdam: Elsevier.ISBN9780444521811.OCLC162587290.{{cite book}}: CS1 maint: multiple names: authors list (link)
^abcCorradi da Silva, Maria de Lourdes; Fukuda, Eliane K.; Vasconcelos, Ana Flora D.; Dekker, Robert F.H.; Matias, Andreza C.; Monteiro, Nilson K.; Cardoso, Marilsa S.; Barbosa, Aneli M.; Silveira, Joana L.M. (March 2008). "Structural characterization of the cell wall d-glucans isolated from the mycelium of Botryosphaeria rhodina MAMB-05".Carbohydrate Research.343 (4):793–798.doi:10.1016/j.carres.2007.12.021.ISSN0008-6215.PMID18237722.
^abcGiese, Ellen C.; Covizzi, Luiz G.; Dekker, Robert F.H.; Monteiro, Nilson K.; Corradi da Silva, Maria de Lourdes; Barbosa, Aneli M. (June 2006). "Enzymatic hydrolysis of botryosphaeran and laminarin by β-1,3-glucanases produced by Botryosphaeria rhodina and Trichoderma harzianum Rifai".Process Biochemistry.41 (6):1265–1271.doi:10.1016/j.procbio.2005.12.023.ISSN1359-5113.
^abGiese, Ellen Cristine; Monteiro, Alexandre C.; de Melo Barbosa, Aneli; Dekker, Robert F. H.; dos Santos, Osvaldo; de Lourdes Corradi da Silva, Maria; Gomes, Eleni; da Silva, Roberto (January 2009).Evaluation of the β-glucanolytic enzyme complex of Trichoderma harzianum Rifai for the production of gluco-oligosaccharide fragments by enzymatic hydrolysis of 1,3;1,6-β-D-glucans. WORLD SCIENTIFIC.doi:10.1142/9789812837554_0091.ISBN9789812837547.{{cite book}}:|journal= ignored (help)
^abcdBauermeister, Anelize; Amador, Ismael R.; Pretti, Carla P.; Giese, Ellen C.; Oliveira, André L. M.; Alves da Cunha, Mário A.; Rezende, Maria Inês; Dekker, Robert F. H.; Barbosa, Aneli M. (2015-01-05). "β-(1 → 3)-Glucanolytic Yeasts from Brazilian Grape Microbiota: Production and Characterization of β-Glucanolytic Enzymes by Aureobasidium pullulans 1WA1 Cultivated on Fungal Mycelium".Journal of Agricultural and Food Chemistry.63 (1):269–278.Bibcode:2015JAFC...63..269B.doi:10.1021/jf504333h.ISSN0021-8561.PMID25559084.
^abcdGiese, Ellen C.; Covizzi, Luiz G.; Borsato, Dionísio; Dekker, Robert F.H.; de Lourdes Corradi da Silva, Maria; Barbosa, Aneli M. (December 2005). "Botryosphaeran, a new substrate for the production of β-1,3-glucanases by Botryosphaeria rhodina and Trichoderma harzianum Rifai".Process Biochemistry.40 (12):3783–3788.doi:10.1016/j.procbio.2005.04.004.ISSN1359-5113.
^Giese, Ellen C.; Dekker, Robert F.H.; Barbosa, Aneli M.; da Silva, Roberto (November 2008). "Triple helix conformation of botryosphaeran, a (1→3;1→6)-β-d-glucan produced by Botryosphaeria rhodina MAMB-05".Carbohydrate Polymers.74 (4):953–956.doi:10.1016/j.carbpol.2008.04.038.ISSN0144-8617.
^Bohn, John A.; BeMiller, James N. (January 1995). "(1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships".Carbohydrate Polymers.28 (1):3–14.doi:10.1016/0144-8617(95)00076-3.ISSN0144-8617.
^abMendes, Simone Ferreira; Santos, Osvaldo dos; Barbosa, Aneli M.; Vasconcelos, Ana Flora D.; Aranda-Selverio, Gabriel; Monteiro, Nilson K.; Dekker, Robert F.H.; Pereira, Mariana Sá; Tovar, Ana Maria F. (October 2009). "Sulfonation and anticoagulant activity of botryosphaeran from Botryosphaeria rhodina MAMB-05 grown on fructose".International Journal of Biological Macromolecules.45 (3):305–309.doi:10.1016/j.ijbiomac.2009.06.004.ISSN0141-8130.PMID19549543.
^abBrandi, Jamile (2011-10-28). "Chemical Modification of Botryosphaeran: Structural Characterization and Anticoagulant Activity of a Water-Soluble Sulfonated (1→3)(1→6)-β-D-Glucan".Journal of Microbiology and Biotechnology.21 (10):1036–1042.doi:10.4014/jmb.1105.05020.ISSN1017-7825.PMID22031027.
^abcVasconcelos, Ana Flora D.; Monteiro, Nilson K.; Dekker, Robert F.H.; Barbosa, Aneli M.; Carbonero, Elaine R.; Silveira, Joana L.M.; Sassaki, Guilherme L.; da Silva, Roberto; de Lourdes Corradi da Silva, Maria (September 2008). "Three exopolysaccharides of the β-(1→6)-d-glucan type and a β-(1→3;1→6)-d-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit".Carbohydrate Research.343 (14):2481–2485.doi:10.1016/j.carres.2008.06.013.ISSN0008-6215.PMID18639868.
^abAlves da Cunha, Mário A.; Turmina, Janaína A.; Ivanov, Raphael C.; Barroso, Roney R.; Marques, Patrícia T.; Fonseca, Eveline A. I.; Fortes, Zuleica B.; Dekker, Robert F. H.; Khaper, Neelam (2012-03-08). "Lasiodiplodan, an exocellular (1→6)-β-d-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity".Journal of Industrial Microbiology & Biotechnology.39 (8):1179–1188.doi:10.1007/s10295-012-1112-2.ISSN1367-5435.PMID22399240.S2CID15375855.
^abcOliveira, Kassandra S.M.; Di Bastiani, Mirela; Cordeiro, Lucimara M.C.; Costa, Mírian F.; Toledo, Karina A.; Iacomini, Marcello; Babosa, Aneli M.; Dekker, Robert F.H.; Nascimento, Valéria M.G. (November 2015). "(1→6)- and (1→3)(1→6)-β-glucans from Lasiodiplodia theobromae MMBJ: Structural characterization and pro-inflammatory activity".Carbohydrate Polymers.133:539–546.doi:10.1016/j.carbpol.2015.07.060.ISSN0144-8617.PMID26344312.
^abcdMiranda, Carolina C.B.O.; Dekker, Robert F.H.; Serpeloni, Juliana M.; Fonseca, Eveline A.I.; Cólus, Ilce M.S.; Barbosa, Aneli M. (March 2008). "Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05".International Journal of Biological Macromolecules.42 (2):172–177.doi:10.1016/j.ijbiomac.2007.10.010.ISSN0141-8130.PMID18022685.
^abcMalini, M.; Camargo, M.S.; Hernandes, L.C.; Vargas-Rechia, C.G.; Varanda, E.A.; Barbosa, A.M.; Dekker, R.F.H.; Matsumoto, S.T.; Antunes, L.M.G. (October 2016). "Chemopreventive effect and lack of genotoxicity and mutagenicity of the exopolysaccharide botryosphaeran on human lymphocytes".Toxicology in Vitro.36:18–25.Bibcode:2016ToxVi..36...18M.doi:10.1016/j.tiv.2016.06.008.hdl:11449/161952.ISSN0887-2333.PMID27387458.
^abcdMalini, Maressa; Souza, Marilesia Ferreira de; Oliveira, Marcelo Tempesta de; Antunes, Lusânia Maria Greggi; Figueiredo, Suely Gomes de; Barbosa, Aneli M.; Dekker, Robert F.H.; Cólus, Ilce Mara de Syllos (June 2015). "Modulation of gene expression and cell cycle by botryosphaeran, a (1→3)(1→6)-β-d-glucan in human lymphocytes".International Journal of Biological Macromolecules.77:214–221.doi:10.1016/j.ijbiomac.2015.03.010.ISSN0141-8130.PMID25795388.
^BONGIOVANI, Raphael A. M. (2009-04-09). "Nota Científica: Caracterização reológica dos botriosferanas produzidos pelo Botryosphaeria rhodina MAMB-05 em glucose, sacarose e frutose como fontes de carbono".Brazilian Journal of Food Technology.12 (1):53–59.doi:10.4260/bjft2009800900008 (inactive 1 November 2024).ISSN1981-6723.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
^Giese, Ellen C.; Gascon, Jacob; Anzelmo, Gianluca; Barbosa, Aneli M.; da Cunha, Mário A. Alves; Dekker, Robert F.H. (January 2015). "Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans".International Journal of Biological Macromolecules.72:125–130.doi:10.1016/j.ijbiomac.2014.07.046.ISSN0141-8130.PMID25128096.
^Daou, Cheickna; Zhang, Hui (2012-06-12). "Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases".Comprehensive Reviews in Food Science and Food Safety.11 (4):355–365.doi:10.1111/j.1541-4337.2012.00189.x.ISSN1541-4337.
^abcSilva, Amadeu Z.; Costa, Felipe P.L.; Souza, Ingrid L.; Ribeiro, Mariana C.; Giordani, Morenna Alana; Queiroz, Diogo A.; Luvizotto, Renata A.M.; Nascimento, André F.; Bomfim, Gisele F. (October 2018). "Botryosphaeran reduces obesity, hepatic steatosis, dyslipidaemia, insulin resistance and glucose intolerance in diet-induced obese rats".Life Sciences.211:147–156.doi:10.1016/j.lfs.2018.09.027.ISSN0024-3205.PMID30227131.S2CID52293952.
^abQueiroz, Eveline A.I.F.; Fortes, Zuleica B.; da Cunha, Mário A.A.; Barbosa, Aneli M.; Khaper, Neelam; Dekker, Robert F.H. (October 2015). "Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a".The International Journal of Biochemistry & Cell Biology.67:14–24.doi:10.1016/j.biocel.2015.08.003.ISSN1357-2725.PMID26255117.
^abRodrigues, Fábio J.; Omura, Michele H.; Cedran, Marina F.; Dekker, Robert F. H.; Barbosa-Dekker, Aneli M.; Garcia, Sandra (2017-07-04). "Effect of natural polymers on the survival of Lactobacillus casei encapsulated in alginate microspheres".Journal of Microencapsulation.34 (5):431–439.doi:10.1080/02652048.2017.1343872.ISSN0265-2048.PMID28618877.S2CID41482357.
^Eisele, Ana Paula Pires; Valezi, Camila Farinha; Mazziero, Tatiane; Dekker, Robert F.H.; Barbosa-Dekker, Aneli M.; Sartori, Elen Romão (May 2019). "Layering of a film of carboxymethyl-botryosphaeran onto carbon black as a novel sensitive electrochemical platform on glassy carbon electrodes for the improvement in the simultaneous determination of phenolic compounds".Sensors and Actuators B: Chemical.287:18–26.Bibcode:2019SeAcB.287...18E.doi:10.1016/j.snb.2019.02.004.ISSN0925-4005.S2CID104322350.
^Giese, Ellen C.; Dekker, Robert F.H.; Barbosa-Dekker, Aneli M. (2019-02-09). "Biosorption of lanthanum and samarium by viable and autoclaved mycelium of Botryosphaeria rhodina MAMB-05".Biotechnology Progress.35 (3): e2783.doi:10.1002/btpr.2783.ISSN8756-7938.PMID30738002.S2CID73427692.