Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bohm diffusion

From Wikipedia, the free encyclopedia
Physical phenomenon

Thediffusion ofplasma across amagnetic field was conjectured to follow theBohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field.

The rate predicted by Bohm diffusion is much higher than the rate predicted byclassical diffusion, which develops from arandom walk within the plasma. The classical model scaled inversely with the square of the magnetic field. If the classical model is correct, small increases in the field lead to much longer confinement times. If the Bohm model is correct,magnetically confined fusion would not be practical.

Earlyfusion energy machines appeared to behave according to Bohm's model, and by the 1960s there was a significant stagnation within the field. The introduction of thetokamak in 1968 was the first evidence that the Bohm model did not hold for all machines. Bohm predicts rates that are too fast for these machines, and classical too slow; studying these machines has led to theneoclassical diffusion concept.

Description

[edit]

Bohm diffusion is characterized by adiffusion coefficient equal toDBohm=116kBTeB,{\displaystyle D_{\text{Bohm}}={\frac {1}{16}}\,{\frac {k_{\text{B}}T}{eB}},}whereB is the magnetic field strength,T is the electron gas temperature,e is theelementary charge,kB is theBoltzmann constant.


It was first observed in 1949 byDavid Bohm,E. H. S. Burhop, andHarrie Massey while studying magnetic arcs for use inisotope separation.[1] It has since been observed that many other plasmas follow this law. Fortunately there are exceptions where the diffusion rate is lower, otherwise there would be no hope of achieving practicalfusion energy. In Bohm's original work he notes that the fraction 1/16 is not exact; in particular "the exact value of [the diffusion coefficient] is uncertain within a factor of 2 or 3."Lyman Spitzer considered this fraction as a factor related to plasma instability.[2]

Approximate derivation

[edit]

Generally diffusion can be modeled as arandom walk of steps of lengthδ{\displaystyle \delta } and timeτ{\displaystyle \tau }. If the diffusion is collisional, thenδ{\displaystyle \delta } is themean free path andτ{\displaystyle \tau } is the inverse of the collision frequency. The diffusion coefficientD can be expressed variously as

D=δ2τ=v2τ=δv,{\displaystyle D={\frac {\delta ^{2}}{\tau }}=v^{2}\tau =\delta \,v,}

wherev=δ/τ{\displaystyle v=\delta /\tau } is the velocity between collisions.

In a magnetized plasma, the collision frequency is usually small compared to thegyrofrequency, so that the step size is thegyroradiusρ{\displaystyle \rho } and the step time is the collision time,τ{\displaystyle \tau }, which is related to the collision frequency throughτ=1/ν{\displaystyle \tau =1/\nu }, leading toD=ρ2νB2{\displaystyle D=\rho ^{2}\nu \propto B^{-2}} (classical diffusion).

On the other hand, if the collision frequency is larger than the gyrofrequency, then the particles can be considered to move freely with the thermal velocityvth between collisions, and the diffusion coefficient takes the formD=vth2/ν{\displaystyle D=v_{\text{th}}^{2}/\nu }. In this regime, the diffusion is maximum when the collision frequency is equal to the gyrofrequency, in which caseD=ρ2ωc=vth2/ωc{\displaystyle D=\rho ^{2}\omega _{\text{c}}=v_{\text{th}}^{2}/\omega _{\text{c}}}. Substitutingρ=vth/ωc{\displaystyle \rho =v_{\text{th}}/\omega _{\text{c}}},vth=(kBT/m)1/2{\displaystyle v_{\text{th}}=(k_{\text{B}}T/m)^{1/2}}, andωc=eB/m{\displaystyle \omega _{\text{c}}=eB/m} (thecyclotron frequency), we arrive atD=kBT/eB,{\displaystyle D=k_{\text{B}}T/eB,}which is the Bohm scaling. Considering the approximate nature of this derivation, the missing 1/16 in front is no cause for concern.

Bohm diffusion is typically greater than classical diffusion. The fact that classical diffusion and Bohm diffusion scale as different powers of the magnetic field is often used to distinguish between the two.

Further research

[edit]

In light of the calculation above, it is tempting to think of Bohm diffusion as classical diffusion with an anomalous collision rate that maximizes the transport, but the physical picture is different. Anomalous diffusion is the result ofturbulence. Regions of higher or lowerelectric potential result ineddies because the plasma moves around them with theE-cross-B drift velocity equal toE/B. These eddies play a similar role to the gyro-orbits in classical diffusion, except that the physics of the turbulence can be such that the decorrelation time is approximately equal to the turn-over time, resulting in Bohm scaling. Another way of looking at it is that the turbulentelectric field is approximately equal to the potential perturbation divided by the scale lengthδ{\displaystyle \delta }, and the potential perturbation can be expected to be a sizeable fraction of thekBT/e. The turbulent diffusion constantD=vδ{\displaystyle D=v\delta } is then independent of the scale length and is approximately equal to the Bohm value.

The theoretical understanding of plasma diffusion especially the Bohm diffusion remained elusive until the 1970s when Taylor and McNamara[3] put forward a 2d guiding center plasma model. The concepts ofnegative temperature state,[4] and of the convective cells[5] contributed much to the understanding of the diffusion. The underlying physics may be explained as follows. The process can be a transport driven by thethermal fluctuations, corresponding to the lowest possible random electric fields. The low-frequency spectrum will cause theE×B drift. Due to the long range nature ofCoulomb interaction, the wave coherence time is long enough to allow virtually free streaming of particles across the field lines. Thus, the transport would be the only mechanism to limit the run of its own course and to result in a self-correction by quenching the coherent transport through the diffusive damping. To quantify these statements, we may write down the diffusive damping time asτD=1k2D,{\displaystyle \tau _{D}={\frac {1}{k_{\perp }^{2}D}},}wherek is the wave number perpendicular to the magnetic field. Therefore, the step size iscδEτD/B{\displaystyle c\delta E\tau _{D}/B}, and the diffusion coefficient is

D=Δx2τDc2δE2B2k2DcδEBk.{\displaystyle D=\left\langle {\frac {\Delta x^{2}}{\tau _{D}}}\right\rangle \sim {\frac {c^{2}\delta E^{2}}{B^{2}k_{\perp }^{2}D}}\sim {\frac {c\delta E}{Bk_{\perp }}}.}

It clearly yields for the diffusion a scaling law ofB−1 for the two dimensional plasma. The thermal fluctuation is typically a small portion of the particle thermal energy. It is reduced by theplasma parameterεp=(n0λD3)11,{\displaystyle \varepsilon _{\text{p}}=\left(n_{0}\lambda _{\text{D}}^{3}\right)^{-1}\ll 1,}and is given by|δE|2εpn0kBT/π1/24π1/2n0q2λD1,{\displaystyle {\left|\delta E\right|}^{2}\approx \varepsilon _{\text{p}}n_{0}k_{\text{B}}T/\pi ^{1/2}\approx 4\pi ^{1/2}n_{0}q^{2}\lambda _{\text{D}}^{-1},}wheren0 is the plasma density,λD is theDebye length, andT is the plasma temperature. Takingk1λD{\displaystyle k_{\perp }^{-1}\approx \lambda _{\text{D}}} and substituting the electric field by the thermal energy, we would haveD2cqπ1/4B(λDn0)1/2εp1/2ckBTqB/2π3/4.{\displaystyle D\approx {\frac {2cq\pi ^{1/4}}{B}}{\left(\lambda _{\text{D}}n_{0}\right)}^{1/2}\approx \varepsilon _{\text{p}}^{1/2}{\frac {ck_{\text{B}}T}{qB}}/2\pi ^{3/4}.}The 2D plasma model becomes invalid when the parallel decoherence is significant. An effective diffusion mechanism combining effects from the E×B drift and the cyclotron resonance was proposed,[6] predicting a scaling law ofB−3/2.

In 2015, new exact explanation for the original Bohm's experiment is reported,[7] in which the cross-field diffusion measured at Bohm's experiment and Simon's experiment[8] were explained by the combination of the ion gyro-center shift and the short circuit effect. The ion gyro-center shift occurs when an ion collides with a neutral to exchange the momentum; typical example is ion-neutral charge exchange reaction. The one directional shifts of gyro-centers take place when ions are in the perpendicular (to the magnetic field) drift motion such as diamagnetic drift. The electron gyro-center shift is relatively small since the electron gyro-radius is much smaller than ion's so it can be disregarded. Once ions move across the magnetic field by the gyro-center shift, this movement generates spontaneous electric unbalance between in and out of the plasma. However this electric unbalance is immediately compensated by the electron flow through the parallel path and conducting end wall, when the plasma is contained in the cylindrical structure as in Bohm's and Simon's experiments. Simon recognized this electron flow and named it as 'short circuit' effect in 1955.[8] With the help of short circuit effect the ion flow induced by the diamagnetic drift now becomes whole plasma flux which is proportional to thedensity gradient since the diamagnetic drift includes pressure gradient. The diamagnetic drift can be described as(kBT/eB)(n/n){\displaystyle (k_{\text{B}}T/eB)({\boldsymbol {\nabla }}n/n)}, (heren is density) for approximately constant temperature over the diffusion region. When the particle flux is proportional to(kBT/eB)(n/n){\displaystyle (k_{\text{B}}T/eB)({\boldsymbol {\nabla }}n/n)}, the other part thann/n{\displaystyle {\boldsymbol {\nabla }}n/n} is the diffusion coefficient. So naturally the diffusion is proportional tokBT/eB{\displaystyle k_{\text{B}}T/eB}. The other front coefficient of this diffusion is a function of the ratio between the charge exchange reaction rate and the gyro frequency. A careful analysis tells this front coefficient for Bohm's experiment was in the range of 1/13 ~ 1/40.[7] The gyro-center shift analysis also reported the turbulence induced diffusion coefficient which is responsible for the anomalous diffusion in many fusion devices; described as(2/π)(kBT/eB)(δn/n){\displaystyle (2/\pi )(k_{\text{B}}T/eB)(\delta n/n)}.[9] This means different two diffusion mechanisms (the arc discharge diffusion such as Bohm's experiment and the turbulence induced diffusion such as in the tokamak) have been called by the same name of "Bohm diffusion".

See also

[edit]

References

[edit]
  1. ^Bohm; D. (1949). A. Guthrie; R. K. Wakerling (eds.).The characteristics of electrical discharges in magnetic fields. New York: McGraw-Hill.
  2. ^Spitzer, L. (1960). "Particle Diffusion across a Magnetic Field".Physics of Fluids.3 (4): 659.Bibcode:1960PhFl....3..659S.doi:10.1063/1.1706104.
  3. ^Taylor, J. B. (1971). "Plasma Diffusion in Two Dimensions".Physics of Fluids.14 (7): 1492.Bibcode:1971PhFl...14.1492T.doi:10.1063/1.1693635.
  4. ^Montgomery, D. (1974)."Statistical mechanics of "negative temperature" states".Physics of Fluids.17 (6): 1139.Bibcode:1974PhFl...17.1139M.doi:10.1063/1.1694856.hdl:2060/19730013937.S2CID 120884607.
  5. ^Dawson, J.; Okuda, H.; Carlile, R. (1971). "Numerical Simulation of Plasma Diffusion Across a Magnetic Field in Two Dimensions".Physical Review Letters.27 (8): 491.Bibcode:1971PhRvL..27..491D.doi:10.1103/PhysRevLett.27.491.
  6. ^Hsu, Jang-Yu; Wu, Kaibang; Agarwal, Sujeet Kumar; Ryu, Chang-Mo (2013)."The B−3/2 diffusion in magnetized plasma".Physics of Plasmas.20 (6): 062302.Bibcode:2013PhPl...20f2302H.doi:10.1063/1.4811472.
  7. ^abLee, Kwan Chul (2015)."Analysis of Bohm Diffusions Based on the Ion-Neutral Collisions".IEEE Transactions on Plasma Science.43 (2): 494.Bibcode:2015ITPS...43..494L.doi:10.1109/TPS.2014.2363942.S2CID 37455738.
  8. ^abSimon, A. (1959).An Introduction to Thermonuclear Research. New York: Pergamon.{{cite book}}: CS1 maint: publisher location (link)
  9. ^Lee, K. C. (2009). "Analysis of turbulence diffusion and H-mode transition in conjunction with gyrocenter shift at the boundary of fusion devices".Plasma Physics and Controlled Fusion.51 (6) 065023.Bibcode:2009PPCF...51f5023L.doi:10.1088/0741-3335/51/6/065023.S2CID 121167125.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bohm_diffusion&oldid=1314305764"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp