Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Beta-adrenergic agonist

From Wikipedia, the free encyclopedia
Medications that relax muscles of the airways

Beta adrenergic receptor agonists
Drug class
Albuterol
Skeletal structure formula ofsalbutamol (albuterol) — a widely used medication to treat asthma attacks
Class identifiers
UseBradycardia,Asthma,heart failure, etc.
ATC codeR03
Biological targetAdrenergic receptors (β subtype)
External links
MeSHD000318
Legal status
In Wikidata

Beta adrenergic agonists orbeta agonists are medications that relax muscles of the airways, causing widening of the airways and resulting in easier breathing.[1] They are a class ofsympathomimetic agents, each acting upon thebeta adrenoceptors.[2] In general, pure beta-adrenergic agonists have the opposite function ofbeta blockers: beta-adrenoreceptor agonist ligands mimic the actions of bothepinephrine- andnorepinephrine- signaling, in the heart and lungs, and in smooth muscle tissue; epinephrine expresses the higher affinity. The activation of β1, β2 and β3 activates the enzyme,adenylate cyclase. This, in turn, leads to the activation of the secondary messengercyclic adenosine monophosphate (cAMP); cAMP then activatesprotein kinase A (PKA) which phosphorylates target proteins, ultimately inducing smooth muscle relaxation and contraction of the cardiac tissue.[3]

Function

[edit]
Epinephrine (adrenaline)

Activation of β1 receptors induces positiveinotropic,chronotropic output of the cardiac muscle, leading to increased heart rate and blood pressure, secretion ofghrelin from the stomach, andrenin release from the kidneys.[4]

Activation of β2 receptors induces smooth muscle relaxation in the lungs, gastrointestinal tract, uterus, and various blood vessels. Increased heart rate and heart muscle contraction are associated with the β1 receptors; however, β2 cause vasodilation in the myocardium.[citation needed]

β3 receptors are mainly located in adipose tissue.[5] Activation of the β3 receptors induces the metabolism of lipids.[6]

Medical uses

[edit]

Indications of administration for β agonists include:

Side effects

[edit]

Although minor compared to those of epinephrine, beta agonists usually have mild to moderate adverse effects, which includeanxiety,hypertension, increased heart rate, andinsomnia. Other side effects includeheadaches andessential tremor.Hypoglycemia was also reported due to increased secretion of insulin in the body from activation of β2 receptors.[citation needed]

In 2013,zilpaterol, a β agonist sold by Merck, was temporarily withdrawn due to signs of sickness in some cattle that were fed the drug.[8]

Receptor selectivity

[edit]

Most agonists of the beta receptors are selective for one or more beta-adrenoreceptors. For example, patients with low heart rate are given beta agonist treatments that are more "cardioselective" such as dobutamine, which increases the force of contraction of the heart muscle. Patients who are suffering from chronic inflammatory lung diseases such as asthma or COPD may be treated with medication targeted to induce more smooth muscle relaxation in the lungs and less contraction of the heart, including first-generation drugs like salbutamol (albuterol) and later-generation medications in the same class.[9]

β3 agonists are currently under clinical research and are thought to increase the breakdown of lipids in obese patients.[10]

β1 agonists

[edit]
Main article:Beta1-adrenergic receptor § Agonists

β1 agonists stimulate adenylyl cyclase activity and opening of calcium channel (cardiac stimulants; used to treat cardiogenic shock, acute heart failure,bradyarrhythmias). Selected examples are:

β2 agonists

[edit]
Main article:Beta2-adrenergic agonist

β2 agonists stimulate adenylyl cyclase activity and closing of calcium channel (smooth muscle relaxants; used to treat asthma and COPD). Selected examples are:

β3 agonists

[edit]
Main article:Beta3-adrenergic agonist

Undetermined/unsorted

[edit]

These agents are also listed as agonists byMeSH.[11]

See also

[edit]

References

[edit]
  1. ^"What are beta-agonists?".Thoracic.org. American Thoracic Society. Archived fromthe original on 13 June 2010. Retrieved17 October 2014.
  2. ^Adrenergic+beta-Agonists at the U.S. National Library of MedicineMedical Subject Headings (MeSH)
  3. ^Wallukat G (November 2002). "The beta-adrenergic receptors".Herz.27 (7):683–690.doi:10.1007/s00059-002-2434-z.PMID 12439640.
  4. ^Yoo BS, Lemaire A, Mangmool S, Wolf MJ, Curcio A, Mao L, et al. (October 2009).1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction".American Journal of Physiology. Heart and Circulatory Physiology.297 (4):H1377–H1386.doi:10.1152/ajpheart.00504.2009.PMC 2770777.PMID 19633206.
  5. ^Johnson M (January 2006). "Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation".The Journal of Allergy and Clinical Immunology.117 (1):18–24, quiz 25.doi:10.1016/j.jaci.2005.11.012.PMID 16387578.
  6. ^Lowell BB, Flier JS (1997). "Brown adipose tissue, β3-adrenergic receptors, and obesity".Annual Review of Medicine.48:307–316.doi:10.1146/annurev.med.48.1.307.PMID 9046964.
  7. ^"FDA Drug Safety Communication: New warnings against use of terbutaline to treat preterm labor".FDA. 18 June 2019. Archived fromthe original on February 20, 2011.
  8. ^"Exclusive: FDA says working with Merck, USDA on cattle drug Zilmax".Yahoo! News. Archived fromthe original on 2013-08-27. Retrieved2013-08-16.
  9. ^Pias MT."The Pharmacology of Adrenergic Receptors". Archived fromthe original on 12 March 2016.
  10. ^Meyers DS, Skwish S, Dickinson KE, Kienzle B, Arbeeny CM (February 1997). "β3-adrenergic receptor-mediated lipolysis and oxygen consumption in brown adipocytes from cynomolgus monkeys".The Journal of Clinical Endocrinology and Metabolism.82 (2):395–401.doi:10.1210/jcem.82.2.3738.PMID 9024225.
  11. ^MeSH list of agents82000318

External links

[edit]
α1
Agonists
Antagonists
α2
Agonists
Antagonists
β
Agonists
Antagonists
Types
Classes
Enzyme
Ion channel
Receptor &
transporter
BA/M
Adrenergic
Dopaminergic
Histaminergic
Serotonergic
AA
GABAergic
Glutamatergic
Cholinergic
Cannabinoidergic
Opioidergic
Other
Miscellaneous
Retrieved from "https://en.wikipedia.org/w/index.php?title=Beta-adrenergic_agonist&oldid=1326534854"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp