Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Botryosphaeran

From Wikipedia, the free encyclopedia
Exopolysaccharide
Botryosphaeran
Identifiers
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
Chemical compound

Botryosphaeran is anexopolysaccharide (EPS) produced by theascomyceteous fungusBotryosphaeria rhodina.[1][2] Characterization of the chemical structure of botryosphaeran showed this EPS to be a (1→3)(1→6)-β-D-glucan.[3] This particularβ-glucan can be produced by several strains ofBotryosphaeria rhodina that include: MAMB-05,[1] DABAC-P82,[4] and RCYU 30101.[5] Botryosphaeran exhibits interestingrheological properties and novel biological functions includinghypoglycaemia,hypocholesterolaemia, anti-atheroslerosis and anti-cancer activity, with potential commercial applications. Threecosmetic products formulated with botryosphaeran have been developed to promote skin health and treatskin conditions for future intended commercialization purposes.

History

[edit]

The ascomycete andfilamentous fungus,Botryosphaeria rhodina (strain MAMB-05), was isolated from acanker on the trunk of aeucalypt tree, and was molecularly characterized by sequencing theInternal Transcribed Spacer (ITS) region ofrDNA.[6][7]

The β-glucan, botryosphaeran, was discovered accidentally in 1994[1] while cultivatingBotryosphaeria rhodina MAMB-05 on nutrient media containing glucose to produce theenzyme,laccase. This fungal isolate produces a constitutive laccase that could be induced to higherenzyme titers by variouslignin-likearomatic compounds, and especiallyveratryl alcohol.[1][8] The fungus was found to be ligninolytic.[9][10]

Botryosphaeran is secreted by the fungus during growth and appears in the fermentation broth where its presence causes an increase in the broth'sviscosity. It can easily be extracted from the broth byprecipitation methods.[1]Veratryl alcohol, however, suppresses the formation of botryosphaeran.[11]

Production and isolation

[edit]

Botryosphaeran is produced under submerged fermentation conditions whenBotryosphaeria rhodina MAMB-05 is grown onnutrient media containing glucose and mineral salts.[1] Extracting the fermentation broth withalcohol causes the EPS (botryosphaeran) to precipitate from solution, and this can be separated bycentrifugation orfiltration.

The precipitate recovered can be lyophilized to a white fibrous material that is sparingly soluble in water. Alternatively, the recovered precipitate is resolubilized in water (gentle heating with stirring) to form a viscous solution that forms a firm gel when cooled to 5 °C. Solubilization of botryosphaeran can be enhanced throughchemical derivatization with variousfunctional groups.

The influence of the composition of the nutrient medium,[12] including nitrogen,[13] phosphate,[13] minerals, supplements (soybean oil,Tween 80),[14] and thecarbon source (carbohydrates),[12][15] is important in enhancing the production of botryosphaeran andbiomass during fermentation byBotryosphaeria rhodina MAMB-05.

Catabolite repression,[16] and the presence of β-glucan-hydrolyzing enzymes that attack botryosphaeran[17] during the fermentation process are critical and limit the production of botryosphaeran.

Statisticalfactorial design methods, such as theresponse surface methodology (RSM),[18][19] are effective in investigating complex fermentation parameters and their interactions to optimize metabolite production bymicroorganisms. RSM assists in defining the effects and interactions of thephysiological factors playing a role in biotechnological processes in the production of microbialmetabolites including exopolysaccharides such as β-glucans. Statistical methodologies reduce the number of experiments to provide sufficient information for statistically acceptable results.

The validation of the fermentation parameters by statistical factorial design improved botryosphaeran production byBotryosphaeria rhodina MAMB-05[13][14] over unoptimized conditions.[12]

Botryosphaeria rhodina MAMB-05 when grown on nutrient media containing different carbohydrate substrates produces afamily of botryosphaerans.[12][15] These β-glucans differ only in the extent and frequency ofside-chain substituents.

Botryosphaeran production can be enhanced whenBotryosphaeria rhodina MAMB-05 is cultivated on glucose media containing soybean oil and thesurfactant, Tween 80.[14]

The most attractive feature for the commercialization of botryosphaeran is the ease by which it can be produced by simple fermentation processes on low-cost nutrient media, and its subsequent isolation throughprecipitation with ethanol,[3][12][13] which all takes place on atime-scale of days compared to other commercial β-glucans available on the market. The latter are extracted fromfungal fruiting bodies (mushrooms, fungal brackets), spentBrewers yeast, andcereal grains (barley, oat) that can takeweeks-to-months to prepare.

Themycelium ofBotryosphaeria rhodina MAMB-05 is a rich source of β-glucans.[20]

Chemical structure

[edit]

The chemical structure of botryosphaeran was first described[3] in 2003, and was determined using the methods:methylation analysis, Smith degradation, Gas Chromatography-Mass Spectroscopy (GC-MS) and13C NMR.

Hydrolysis

[edit]

Totalacid hydrolysis of botryosphaeran produces onlyD-glucose,[1][3] while partial acid hydrolysis[3] andenzymatic hydrolysis[21][22][23] produces a series ofhomologous gluco-oligosaccharides of differentdegrees of polymerization, which can be analyzed byHigh Performance Liquid Chromatography (HPLC).

Enzymatic digestion of botryosphaeran under controlled conditions employing the enzymes: β-(1→3)-glucanases and β-(1→6)-glucanases fromBotryosphaeria rhodina MAMB-05,[24]Trichoderma harzianum Rifai,[24] andAureobasidium pullulans 1WA1,[23] produces a mixed series of β-(1→3)- and β-(1→6)- linked gluco-oligosaccharides[21][22][23] that can serve asprebiotics.

Enzymes hydrolyzing botryosphaeran can be obtained by cultivatingBotryosphaeria rhodina MAMB-05,Trichoderma harzianum Rifai andAureobasidium pullulans 1WA1 on nutrient media containing either botryosphaeran,[23][24] or the biomass[17][24] derived fromBotryosphaeria rhodina MAMB-05, which is a rich source of β-glucans.[20]

Prebiotics such as the (1→3)-linked gluco-oligosaccharides are emerging asnutraceuticals for inclusion in foods. Botryosphaeran can serve as a source of conveniently generating these oligosaccharides through enzymatic hydrolysis.[21]

Chemical structure characterization

[edit]

Methylation and Smith degradation analysis revealed that botryosphaeran constituted abackbone chain made up of (1→3)-β-linked glucose residues (i.e., it is a (1→3)-β-D-glucan) with β-(1→6)-linked glucose and di-glucose (gentiobiose) side-branches located at the C-6 position of glucose along the (1→3)-linked backbone chain.[3][4] The chemical structure of botryosphaeran is a (1→3)(1→6)-β-D-glucan.[3]13C NMR spectroscopy confirmed its structure.

The degree of branching of the family of botryosphaerans varies from 21 to 31%.[3][15] depending upon the carbohydrate source in the nutrient media during fermentation by the fungus, and this also affects themolecular weight (MW) of the botryosphaerans produced, which can be large (order of >1 x 106 daltons)[4][15]

Botryosphaeran exists in atriple helixconformation,[25] an important structural feature in manifestingbiological response modifying activities.[26][27][28]

Derivatization of botryosphaeran by carboxymethylation and sulfonylation[29][30] results in improved solubility in water, and diminishes its viscous nature in solution.

In the case of sulfonated botryosphaeran, the chemically modified polysaccharide containingsulfonate groups exhibited new biological functions:anticoagulation,[29][30] andantiviral activity againstenveloped viruses such ashuman herpes simplex andDengue,[citation needed] The latter is amosquito-borne virus.

Related exopolysaccharides (β-glucans) from several strains ofBotryosphaeria rhodina (theteleomorphLasiodiplodiatheobromae[7]) isolated from rotting tropical fruits have been described,[31][32][33] The chemical structures of three β-glucans produced were characterized; a (1→3)(1→6)-β-D-glucan with a single glucose repeat substituent (frequency of 20%),[31] an unbranched (1→6)-β-glucan namedlasiodiplodan,[31][32][33] and a new (1→3)(1→6)-β-glucan with unique branches comprising gentiobiose andgentiotriose residues, but not glucose.[33]

Structural characterization of thecell wall (mycelium) ofBotryosphaeria rhodina MAMB-05 revealed the presence of three different D-glucans; a linear (1→6)-β-glucan, a branched (1→3)(1→6)-β-glucan with single glucose repeat branches (frequency of 18%), and aglycogen-like (1→4)(1→6)-α-glucan.[20]

Biosafety

[edit]

Botryosphaeran was demonstrated in extensive studies on mice[34][35] and mammaliancell-lines (hamster, rat, human)[36][37][38] that it was notmutagenic (assessed by themicronucleus test),[34][35] nor was itgenotoxic as assessed by theAmes test andComet assay.[36][38]

When administered orally to mice by gavage, botryosphaeran reduced theclastogenic effect ofcyclophosphamide-inducedmicronucleus formation inbone marrow (polychromatic erythrocytes)[34] andperipheral blood (reticulocytes) cells.[34][35]

Using mammalian cell lines: lungfibroblasts (Chinese hamster) andhepatocarcinoma cells (rat), botryosphaeran was confirmed not to bemutagenic nor genotoxic by the micronucleus test and Comet assay procedures.[38] Botryosphaeran exhibited nomutagenicity, and protected cultured human whole bloodlymphocytes againstDNA damage andcell death induced bybleomycin throughout thecell cycle stage.[citation needed] Botryosphaeran exhibited antigenotoxic activity against damage induced bymethyl methanesulfonate, in normal andtumorigenic (Jurkat) human lymphocytes.[36]

The absence of mutagenicity and genotoxicity assessed by the micronucleus, Ames andMTT tests, and the Comet assay, established that botryosphaeran hasGRAS status (Generally Recommended As Safe), and is safe for use by humans and animals.

Rheological properties

[edit]

Therheological properties of botryosphaeran has been described.[39][40]

Botryosphaeran forms a viscous solution when dissolved in water that is stable to heat as occurs duringautoclaving (steamsterilization). When an aqueous solution of botryosphaeran is cooled to 5 °C, it forms a stronggel that is firm and transparent.

Biological functions

[edit]

Botryosphaeran possessesin-vitrofree-radicalscavenging properties andantioxidant activities.[41]

Botryosphaeran exhibits anin-vivo antioxidant role in theβ-cell line INS-1E derived from ratinsulinoma (tumor of thepancreas derived from β-cells).[42]Oxidative stress was induced byhydrogen peroxide (H2O2) in the INS-1E cells under highglucose, and botryosphaeran decreased this condition by reducing the production ofreactive oxygen species (ROS).[42]Apoptosis increased in the INS-1E cells treated with H2O2 in high glucose conditions, and treatment with botryosphaeran attenuated apoptosis.

Botryosphaeran exerts achemoprotective effect exhibiting strongantimutagenic (anticlastogenic) activity against thein-vivo DNA-damaging effect of cyclophosphamide in mice.,[35][43] and genotoxic damage bydoxorubicin infibroblasts and hepatocarcinoma cells,[38] bleomycin in human lymphocytes,[citation needed] and methyl methanesulfonate in Jurkat cells.[36]

Botryosphaeran exhibits hypoglycaemic activity (lowering of blood glucose levels) in rats in which diabetes was induced byintramuscular injection ofstreptozotocin, which selectively damages the pancreaticinsulin-secreting β-cells resulting intype-1 diabetes condition.[43]

Thecholesterol-lowering effect (hypocholesterolaemia) of β-glucans derived from oat and barley (β-(1→3)(1→4)-linked D-glucans) is well established.[44] Botryosphaeran exhibits hypocholesterolaemic activity lowering totalcholesterol andLow Density Lipoprotein (LDL)-cholesterol blood levels in rats preconditioned onhyperlipidaemic diets.[35][45]

In experiments with elderly maleknockout LDLr-/-mice (LDLreceptor-deficient mice that show elevatedplasma cholesterol levels and developatherosclerosis), botryosphaeran reduced theplasma glucose levels, improved thelipidic profiles, reducedLDL-cholesterol, and decreasedaortic lipid deposition that lowerscardiovascular risks ofatherosclerosis.[35]

Treatment ofobese rats with botryosphaeran by gavage was effective in ameliorating thecomorbidities (diabetes,dyslipidaemia,hepatic steatosis) associated with obesity. Botryosphaeran reduces hepatic steatosis and dyslipidaemia, andglucose intolerance in diet-induced obese rats through activation ofAMP-activated protein-kinase (AMPK) and the expression of theForkhead transcription factor, FOXO3a, inadipose tissue.[45]

Obese rats showed significant increases inweight gain, adipose tissue mass, andadiposity andatherogenic indices, and presented glucose intolerance,insulin resistance, dyslipidaemia, and hepatic steatosis. Botryosphaeran significantly reduces feed intake, weight gains, periepididymal andmesenteric fat, and improvesglucose tolerance in obese rats. Botryosphaeran, furthermore, reduces theserum levels oftriglyceride andVLDL-cholesterol, and increasedHDL-cholesterol andglycogen in liver, and reduces the atherogenic index.[45]

The above data demonstrated the beneficial effects of botryosphaeran in reducing the stimulatory effect of obesity on dyslipidaemia and hepatic steatosis, and can play a potential role in the management of obesity comorbidities.

Studies on human carcinoma cell-lines: Jurkat (lymphocytes)[37] and breast (MCF-7)[46] demonstrated that botryosphaeran manifests anti-cancer activity.

The action by whichanticancer activity occurs is still not well understood, but a mechanistic insight on how this may occur inbreast cancerMCF-7 cells was advanced in 2015, and involves cell-signaling pathways that suppresstumourigenesis (cellantiproliferation) through apoptosis,necrosis andoxidative stress. Botryosphaeran-induced apoptosis was mediated by AMPK and FOXO3a.[46]

In tumorigenic human lymphocytes (Jurkat cells), botryosphaeran modulates gene expression and regulatescell cycle and thecell cycle checkpoint.[37]

Encapsulation ofprobioticbacteria (Lactobacillus casei) inalginatemicrospheres together with botryosphaeran[47] andmucilages fromlinseed andokra increases the encapsulation efficiency, and improves the stability of the encapsulated probiotic bacteria during prolonged storage at 5 °C.Gastrointestinal simulation of themicroencapsulatedLactobacillus casei cells demonstrated preservation of theviability of the probiotic bacteria against lowpH andbile salts.[47] The use of botryosphaeran in microencapsulating probiotic bacteria appears to be another promising application for this β-glucan.

New applications for botryosphaeran have included:biological response modifying activities of derivatized botryosphaerans; treatment ofskin conditions (eczema,psoriasis,wound healing);antimicrobial activities;antinociceptive activity; as a matrix for enzyme (laccase)immobilization;[citation needed] as a platform forelectrochemicalsensors;[48] and as afood additive (nutraceutical).

Thebiomass resulting fromBotryosphaeria rhodina MAMB-05 on producing botryosphaeran bysubmerged fermentation has been successfully used as abiosorbent to extractmetallic species;rare earth elements (lanthanides;La,Sm),[49] andheavy metals (lead; Pb)[citation needed] fromindustrial effluents.

References

[edit]
  1. ^abcdefgDekker, Robert F.H; Barbosa, Aneli M (January 2001). "The effects of aeration and veratryl alcohol on the production of two laccases by the ascomycete Botryosphaeria sp".Enzyme and Microbial Technology.28 (1):81–88.doi:10.1016/s0141-0229(00)00274-x.ISSN 0141-0229.PMID 11118601.
  2. ^Selbmann, L.; Crognale, S.; Petruccioli, M. (January 2002). "Exopolysaccharide production from Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82 on raw and hydrolysed starchy materials".Letters in Applied Microbiology.34 (1):51–55.doi:10.1046/j.1472-765x.2002.01042.x.ISSN 0266-8254.PMID 11849493.
  3. ^abcdefghBarbosa, Aneli M; Steluti, Rosângela M; Dekker, Robert F.H; Cardoso, Marilsa S; Corradi da Silva, M.L (July 2003). "Structural characterization of Botryosphaeran: a (1→3;1→6)-β-d-glucan produced by the ascomyceteous fungus, Botryosphaeria sp".Carbohydrate Research.338 (16):1691–1698.doi:10.1016/s0008-6215(03)00240-4.ISSN 0008-6215.PMID 12873424.
  4. ^abcSelbmann, Laura; Stingele, Francesca; Petruccioli, Maurizio (2003-09-01). "Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina".Antonie van Leeuwenhoek.84 (2):135–145.doi:10.1023/A:1025421401536.ISSN 1572-9699.PMID 14533717.S2CID 12997014.
  5. ^Weng, Brian Bor-Chun; Lin, Yu-Chih; Hu, Chia-Wen; Kao, Ming-Yuan; Wang, Shih-Hao; Lo, Dan-Yuan; Lai, Tzu-Yuan; Kan, Lou-Sing; Chiou, Robin Yih-Yuan (April 2011). "Toxicological and immunomodulatory assessments of botryosphaeran (β-glucan) produced by Botryosphaeria rhodina RCYU 30101".Food and Chemical Toxicology.49 (4):910–916.doi:10.1016/j.fct.2010.10.036.ISSN 0278-6915.PMID 21185904.
  6. ^"Botryosphaeria rhodina isolate MAMB 05 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence". 2004-04-29.{{cite journal}}:Cite journal requires|journal= (help)
  7. ^abSaldanha, Roze L.; Garcia, José E.; Dekker, Robert F. H.; Vilas-Boas, Laurival A.; Barbosa, Aneli M. (June 2007)."Genetic diversity among Botryosphaeria isolates and their correlation with cell wall-lytic enzyme production".Brazilian Journal of Microbiology.38 (2):259–264.doi:10.1590/s1517-83822007000200013.ISSN 1517-8382.
  8. ^Barbosa, A.M.; Dekker, R.F.H.; Hardy, G.E. St (August 1996). "Veratryl alcohol as an inducer of laccase by an ascomycete, Botryosphaeria sp., when screened on the polymeric dye Poly R-478".Letters in Applied Microbiology.23 (2):93–96.doi:10.1111/j.1472-765x.1996.tb00038.x.ISSN 0266-8254.S2CID 84782439.
  9. ^BARBOSA, A. M. (1995)."In-vivo decolorisation of Poly R-478 as a method for screening ligninolytic microorganisms for use in bioremediation".4th Pacific Rim Biotechnol. Conf., Melbourne, Australia, Feb 6-9, 1995, Pp. 88-90.
  10. ^Dekker, Robert F.H.; Barbosa, Aneli M.; Sargent, Keith (March 2002). "The effect of lignin-related compounds on the growth and production of laccases by the ascomycete, Botryosphaeria sp".Enzyme and Microbial Technology.30 (3):374–380.doi:10.1016/s0141-0229(01)00503-8.ISSN 0141-0229.
  11. ^Dekker, Robert F.H.; Vasconcelos, Ana-Flora D.; Barbosa, Aneli M.; Giese, Ellen C.; Paccola-Meirelles, Luzia (2001-12-01). "A new role for veratryl alcohol: regulation of synthesis of lignocellulose-degrading enzymes in the ligninolytic ascomyceteous fungus, Botryosphaeria sp.; influence of carbon source".Biotechnology Letters.23 (24):1987–1993.doi:10.1023/A:1013742527550.ISSN 1573-6776.S2CID 11468117.
  12. ^abcdeSteluti, Rosangela M.; Giese, Ellen C.; Piggato, Mariane M.; Sumiya, Andressa F. G.; Covizzi, Luiz G.; Job, Aldo E.; Cardoso, Marilsa S.; De Lourdes Corradi Da Silva, Maria; Dekker, Robert F. H. (December 2004). "Comparison of Botryosphaeran production by the ascomyceteous fungusBotryosphaeria sp., grown on different carbohydrate carbon sources, and their partial structural features".Journal of Basic Microbiology.44 (6):480–486.doi:10.1002/jobm.200410415.ISSN 0233-111X.PMID 15558819.S2CID 37841100.
  13. ^abcdGiese, Ellen Cristine; Sumiya, Andressa; Borsato, Dioníso; Dekker, Robert; Barbosa, Aneli (2015-04-05)."Evaluation of Fermentative Parameters for the Production of Botryosphaeran (a(1-->3;1-->6)-β-D-glucan) and Mycelial Biomass by Botryosphaeria rhodina MAMB-05".Orbital - the Electronic Journal of Chemistry.7 (1).doi:10.17807/orbital.v7i1.637.ISSN 1984-6428.
  14. ^abcSilva, Cassiano C.; Dekker, Robert F.H.; Silva, Rui Sérgio S.F.; Silva, Maria de Lourdes Corradi da; Barbosa, Aneli M. (August 2007). "Effect of soybean oil and Tween 80 on the production of botryosphaeran by Botryosphaeria rhodina MAMB-05".Process Biochemistry.42 (8):1254–1258.doi:10.1016/j.procbio.2007.05.009.ISSN 1359-5113.
  15. ^abcdDELOURDESCORRADIDASILVA, M; IZELI, N; MARTINEZ, P; SILVA, I; CONSTANTINO, C; CARDOSO, M; BARBOSA, A; DEKKER, R; DASILVA, G (2005-07-04). "Purification and structural characterisation of (1→3;1→6)-β--glucans (botryosphaerans) from grown on sucrose and fructose as carbon sources: a comparative study".Carbohydrate Polymers.61 (1):10–17.doi:10.1016/j.carbpol.2005.01.002.ISSN 0144-8617.
  16. ^Crognale, Silvia; Bruno, Maria; Moresi, Mauro; Petruccioli, Maurizio (July 2007). "Enhanced production of β-glucan from Botryosphaeria rhodina using emulsified media or fan impellers".Enzyme and Microbial Technology.41 (1–2):111–120.doi:10.1016/j.enzmictec.2006.12.008.ISSN 0141-0229.
  17. ^abGiese, Ellen C.; Dekker, Robert F.H.; Scarminio, Ieda S.; Barbosa, Aneli M.; da Silva, Roberto (January 2011). "Comparison of β-1,3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design".Biochemical Engineering Journal.53 (2):239–243.Bibcode:2011BioEJ..53..239G.doi:10.1016/j.bej.2010.10.013.hdl:11449/72299.ISSN 1369-703X.
  18. ^P., Box, George E. (2005).Statistics for experimenters : design, innovation, and discovery. Hunter, J. Stuart, 1923-, Hunter, William Gordon, 1937- (2nd ed.). Hoboken, N.J.: Wiley-Interscience.ISBN 978-0471718130.OCLC 57286064.{{cite book}}: CS1 maint: multiple names: authors list (link)
  19. ^E., Bruns, R. (2006).Statistical design--chemometrics. Scarminio, I. S., Barros Neto, B. de. (1st ed.). Amsterdam: Elsevier.ISBN 9780444521811.OCLC 162587290.{{cite book}}: CS1 maint: multiple names: authors list (link)
  20. ^abcCorradi da Silva, Maria de Lourdes; Fukuda, Eliane K.; Vasconcelos, Ana Flora D.; Dekker, Robert F.H.; Matias, Andreza C.; Monteiro, Nilson K.; Cardoso, Marilsa S.; Barbosa, Aneli M.; Silveira, Joana L.M. (March 2008). "Structural characterization of the cell wall d-glucans isolated from the mycelium of Botryosphaeria rhodina MAMB-05".Carbohydrate Research.343 (4):793–798.doi:10.1016/j.carres.2007.12.021.ISSN 0008-6215.PMID 18237722.
  21. ^abcGiese, Ellen C.; Covizzi, Luiz G.; Dekker, Robert F.H.; Monteiro, Nilson K.; Corradi da Silva, Maria de Lourdes; Barbosa, Aneli M. (June 2006). "Enzymatic hydrolysis of botryosphaeran and laminarin by β-1,3-glucanases produced by Botryosphaeria rhodina and Trichoderma harzianum Rifai".Process Biochemistry.41 (6):1265–1271.doi:10.1016/j.procbio.2005.12.023.ISSN 1359-5113.
  22. ^abGiese, Ellen Cristine; Monteiro, Alexandre C.; de Melo Barbosa, Aneli; Dekker, Robert F. H.; dos Santos, Osvaldo; de Lourdes Corradi da Silva, Maria; Gomes, Eleni; da Silva, Roberto (January 2009).Evaluation of the β-glucanolytic enzyme complex of Trichoderma harzianum Rifai for the production of gluco-oligosaccharide fragments by enzymatic hydrolysis of 1,3;1,6-β-D-glucans. WORLD SCIENTIFIC.doi:10.1142/9789812837554_0091.ISBN 9789812837547.{{cite book}}:|journal= ignored (help)
  23. ^abcdBauermeister, Anelize; Amador, Ismael R.; Pretti, Carla P.; Giese, Ellen C.; Oliveira, André L. M.; Alves da Cunha, Mário A.; Rezende, Maria Inês; Dekker, Robert F. H.; Barbosa, Aneli M. (2015-01-05). "β-(1 → 3)-Glucanolytic Yeasts from Brazilian Grape Microbiota: Production and Characterization of β-Glucanolytic Enzymes by Aureobasidium pullulans 1WA1 Cultivated on Fungal Mycelium".Journal of Agricultural and Food Chemistry.63 (1):269–278.Bibcode:2015JAFC...63..269B.doi:10.1021/jf504333h.ISSN 0021-8561.PMID 25559084.
  24. ^abcdGiese, Ellen C.; Covizzi, Luiz G.; Borsato, Dionísio; Dekker, Robert F.H.; de Lourdes Corradi da Silva, Maria; Barbosa, Aneli M. (December 2005). "Botryosphaeran, a new substrate for the production of β-1,3-glucanases by Botryosphaeria rhodina and Trichoderma harzianum Rifai".Process Biochemistry.40 (12):3783–3788.doi:10.1016/j.procbio.2005.04.004.ISSN 1359-5113.
  25. ^Giese, Ellen C.; Dekker, Robert F.H.; Barbosa, Aneli M.; da Silva, Roberto (November 2008). "Triple helix conformation of botryosphaeran, a (1→3;1→6)-β-d-glucan produced by Botryosphaeria rhodina MAMB-05".Carbohydrate Polymers.74 (4):953–956.doi:10.1016/j.carbpol.2008.04.038.ISSN 0144-8617.
  26. ^Bohn, John A.; BeMiller, James N. (January 1995). "(1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships".Carbohydrate Polymers.28 (1):3–14.doi:10.1016/0144-8617(95)00076-3.ISSN 0144-8617.
  27. ^Leung, M.Y.K.; Liu, C.; Koon, J.C.M.; Fung, K.P. (June 2006). "Polysaccharide biological response modifiers".Immunology Letters.105 (2):101–114.doi:10.1016/j.imlet.2006.01.009.ISSN 0165-2478.PMID 16554097.
  28. ^Wang, Qiang; Sheng, Xiaojing; Shi, Aimin; Hu, Hui; Yang, Ying; Liu, Li; Fei, Ling; Liu, Hongzhi (2017-02-09)."β-Glucans: Relationships between Modification, Conformation and Functional Activities".Molecules.22 (2): 257.doi:10.3390/molecules22020257.ISSN 1420-3049.PMC 6155770.PMID 28208790.
  29. ^abMendes, Simone Ferreira; Santos, Osvaldo dos; Barbosa, Aneli M.; Vasconcelos, Ana Flora D.; Aranda-Selverio, Gabriel; Monteiro, Nilson K.; Dekker, Robert F.H.; Pereira, Mariana Sá; Tovar, Ana Maria F. (October 2009). "Sulfonation and anticoagulant activity of botryosphaeran from Botryosphaeria rhodina MAMB-05 grown on fructose".International Journal of Biological Macromolecules.45 (3):305–309.doi:10.1016/j.ijbiomac.2009.06.004.ISSN 0141-8130.PMID 19549543.
  30. ^abBrandi, Jamile (2011-10-28). "Chemical Modification of Botryosphaeran: Structural Characterization and Anticoagulant Activity of a Water-Soluble Sulfonated (1→3)(1→6)-β-D-Glucan".Journal of Microbiology and Biotechnology.21 (10):1036–1042.doi:10.4014/jmb.1105.05020.ISSN 1017-7825.PMID 22031027.
  31. ^abcVasconcelos, Ana Flora D.; Monteiro, Nilson K.; Dekker, Robert F.H.; Barbosa, Aneli M.; Carbonero, Elaine R.; Silveira, Joana L.M.; Sassaki, Guilherme L.; da Silva, Roberto; de Lourdes Corradi da Silva, Maria (September 2008). "Three exopolysaccharides of the β-(1→6)-d-glucan type and a β-(1→3;1→6)-d-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit".Carbohydrate Research.343 (14):2481–2485.doi:10.1016/j.carres.2008.06.013.ISSN 0008-6215.PMID 18639868.
  32. ^abAlves da Cunha, Mário A.; Turmina, Janaína A.; Ivanov, Raphael C.; Barroso, Roney R.; Marques, Patrícia T.; Fonseca, Eveline A. I.; Fortes, Zuleica B.; Dekker, Robert F. H.; Khaper, Neelam (2012-03-08). "Lasiodiplodan, an exocellular (1→6)-β-d-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity".Journal of Industrial Microbiology & Biotechnology.39 (8):1179–1188.doi:10.1007/s10295-012-1112-2.ISSN 1367-5435.PMID 22399240.S2CID 15375855.
  33. ^abcOliveira, Kassandra S.M.; Di Bastiani, Mirela; Cordeiro, Lucimara M.C.; Costa, Mírian F.; Toledo, Karina A.; Iacomini, Marcello; Babosa, Aneli M.; Dekker, Robert F.H.; Nascimento, Valéria M.G. (November 2015). "(1→6)- and (1→3)(1→6)-β-glucans from Lasiodiplodia theobromae MMBJ: Structural characterization and pro-inflammatory activity".Carbohydrate Polymers.133:539–546.doi:10.1016/j.carbpol.2015.07.060.ISSN 0144-8617.PMID 26344312.
  34. ^abcdMiranda, Carolina C.B.O.; Dekker, Robert F.H.; Serpeloni, Juliana M.; Fonseca, Eveline A.I.; Cólus, Ilce M.S.; Barbosa, Aneli M. (March 2008). "Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05".International Journal of Biological Macromolecules.42 (2):172–177.doi:10.1016/j.ijbiomac.2007.10.010.ISSN 0141-8130.PMID 18022685.
  35. ^abcdefSilva-Sena, Geralda Gillian; Malini, Maressa; Delarmelina, Juliana Macedo; Dutra, Jean Carlos Vencioneck; Gervásio, Suiany Vitorino; Leal, Marcos André Soares; Costa Pereira, Thiago de Melo; Barbosa-Dekker, Aneli M.; Dekker, Robert F.H. (February 2018)."In vivo antimutagenic and antiatherogenic effects of the (1 → 3)(1 → 6)-β-d-glucan botryosphaeran".Mutation Research/Genetic Toxicology and Environmental Mutagenesis.826:6–14.Bibcode:2018MRGTE.826....6S.doi:10.1016/j.mrgentox.2017.12.008.ISSN 1383-5718.PMID 29412871.
  36. ^abcdKerche-Silva, Leandra E.; Cólus, Ilce M.S.; Malini, Maressa; Mori, Mateus Prates; Dekker, Robert F.H.; Barbosa-Dekker, Aneli M. (February 2017)."In vitro protective effects of botryosphaeran, a (1 → 3;1 → 6)-β- d -glucan, against mutagens in normal and tumor rodent cells".Mutation Research/Genetic Toxicology and Environmental Mutagenesis.814:29–36.Bibcode:2017MRGTE.814...29K.doi:10.1016/j.mrgentox.2016.12.003.ISSN 1383-5718.PMID 28137365.
  37. ^abcMalini, M.; Camargo, M.S.; Hernandes, L.C.; Vargas-Rechia, C.G.; Varanda, E.A.; Barbosa, A.M.; Dekker, R.F.H.; Matsumoto, S.T.; Antunes, L.M.G. (October 2016). "Chemopreventive effect and lack of genotoxicity and mutagenicity of the exopolysaccharide botryosphaeran on human lymphocytes".Toxicology in Vitro.36:18–25.Bibcode:2016ToxVi..36...18M.doi:10.1016/j.tiv.2016.06.008.hdl:11449/161952.ISSN 0887-2333.PMID 27387458.
  38. ^abcdMalini, Maressa; Souza, Marilesia Ferreira de; Oliveira, Marcelo Tempesta de; Antunes, Lusânia Maria Greggi; Figueiredo, Suely Gomes de; Barbosa, Aneli M.; Dekker, Robert F.H.; Cólus, Ilce Mara de Syllos (June 2015). "Modulation of gene expression and cell cycle by botryosphaeran, a (1→3)(1→6)-β-d-glucan in human lymphocytes".International Journal of Biological Macromolecules.77:214–221.doi:10.1016/j.ijbiomac.2015.03.010.ISSN 0141-8130.PMID 25795388.
  39. ^BONGIOVANI, Raphael A. M. (2009-04-09). "Nota Científica: Caracterização reológica dos botriosferanas produzidos pelo Botryosphaeria rhodina MAMB-05 em glucose, sacarose e frutose como fontes de carbono".Brazilian Journal of Food Technology.12 (1):53–59.doi:10.4260/bjft2009800900008 (inactive 1 November 2024).ISSN 1981-6723.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  40. ^Fonseca, Paulo R.M.S.; Dekker, Robert F.H.; Barbosa, Aneli M.; Silveira, Joana L.M.; Vasconcelos, Ana F.D.; Monteiro, Nilson K.; Aranda-Selverio, Gabriel; Da Silva, Maria de Lourdes Corradi (2011-09-02)."Thermal and Rheological Properties of a Family of Botryosphaerans Produced by Botryosphaeria rhodina MAMB-05".Molecules.16 (9):7488–7501.doi:10.3390/molecules16097488.ISSN 1420-3049.PMC 6264532.PMID 21892127.
  41. ^Giese, Ellen C.; Gascon, Jacob; Anzelmo, Gianluca; Barbosa, Aneli M.; da Cunha, Mário A. Alves; Dekker, Robert F.H. (January 2015). "Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans".International Journal of Biological Macromolecules.72:125–130.doi:10.1016/j.ijbiomac.2014.07.046.ISSN 0141-8130.PMID 25128096.
  42. ^abKazak, Hande (2014).Biological activities of bacterial levan, and three fungal β-glucans, botryosphaeran and lasiodiplodan, under high glucose condition in the pancreatic β-cell line INS-1E. Narosa Publishing House, New Delhi, India. pp. Vol. 7, Ch. 8, p. 105–115.doi:10.13140/2.1.1799.2649.ISBN 978-81-8487-214-9.
  43. ^abMiranda-Nantes, Carolina C. B. O.; Fonseca, Eveline A. I.; Zaia, Cassia T. B. V.; Dekker, Robert F. H.; Khaper, Neelam; Castro, Inar A.; Barbosa, Aneli M. (September 2011)."Hypoglycemic and Hypocholesterolemic Effects of Botryosphaeran from Botryosphaeria rhodina MAMB-05 in Diabetes-Induced and Hyperlipidemia Conditions in Rats".Mycobiology.39 (3):187–193.doi:10.5941/myco.2011.39.3.187.ISSN 1229-8093.PMC 3385115.PMID 22783102.
  44. ^Daou, Cheickna; Zhang, Hui (2012-06-12). "Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases".Comprehensive Reviews in Food Science and Food Safety.11 (4):355–365.doi:10.1111/j.1541-4337.2012.00189.x.ISSN 1541-4337.
  45. ^abcSilva, Amadeu Z.; Costa, Felipe P.L.; Souza, Ingrid L.; Ribeiro, Mariana C.; Giordani, Morenna Alana; Queiroz, Diogo A.; Luvizotto, Renata A.M.; Nascimento, André F.; Bomfim, Gisele F. (October 2018). "Botryosphaeran reduces obesity, hepatic steatosis, dyslipidaemia, insulin resistance and glucose intolerance in diet-induced obese rats".Life Sciences.211:147–156.doi:10.1016/j.lfs.2018.09.027.ISSN 0024-3205.PMID 30227131.S2CID 52293952.
  46. ^abQueiroz, Eveline A.I.F.; Fortes, Zuleica B.; da Cunha, Mário A.A.; Barbosa, Aneli M.; Khaper, Neelam; Dekker, Robert F.H. (October 2015). "Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a".The International Journal of Biochemistry & Cell Biology.67:14–24.doi:10.1016/j.biocel.2015.08.003.ISSN 1357-2725.PMID 26255117.
  47. ^abRodrigues, Fábio J.; Omura, Michele H.; Cedran, Marina F.; Dekker, Robert F. H.; Barbosa-Dekker, Aneli M.; Garcia, Sandra (2017-07-04). "Effect of natural polymers on the survival of Lactobacillus casei encapsulated in alginate microspheres".Journal of Microencapsulation.34 (5):431–439.doi:10.1080/02652048.2017.1343872.ISSN 0265-2048.PMID 28618877.S2CID 41482357.
  48. ^Eisele, Ana Paula Pires; Valezi, Camila Farinha; Mazziero, Tatiane; Dekker, Robert F.H.; Barbosa-Dekker, Aneli M.; Sartori, Elen Romão (May 2019). "Layering of a film of carboxymethyl-botryosphaeran onto carbon black as a novel sensitive electrochemical platform on glassy carbon electrodes for the improvement in the simultaneous determination of phenolic compounds".Sensors and Actuators B: Chemical.287:18–26.Bibcode:2019SeAcB.287...18E.doi:10.1016/j.snb.2019.02.004.ISSN 0925-4005.S2CID 104322350.
  49. ^Giese, Ellen C.; Dekker, Robert F.H.; Barbosa-Dekker, Aneli M. (2019-02-09). "Biosorption of lanthanum and samarium by viable and autoclaved mycelium of Botryosphaeria rhodina MAMB-05".Biotechnology Progress.35 (3): e2783.doi:10.1002/btpr.2783.ISSN 8756-7938.PMID 30738002.S2CID 73427692.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Botryosphaeran&oldid=1254884859"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp