Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bühlmann model

From Wikipedia, the free encyclopedia
Random effects model in credibility theory
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(October 2010) (Learn how and when to remove this message)

Incredibility theory, a branch of study inactuarial science, theBühlmann model is arandom effects model (or "variance components model" orhierarchical linear model) used to determine the appropriatepremium for a group of insurance contracts. The model is named after Hans Bühlmann who first published a description in 1967.[1]

Model description

[edit]

Consideri risks which generate random losses for which historical data ofm recent claims are available (indexed byj). A premium for theith risk is to be determined based on the expected value of claims. A linear estimator which minimizes the mean square error is sought. Write

Note:m(ϑ){\displaystyle m(\vartheta )} ands2(ϑ){\displaystyle s^{2}(\vartheta )} are functions of random parameterϑ{\displaystyle \vartheta }

The Bühlmann model is the solution for the problem:

argminai0,ai1,...,aimE[(ai0+j=1maijXijΠ)2]{\displaystyle {\underset {a_{i0},a_{i1},...,a_{im}}{\operatorname {arg\,min} }}\operatorname {E} \left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-\Pi \right)^{2}\right]}

whereai0+j=1maijXij{\displaystyle a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}} is the estimator of premiumΠ{\displaystyle \Pi } andarg min represents the parameter values which minimize the expression.

Model solution

[edit]

The solution for the problem is:

ZX¯i+(1Z)μ{\displaystyle Z{\bar {X}}_{i}+(1-Z)\mu }

where:

Z=11+σ2v2m{\displaystyle Z={\frac {1}{1+{\frac {\sigma ^{2}}{v^{2}m}}}}}

We can give this result the interpretation, that Z part of the premium is based on the information that we have about the specific risk, and (1-Z) part is based on the information that we have about the whole population.

Proof

[edit]

The following proof is slightly different from the one in the original paper. It is also more general, because it considers all linear estimators, while original proof considers only estimators based on average claim.[2]

Lemma. The problem can be stated alternatively as:
f=E[(ai0+j=1maijXijm(ϑ))2]min{\displaystyle f=\mathbb {E} \left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-m(\vartheta )\right)^{2}\right]\to \min }

Proof:

E[(ai0+j=1maijXijm(ϑ))2]=E[(ai0+j=1maijXijΠ)2]+E[(m(ϑ)Π)2]2E[(ai0+j=1maijXijΠ)(m(ϑ)Π)]=E[(ai0+j=1maijXijΠ)2]+E[(m(ϑ)Π)2]{\displaystyle {\begin{aligned}\mathbb {E} \left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-m(\vartheta )\right)^{2}\right]&=\mathbb {E} \left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-\Pi \right)^{2}\right]+\mathbb {E} \left[\left(m(\vartheta )-\Pi \right)^{2}\right]-2\mathbb {E} \left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-\Pi \right)\left(m(\vartheta )-\Pi \right)\right]\\&=\mathbb {E} \left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-\Pi \right)^{2}\right]+\mathbb {E} \left[\left(m(\vartheta )-\Pi \right)^{2}\right]\end{aligned}}}

The last equation follows from the fact that

E[(ai0+j=1maijXijΠ)(m(ϑ)Π)]=EΘ[EX[(ai0+j=1maijXijΠ)(m(ϑ)Π)|Xi1,,Xim]]=EΘ[(ai0+j=1maijXijΠ)[EX[(m(ϑ)Π)|Xi1,,Xim]]]=0{\displaystyle {\begin{aligned}\mathbb {E} \left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-\Pi \right)\left(m(\vartheta )-\Pi \right)\right]&=\mathbb {E} _{\Theta }\left[\mathbb {E} _{X}\left.\left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-\Pi \right)(m(\vartheta )-\Pi )\right|X_{i1},\ldots ,X_{im}\right]\right]\\&=\mathbb {E} _{\Theta }\left[\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-\Pi \right)\left[\mathbb {E} _{X}\left[(m(\vartheta )-\Pi )|X_{i1},\ldots ,X_{im}\right]\right]\right]\\&=0\end{aligned}}}

We are using here the law of total expectation and the fact, thatΠ=E[m(ϑ)|Xi1,,Xim].{\displaystyle \Pi =\mathbb {E} [m(\vartheta )|X_{i1},\ldots ,X_{im}].}

In our previous equation, we decompose minimized function in the sum of two expressions. The second expression does not depend on parameters used in minimization. Therefore, minimizing the function is the same as minimizing the first part of the sum.

Let us find critical points of the function

12fai0=E[ai0+j=1maijXijm(ϑ)]=ai0+j=1maijE(Xij)E(m(ϑ))=ai0+(j=1maij1)μ{\displaystyle {\frac {1}{2}}{\frac {\partial f}{\partial a_{i0}}}=\mathbb {E} \left[a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-m(\vartheta )\right]=a_{i0}+\sum _{j=1}^{m}a_{ij}\mathbb {E} (X_{ij})-\mathbb {E} (m(\vartheta ))=a_{i0}+\left(\sum _{j=1}^{m}a_{ij}-1\right)\mu }
ai0=(1j=1maij)μ{\displaystyle a_{i0}=\left(1-\sum _{j=1}^{m}a_{ij}\right)\mu }

Fork0{\displaystyle k\neq 0} we have:

12faik=E[Xik(ai0+j=1maijXijm(ϑ))]=E[Xik]ai0+j=1,jkmaijE[XikXij]+aikE[Xik2]E[Xikm(ϑ)]=0{\displaystyle {\frac {1}{2}}{\frac {\partial f}{\partial a_{ik}}}=\mathbb {E} \left[X_{ik}\left(a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}-m(\vartheta )\right)\right]=\mathbb {E} \left[X_{ik}\right]a_{i0}+\sum _{j=1,j\neq k}^{m}a_{ij}\mathbb {E} [X_{ik}X_{ij}]+a_{ik}\mathbb {E} [X_{ik}^{2}]-\mathbb {E} [X_{ik}m(\vartheta )]=0}

We can simplify derivative, noting that:

E[XijXik]=E[E[XijXik|ϑ]]=E[cov(XijXik|ϑ)+E(Xij|ϑ)E(Xik|ϑ)]=E[(m(ϑ))2]=v2+μ2E[Xik2]=E[E[Xik2|ϑ]]=E[s2(ϑ)+(m(ϑ))2]=σ2+v2+μ2E[Xikm(ϑ)]=E[E[Xikm(ϑ)|Θi]=E[(m(ϑ))2]=v2+μ2{\displaystyle {\begin{aligned}\mathbb {E} [X_{ij}X_{ik}]&=\mathbb {E} \left[\mathbb {E} [X_{ij}X_{ik}|\vartheta ]\right]=\mathbb {E} [{\text{cov}}(X_{ij}X_{ik}|\vartheta )+\mathbb {E} (X_{ij}|\vartheta )\mathbb {E} (X_{ik}|\vartheta )]=\mathbb {E} [(m(\vartheta ))^{2}]=v^{2}+\mu ^{2}\\\mathbb {E} [X_{ik}^{2}]&=\mathbb {E} \left[\mathbb {E} [X_{ik}^{2}|\vartheta ]\right]=\mathbb {E} [s^{2}(\vartheta )+(m(\vartheta ))^{2}]=\sigma ^{2}+v^{2}+\mu ^{2}\\\mathbb {E} [X_{ik}m(\vartheta )]&=\mathbb {E} [\mathbb {E} [X_{ik}m(\vartheta )|\Theta _{i}]=\mathbb {E} [(m(\vartheta ))^{2}]=v^{2}+\mu ^{2}\end{aligned}}}

Taking above equations and inserting into derivative, we have:

12faik=(1j=1maij)μ2+j=1,jkmaij(v2+μ2)+aik(σ2+v2+μ2)(v2+μ2)=aikσ2(1j=1maij)v2=0{\displaystyle {\frac {1}{2}}{\frac {\partial f}{\partial a_{ik}}}=\left(1-\sum _{j=1}^{m}a_{ij}\right)\mu ^{2}+\sum _{j=1,j\neq k}^{m}a_{ij}(v^{2}+\mu ^{2})+a_{ik}(\sigma ^{2}+v^{2}+\mu ^{2})-(v^{2}+\mu ^{2})=a_{ik}\sigma ^{2}-\left(1-\sum _{j=1}^{m}a_{ij}\right)v^{2}=0}
σ2aik=v2(1j=1maij){\displaystyle \sigma ^{2}a_{ik}=v^{2}\left(1-\sum _{j=1}^{m}a_{ij}\right)}

Right side doesn't depend onk. Therefore, allaik{\displaystyle a_{ik}} are constant

ai1==aim=v2σ2+mv2{\displaystyle a_{i1}=\cdots =a_{im}={\frac {v^{2}}{\sigma ^{2}+mv^{2}}}}

From the solution forai0{\displaystyle a_{i0}} we have

ai0=(1maik)μ=(1mv2σ2+mv2)μ{\displaystyle a_{i0}=(1-ma_{ik})\mu =\left(1-{\frac {mv^{2}}{\sigma ^{2}+mv^{2}}}\right)\mu }

Finally, the best estimator is

ai0+j=1maijXij=mv2σ2+mv2Xi¯+(1mv2σ2+mv2)μ=ZXi¯+(1Z)μ{\displaystyle a_{i0}+\sum _{j=1}^{m}a_{ij}X_{ij}={\frac {mv^{2}}{\sigma ^{2}+mv^{2}}}{\bar {X_{i}}}+\left(1-{\frac {mv^{2}}{\sigma ^{2}+mv^{2}}}\right)\mu =Z{\bar {X_{i}}}+(1-Z)\mu }

References

[edit]

Citations

[edit]
  1. ^Bühlmann, Hans (1967)."Experience rating and credibility"(PDF).ASTIN Bulletin.4 (3):199–207.
  2. ^Proof can be found on this site:Schmidli, Hanspeter."Lecture notes on Risk Theory"(PDF). Institute of Mathematics, University of Cologne. Archived fromthe original(PDF) on August 11, 2013.

Sources

[edit]
  • Frees, E.W.; Young, V.R.; Luo, Y. (1999). "A longitudinal data analysis interpretation of credibility models".Insurance: Mathematics and Economics.24 (3):229–247.doi:10.1016/S0167-6687(98)00055-9.
Discrete time
Continuous time
Both
Fields and other
Time series models
Financial models
Actuarial models
Queueing models
Properties
Limit theorems
Inequalities
Tools
Disciplines
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bühlmann_model&oldid=1278602981"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp