Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bateman equation

From Wikipedia, the free encyclopedia
Mathematical model in nuclear physics

Innuclear physics, theBateman equation is amathematical model describing abundances and activities in adecay chain as a function of time, based on thedecay rates and initial abundances. The model was formulated byErnest Rutherford in 1905[1] and the analytical solution was provided byHarry Bateman in 1910.[2]

If, at timet, there areNi(t){\displaystyle N_{i}(t)} atoms of isotopei{\displaystyle i} that decays into isotopei+1{\displaystyle i+1} at the rateλi{\displaystyle \lambda _{i}}, the amounts of isotopes in thek-step decay chain evolves as:

dN1(t)dt=λ1N1(t)dNi(t)dt=λiNi(t)+λi1Ni1(t)dNk(t)dt=λk1Nk1(t){\displaystyle {\begin{aligned}{\frac {dN_{1}(t)}{dt}}&=-\lambda _{1}N_{1}(t)\\[3pt]{\frac {dN_{i}(t)}{dt}}&=-\lambda _{i}N_{i}(t)+\lambda _{i-1}N_{i-1}(t)\\[3pt]{\frac {dN_{k}(t)}{dt}}&=\lambda _{k-1}N_{k-1}(t)\end{aligned}}}

(this can be adapted to handle decay branches). While this can be solved explicitly fori = 2, the formulas quickly become cumbersome for longer chains.[3] The Bateman equation is a classicalmaster equation where the transition rates are only allowed from one species (i) to the next (i+1) but never in the reverse sense (i+1 to i is forbidden).

Bateman found a general explicit formula for the amounts by taking theLaplace transform of the variables.

Nn(t)=N1(0)×(i=1n1λi)×i=1neλitj=1,jin(λjλi){\displaystyle N_{n}(t)=N_{1}(0)\times \left(\prod _{i=1}^{n-1}\lambda _{i}\right)\times \sum _{i=1}^{n}{\frac {e^{-\lambda _{i}t}}{\prod \limits _{j=1,j\neq i}^{n}\left(\lambda _{j}-\lambda _{i}\right)}}}

(it can also be expanded with source terms, if more atoms of isotope i are provided externally at a constant rate).[4]

Quantity calculation with the Bateman-Function forplutonium-241

While the Bateman formula can be implemented in a computer code, ifλjλi{\displaystyle \lambda _{j}\approx \lambda _{i}} for some isotope pair,catastrophic cancellation can lead to computational errors. Therefore, other methods such asnumerical integration or thematrix exponential method are also in use.[5][6]

For example, for the simple case of a chain of three isotopes the corresponding Bateman equation reduces to

AλABλBCNB=λAλBλANA0(eλAteλBt){\displaystyle {\begin{aligned}&A\,{\xrightarrow {\lambda _{A}}}\,B\,{\xrightarrow {\lambda _{B}}}\,C\\[4pt]&N_{B}={\frac {\lambda _{A}}{\lambda _{B}-\lambda _{A}}}N_{A_{0}}\left(e^{-\lambda _{A}t}-e^{-\lambda _{B}t}\right)\end{aligned}}}

Which gives the following formula for activity of isotopeB{\displaystyle B} (by substitutingA=λN{\displaystyle A=\lambda N})

AB=λBλBλAAA0(eλAteλBt){\displaystyle {\begin{aligned}A_{B}={\frac {\lambda _{B}}{\lambda _{B}-\lambda _{A}}}A_{A_{0}}\left(e^{-\lambda _{A}t}-e^{-\lambda _{B}t}\right)\end{aligned}}}

See also

[edit]

References

[edit]
  1. ^Rutherford, E. (1905). Radio-activity. University Press. p. 331
  2. ^Bateman, H. (1910, June). The solution of a system of differential equations occurring in the theory of radioactive transformations. In Proc. Cambridge Philos. Soc (Vol. 15, No. pt V, pp. 423–427)https://archive.org/details/cbarchive_122715_solutionofasystemofdifferentia1843
  3. ^"Archived copy"(PDF). Archived fromthe original(PDF) on 2013-09-27. Retrieved2013-09-22.{{cite web}}: CS1 maint: archived copy as title (link)
  4. ^"Nucleonica".
  5. ^Harr, Logan (2007-03-15)."Precise Calculation of Complex Radioactive Decay Chains"(PDF).Theses and Dissertations (published 2007).
  6. ^Snyder, W. Van (2017-08-16)."Algorithm 982: Explicit solutions of triangular systems of first-order linear initial-value ordinary differential equations with constant coefficients".ACM Transactions on Mathematical Software.doi:10.1145/3092892.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bateman_equation&oldid=1302932569"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp