Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Northrop Grumman E-8 Joint STARS

From Wikipedia, the free encyclopedia
(Redirected fromBoeing E-8C Joint STARS)
Airborne ground surveillance aircraft based on Boeing 707 airliner
E-8 Joint STARS
A U.S. Air Force E-8C Joint STARS, in flight
General information
TypeAirborne Battle Management andISTAR[1]
ManufacturerGrumman Aerospace Corporation
Northrop Grumman
StatusOut of service, on display
Primary userUnited States Air Force
Number built17[2]
History
Manufactured1988–2005[3]
Introduction date1991
First flight1 April 1988[4]
Retired2023[5]
Developed fromBoeing 707

TheNorthrop Grumman E-8 Joint Surveillance Target Attack Radar System (Joint STARS) is a retiredUnited States Air Force (USAF)airborne ground surveillance,battle management andcommand and control aircraft. It tracked ground vehicles and some aircraft, collected imagery, and relayed tactical pictures to ground and air theater commanders. Until its retirement in 2023 the aircraft was operated by both active duty USAF andAir National Guard units, with specially trainedU.S. Army personnel as additional flight crew.

Development

[edit]
[icon]
This sectionneeds expansion. You can help byadding to it.(November 2023)

Joint STARS evolved from separateU.S. Army andAir Force (USAF) programs to develop technology to detect, locate and attack enemy armor at ranges beyond thefront line of a battle.[6] In 1982, the programs were merged and the USAF became the lead agent. The concept and sensor technology for the E-8 was developed and tested on theTacit Blue experimental aircraft.[7] The prime contract was awarded toGrumman Aerospace Corporation in September 1985 for two E-8A development systems.

In late 2005, Northrop Grumman was awarded a contract for upgrading engines and other systems.[8]Pratt & Whitney, in a joint venture with Seven Q Seven (SQS), was contracted to produce and deliverJT8D-219 engines for the E-8s. Their greater efficiency would have allowed the Joint STARS to spend more time on station, take off from a wider range of runways, climb faster, fly higher, all with a much reduced cost per flying hour.[9]

In December 2008, an E-8C test aircraft took its first flight with the new engines.[8] In 2009, the company began engine replacement and additional upgrade efforts.[8][10] The re-engining funding was halted in 2009 as the Air Force began to consider other options for performing the JSTARS mission.[8][11]

Design

[edit]
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.
Find sources: "Northrop Grumman E-8 Joint STARS" – news ·newspapers ·books ·scholar ·JSTOR
(November 2023) (Learn how and when to remove this message)
Northrop Grumman E-8A Joint Surveillance Target Attack Radar System. The radome for the side-looking radar is visible under the forward fuselage.

The E-8C is an aircraft modified from theBoeing 707-300 series commercial airliner. The E-8 carries specialized radar, communications, operations and control subsystems. The most prominent external feature is the 40 ft (12 m) canoe-shaped radome under the forward fuselage that houses the 24 ft (7.3 m)APY-7active electronically scanned arrayside looking airborne radar antenna.[6]

The E-8C can respond quickly and effectively to support worldwide military contingency operations. It is a jam-resistant system capable of operating while experiencing heavyelectronic countermeasures. The E-8C can fly a mission profile for 9 hours without refueling. Its range and on-station time can be substantially increased throughin-flight refueling.

Radar and systems

[edit]
Pave Mover Radar, the prototype for the JSTARS radar
Crew members uploading software onto an E-8 during preparations for a flight

TheAN/APY-7 radar can operate in wide area surveillance,ground moving target indicator (GMTI), fixed target indicator (FTI) target classification, andsynthetic aperture radar (SAR) modes.

To pick up moving targets, theDoppler radar looks at theDoppler frequency shift of the returned signal. It can look from a long-range, which the military refers to as a high standoff capability. The antenna can be tilted to either side of the aircraft for a 120-degree field of view covering nearly 19,305 square miles (50,000 km2) and can simultaneously track600 targets[citation needed] at more than 152 miles (250 km).[6] The GMTI modes cannot pick up objects that are too small, insufficiently dense, or stationary. Data processing allows the APY-7 to differentiate between armored vehicles (tracked tanks) and trucks, allowing targeting personnel to better select the appropriate ordnance for various targets.

The system's SAR modes can produce images of stationary objects. Objects with many angles (for example, the interior of a pick-up bed) will give a much better radar signature, or specular return. In addition to being able to detect, locate and track large numbers of ground vehicles, the radar has a limited capability to detect helicopters, rotating antennas and low, slow-moving fixed-wing aircraft.[6]

Joint STARS GMTI overlaid on aerial image

The radar and computer subsystems on the E-8C can gather and display broad and detailed battlefield information. Data is collected as events occur. This includes position and tracking information on enemy and friendly ground forces. The information is relayed in near-real time to theUS Army's common ground stations via the secure jam-resistant surveillance and control data link (SCDL) and to other groundC4I nodes beyond line-of-sight via ultra high-frequency satellite communications.[6]

Other major E-8C prime mission equipment are the communications/datalink (COMM/DLX) and operations and control (O&C) subsystems. Eighteen operator workstations display computer-processed data in graphic and tabular format on video screens. Operators and technicians perform battle management, surveillance, weapons, intelligence, communications and maintenance functions.

Northrop Grumman has tested the installation of a MS-177 camera on an E-8C to provide real time visual target confirmation.[12]

TheMulti-Platform Radar Technology Insertion Program (MP-RTIP) radar system was proposed as a more capable replacement of the AN/APY-7. The USAF ended up pursuing cheaper ways to modernize the E-8, though the MP-RTIP receiver technology did see use in the form of JSTARS Radar Modernization (JSRM).[13]

Battle management

[edit]

In missions from peacekeeping operations to major theater war,[6] the E-8C can provide targeting data and intelligence for attack aviation, naval surface fire, field artillery and friendly maneuver forces. The information helps air and land commanders to control the battlespace.[14]

The E-8's ground-moving radar can tell approximate number of vehicles, location, speed, and direction of travel. It cannot identify exactly what type of vehicle a target is, tell what equipment it has, or discern whether it is friendly, hostile, or a bystander, so commanders often crosscheck the JSTARS data against other sources. In the Army, JSTARS data is analyzed in and disseminated from a Ground Station Module (GSM).

Other improvement programs that have been applied to the E-8C include JSTARS Net Enabled Weapons (JNEW) and Joint Surface Warfare (JSuW); Blue Force Tracker (BFT); andBattlefield Airborne Communications Node (BACN) compatibility.[13]

Operational history

[edit]
Pilots fromRobins Air Force Base cleaning the windshields of their E-8 before a mission inIraq
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.
Find sources: "Northrop Grumman E-8 Joint STARS" – news ·newspapers ·books ·scholar ·JSTOR
(November 2023) (Learn how and when to remove this message)

The two E-8A development aircraft were deployed in 1991 to participate inOperation Desert Storm under the direction of USAF Colonel Harry H. Heimple, Program Director, even though they were still in development. The joint program accurately tracked mobileIraqi forces, including tanks andScud missiles. Crews flew developmental aircraft on 49 combat sorties, accumulating more than 500 combat hours and a 100% mission effectiveness rate.

These Joint STARS developmental aircraft also participated inOperation Joint Endeavor, aNATO peacekeeping mission, in December 1995. While flying in friendly air space, the test-bed E-8A and pre-production E-8C aircraft monitored ground movements to confirm compliance with theDayton Peace Accords agreements.[15] Crews flew 95 consecutive operational sorties and more than 1,000 flight hours with a 98% mission effectiveness rate.

The93d Air Control Wing, which activated 29 January 1996, accepted its first aircraft on 11 June 1996, and deployed in support ofOperation Joint Endeavor in October. The provisional 93d Air Expeditionary Group monitored treaty compliance while NATO rotated troops throughBosnia and Herzegovina. The first production E-8C and a pre-production E-8C flew 36 operational sorties and more than 470 flight hours with a 100% effectiveness rate. The wing declared initial operational capability 18 December 1997 after receiving the second production aircraft.Operation Allied Force saw Joint STARS in action again from February to June 1999 accumulating more than 1,000 flight hours and a 94.5% mission-effectiveness rate in support of the U.S.-leadKosovo War.

The twelfth production aircraft, outfitted with an upgraded operations and control subsystem, was delivered to the USAF on 5 November 2001.

On 1 October 2002, the 93d Air Control Wing (93 ACW) was "blended" with the116th Bomb Wing in a ceremony atRobins Air Force Base (AFB),Georgia. The 116 BW was anAir National Guard wing equipped withB-1B Lancer bombers at Robins. As a result of a USAF reorganization of the B-1B force, all B-1Bs were assigned to active duty wings, resulting in the 116 BW lacking a current mission. The newly created wing was designated116th Air Control Wing (116 ACW) and the 93 ACW was inactivated the same day. The 116 ACW constituted the first fully blended wing of active duty and Air National Guard airmen.[16] The wing took delivery of the 17th and final E-8C on 23 March 2005.

The E-8C Joint STARS routinely supports various taskings of the Combined Force Command Korea during theNorth Korean winter exercise cycle and for theUnited Nations enforcing resolutions on Iraq.

In March 2009, a Joint STARS aircraft was damaged beyond economical repair when a test plug was left on a fuel tank vent, subsequently causing the fuel tank to rupture during in-flight refueling. There were no casualties but the aircraft sustained $25 million in damage.[17][18]

In September 2009,Loren B. Thompson of theLexington Institute raised the question of why most of the Joint STARS fleet was sitting idle instead of being used to track insurgents in Afghanistan. Thompson states that the Joint STARS' radar has an inherent capacity to find what the Army calls 'dismounted' targets—insurgents walking around or placing roadside bombs.[19] Thompson's neutrality has been questioned by some since Lexington Institute has been heavily funded by defense contractors, including Northrop Grumman.[20][21][22]

Recent trials of Joint STARS in Afghanistan are destined to develop tactics, techniques and procedures in tracking dismounted, moving groups of Taliban.[23]

In January 2011, Northrop Grumman's E-8C Joint Surveillance Target Attack Radar System (Joint STARS) test bed aircraft completed the second of two deployments toNaval Air Station Point Mugu, California, in support of the U.S. Navy Joint Surface Warfare Joint Capability Technology Demonstration to test itsnetwork-enabled weapon architecture. The Joint STARS aircraft executed three Operational Utility Assessment flights and demonstrated its ability to guide anti-ship weapons against surface combatants at a variety of standoff distances in the NEW architecture.

From 2001 to January 2011 the Joint STARS fleet flew more than 63,000 hours in 5,200 combat missions in support of OperationsIraqi Freedom,Enduring Freedom andNew Dawn.[24]

On 1 October 2011, the "blended" wing construct of the 116th Air Control Wing (116 ACW), combining Air National Guard and Regular Air Force personnel in a single unit was discontinued. On this date, the461st Air Control Wing (461 ACW) was established at Robins AFB as the Air Force's sole active duty E-8 Joint STARS wing while the 116 ACW reverted to a traditional Air National Guard wing within theGeorgia Air National Guard. Both units share the same E-8 aircraft and will often fly with mixed crews, but now function as separate units.

On 1 October 2019, JSTARS ended its continuous presence in theUnited States Central Command (USCENTCOM) areas of responsibility. The 18–year deployment was the second-longest deployment inU.S. Air Force history. In that time, the crews and aircraft flew 10,938 sorties, and 114,426.6 combat hours.[25]

On 11 February 2022, the first of four JSTARS out of the remaining 16 operational JSTARS was retired as detailed in the Fiscal Year 2022 National Defence Authorisation Act (NDAA). The plane (serial number 92-3289/GA) which was the first to arrive at Robins AFB in 1996 has now been transferred to the309th Aerospace Maintenance and Regeneration Group atDavis–Monthan Air Force Base.[2]

USAF E-8C near Ukraine border 23 March 2022 circa 14:37 UTC - likely monitoring vehicle movement
USAF E-8C near Ukraine border on 23 March 2022 circa 14:37 UTC, likely monitoring Russian vehicle movement

From late 2021 to early 2022, E-8C JSTARS aircraft deployed to Europe during theprelude to the Russian invasion of Ukraine. Thirty years after entering service, it was performing the type of mission it had originally been intended to: monitoring Russian military activity in Eastern Europe, which it did while operating over Ukrainian airspace[26] until the start of theinvasion in late February 2022.[27]

Retirement

[edit]

The USAF began an analysis of alternatives (AOA) in March 2010 for its next generation GMTI radar aircraft fleet. The study was completed in March 2012 and recommended buying a new business jet-basedISR aircraft, such as a version of theBoeing 737, and theGulfstream 550.[28] The Air Force said Joint STARS was expected to remain in operation through 2030.[29][30]

On 23 January 2014, the USAF revealed a plan for the acquisition of a new business jet-class replacement for the E-8C Joint STARS. The program was called Joint STARS Recap and planned for the aircraft to reach initial operating capability (IOC) by 2022. The aircraft would be more efficient, and separate contracts would be awarded for developing the aircraft, airborne sensor, battle management command and control (BMC2) system, and communications subsystem.[28]

On 8 April 2014, the Air Force held an industry day for companies interested in competing for JSTARS Recap; attendees includedBoeing,Bombardier Aerospace, andGulfstream Aerospace. Air Force procurement documents called for a replacement for the Boeing 707-based E-8C as a "business jet class" aircraft that is "significantly smaller and more efficient."[31] Indicative specification were for an aircraft with a 10-13 person crew with a 3.96–6.1 m (13.0–20.0 ft) radar array and capable of flying at 38,000 ft for eight hours. In August 2015, the Air Force issued contracts to Boeing, Lockheed Martin, and Northrop Grumman for a one-year pre-engineering and manufacturing development effort to mature and test competing designs ahead of a downselect in late 2017.[32]

During the fiscal 2019 budget rollout briefing it was announced that the Air Force will not move forward with an E-8C replacement aircraft. Funding for the JSTARS recapitalization program was instead be diverted to pay for development of an Advanced Battle Management System.[33][34]

The E-8C JSTARS began to be retired in February 2022, and flew its last operational sortie on 21 September 2023. Rather than procure a replacement aircraft, the USAF intends to use a network of satellites, aircraft sensors and ground radars as a cheaper and more resilient approach to collecting similar targeting and tracking data.[35] The JSTARS performed its last flight on 15 November 2023. The aircraft conducted some 14,000 operational sorties, flying more than 141,000 hours over 32 years of service.[36][37]

Variants

[edit]
E-8C performing flight testing with JT8D-219 engines atEdwards AFB
E-8A
Original platform configuration[38]
TE-8A
Single aircraft with mission equipment removed, used for flight crew training.[38]
YE-8B
Single aircraft, was to be a U.S. NavyBoeing E-6 Mercury but transferred to the U.S. Air Force as a development aircraft before it was decided to convert second-handBoeing 707s (one from a CanadianBoeing CC-137) for the JSTARS role.[citation needed]
E-8C
Production Joint STARS platform configuration,[38] converted from second-hand Boeing 707s (1 from a CC-137).[citation needed]

Operators

[edit]
 United States

Aircraft on display

[edit]

Accidents

[edit]

One E-8C was damaged beyond economical repair during an operational sortie.

  • On 13 March 2009, E-8C tail 93-0597, while assigned to the USAF379th Air Expeditionary Wing, experienced a near catastrophic fuel tank over-pressurization during aerial refueling. While refueling from aBoeing KC-135T Stratotanker a test plug left in the fuel vent system caused overpressure resulting in severe internal damage to the number two fuel tank and surrounding wing structure. The JSTARS crew were able to make a successful emergency landing at Al Udeid Air Base, and the aircraft was written off.[45]

Specifications

[edit]

Data from USAF Factsheet[6]

General characteristics

  • Crew: 4 flight crew (pilot, co-pilot, navigator, flight engineer)
  • Capacity: 18 specialists (crew size varies according to mission)
  • Length: 152 ft 11 in (46.61 m)
  • Wingspan: 145 ft 9 in (44.42 m)
  • Height: 42 ft 6 in (12.95 m)
  • Empty weight: 171,000 lb (77,564 kg)
  • Max takeoff weight: 336,000 lb (152,407 kg)
  • Powerplant: 4 ×Pratt & Whitney TF33-PW-102 low-bypass turbofan engines, 19,200 lbf (85 kN) thrust each

Performance

  • Cruise speed: 390 kn (450 mph, 720 km/h) to 510 kn (945 km/h)
  • Optimum orbit speed: 449 mph (723 km/h) to 587 mph (945 km/h)
  • Endurance: 9 hours
  • Service ceiling: 42,000 ft (13,000 m)

Avionics

See also

[edit]

Related development

  • Boeing C-137 Stratoliner – VIP transport aircraft derived from the Boeing 707
  • Boeing CC-137 – Boeing 707 transport of the Canadian Forces – parts from most of the ex-Canadian Forces 707 obtained for spares for the E-8 STARS program and two ex-CF converted as E-8 and E-8C
  • Boeing E-3 Sentry – Airborne early warning and control aircraft based on Boeing 707 airframe
  • Boeing E-6 Mercury – Airborne command post aircraft by Boeing based on 707 airframe

Aircraft of comparable role, configuration, and era

  • Northrop Grumman E-2 Hawkeye – Airborne early warning and control aircraftPages displaying short descriptions of redirect targets
  • Embraer R-99B – Airborne early warning and reconnaissance aircraft based on the ERJ-145
  • Raytheon Sentinel – Airborne battlefield and ground surveillance aircraft formerly operated by the Royal Air Force

Related lists

References

[edit]

Citations

[edit]
  1. ^"E-8C Joint Stars".
  2. ^abHerk, Hans van (13 February 2022)."USAF officially retires first JSTARS".scramble.nl. Retrieved2022-02-14.
  3. ^"Final Joint STARS aircraft delivered". 30 March 2005.
  4. ^E-8C Joint STARS | Northrop Grumman
  5. ^"'Goodbye ole' girl': Last JSTARS plane leaves Robins Air Force Base". 16 November 2023.
  6. ^abcdefgPublic Domain This article incorporatespublic domain material fromFactsheets: E-8C Joint Stars.United States Air Force. Retrieved29 August 2014. August 2013.
  7. ^"The (Tacit) Blue Whale". Retrieved10 March 2020.
  8. ^abcd"Re-engining the E-8 JSTARS".Defense Industry Daily. 23 March 2010. Archived fromthe original on 2016-09-24.
  9. ^"Northrop Grumman E-8 Joint STARS---Usnook---The first portal of US info".usnook.com. Retrieved2018-11-26.
  10. ^"USA Spending $532M to Upgrade its E-8 J-STARS Eyes in the Sky".Defense Industry Daily. 23 November 2005. Archived fromthe original on 2012-09-19.
  11. ^Boeing 767-400ER E-10AArchived 2011-10-21 at theWayback Machine. Spyflight, June 2008.
  12. ^Matthews, WilliamJoint STARS Aircraft Tests U-2 Camera in Tandem With Radar Def News, 1 November 2010
  13. ^ab"JSTARS Replacement: Competition Opened Wide - Defense Industry Daily".www.defenseindustrydaily.com/.
  14. ^Coskuner, Nevin,Multimission Aircraft Design Study - Operational ScenariosArchived 2011-09-29 at theWayback Machine. Air Force Institute of Technology
  15. ^"Operation JOINT ENDEAVOR: Joint STARS in the Balkans".
  16. ^"About Us".www.116acw.ang.af.mil. Archived fromthe original on 2025-03-06. Retrieved2025-03-14.
  17. ^"A Basic Mistake That Trashed a JSTARS | Defense Tech".Archived from the original on 2012-01-27. Retrieved2011-12-11. A Basic Mistake that Trashed a JSTARS
  18. ^"Executive Summary Aircraft Accident Investigation: E-8C 93-0597, Al-Udeid Air Base 13 march 2009"(PDF).Archived(PDF) from the original on 27 January 2013. Retrieved20 May 2017.
  19. ^"Lexington Institute".lexingtoninstitute.org. 3 September 2009.Archived from the original on 7 August 2017. Retrieved9 May 2018.
  20. ^"Analyst's switch stirs tanker talk"Archived 2009-07-27 at theWayback Machine al.com
  21. ^SpaceX Launch DisasterArchived 2017-08-07 at theWayback Machine forbes.com
  22. ^"Lexington Institute".Lexington Institute.Archived from the original on 5 October 2017. Retrieved9 May 2018.
  23. ^DefenceNews, Issue November 23, 2009.
  24. ^Photo Release - Northrop Grumman's Joint STARS is Key Enabler in Success of U.S. Navy/Air Force Joint Surface Warfare Network-Enabled Weapon Joint Capability Technology Demons...Archived 2011-07-17 at theWayback Machine tradershuddle.com
  25. ^"End of an Era: JSTARS flies last sortie out of CENTCOM".116th Air Control Wing. 30 October 2019. Retrieved2021-08-30.
  26. ^Above Ukraine, a Cold War Spy Plane Is Finally Tracking a Russian Invasion.Defense One. 22 February 2022.
  27. ^"NATO loses ISR capability over Ukraine as Putin closes airspace". 24 February 2022.
  28. ^ab"The JSTARS Recap".
  29. ^USAF can't afford JSTARS replacementArchived 2013-01-17 at theWayback Machine - Flightglobal.com, 20 March 2012.
  30. ^With No Replacement in Sight, Joint STARS Feel Strain - Defensenews.com, 9 October 2012.
  31. ^Boeing, Bombardier and Gulfstream attend JSTARS industry dayArchived 2014-04-26 at theWayback Machine - Flightglobal.com, 21 April 2014
  32. ^"Pentagon Approves Next Step for JSTARS Recap". 11 December 2015.
  33. ^"Air Force Kills JSTARS Upgrade"Archived 2018-02-15 at theWayback Machine Military.com, 12 February 2018
  34. ^"JSTARS replacement cancelled in new USAF budget plan".Archived 2018-02-15 at theWayback Machine FlightGlobal, 13 February 2018
  35. ^"Air Force's JSTARS flies last intel mission after 3 decades in service".Defense News. 2 October 2023.
  36. ^JSTARS Flies West: USAF Retires Its Last E-8C.Air & Space Forces Magazine. 16 November 2023.
  37. ^"Photo of Joint STARS Sunset Celebration".
  38. ^abcDoD 4120.15L,Model Designation of Military Aerospace Vehicles
  39. ^"2023 USAF & USSF Almanac: Equipment".Airandspaceforces.com. 22 June 2023. Retrieved25 October 2023.
  40. ^"16th Airborne Command and Control Squadron flies final local sortie".USAF Robins Air Force Base. 9 September 2022. Retrieved2023-03-28.
  41. ^Johnson, Kisha Foster (2023-07-16)."Final destination: JSTARS aircraft transferred to Museum of Aviation".Robins Air Force Base. Retrieved2023-08-09.
  42. ^"Sowela welcomes E-8A J-STARS jet". 19 September 2023.
  43. ^"End of an era: Final J-STARS aircraft departs from Robins AFB after 21 years of service". 17 November 2023.
  44. ^https://www.facebook.com/100064280996357/posts/716048733881153/?mibextid=rS40aB7S9Ucbxw6v[bare URL]
  45. ^"ASN Aircraft accident Boeing E-8C (707) 93-0597 Qatar".

Bibliography

[edit]
  • Eden, Paul, ed. (July 2006).The Encyclopedia of Modern Military Aircraft. London, UK: Amber Books, 2004.ISBN 1-904687-84-9.

External links

[edit]
Wikimedia Commons has media related toNorthrop Grumman E-8 Joint STARS.
United States tri-serviceEW aircraft designationspost-1962
Sequence
Non-sequential
Related designations
Boeing707 family
Model numbers
Military designations
Notable aircraft
Topics
1 Not to be confused with the unrelatedBoeing 717-200
Manufacturer
designations
By role
Fighters
Bombers
Attack/Patrol
Recon/Scouts
Utility/Transports
Civil aircraft
Others
By name
People
100–199
200–299
300–399
400–499
500–599
600–699
700–799
800–899
900–999
1 Unknown or not assigned
Retrieved from "https://en.wikipedia.org/w/index.php?title=Northrop_Grumman_E-8_Joint_STARS&oldid=1280849107"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp