Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Axiom of adjunction

From Wikipedia, the free encyclopedia
Principle in set theory

In mathematical set theory, theaxiom of adjunction states that for any two setsx,y there is a setw = x ∪ {y} given by "adjoining" the sety to the setx. It is stated as

x.y.w.z.(zw(zxz=y)).{\displaystyle \forall x.\forall y.\exists w.\forall z.{\big (}z\in w\leftrightarrow (z\in x\lor z=y){\big )}.}

Bernays (1937, page 68, axiom II (2)) introduced the axiom of adjunction as one of the axioms for a system of set theory that he introduced in about 1929.It is a weak axiom, used in some weak systems of set theory such asgeneral set theory orfinitary set theory. The adjunction operation is also used as one of the operations ofprimitive recursive set functions.

Interpretability of arithmetic

[edit]

Tarski andSzmielew showed thatRobinson arithmetic (Q{\displaystyle {\mathsf {Q}}}) can be interpreted in a weak set theory whose axioms areextensionality, the existence of the empty set, and the axiom of adjunction (Tarski 1953, p.34).In fact, in the language of set theory extended with a function symbol for adjunction, the axioms of empty set and adjunction alone (without extensionality) suffice to interpretQ{\displaystyle {\mathsf {Q}}}.[1] (They are mutually interpretable.)

Addingepsilon-induction to empty set and adjunction yields a theory that is mutually interpretable withPeano arithmetic (PA{\displaystyle {\mathsf {PA}}}).Anotheraxiom schema also yields a theory that is mutually interpretable withPA{\displaystyle {\mathsf {PA}}}:[2]

x.y.w.z.(zw((zxz=y)ϕ)){\displaystyle \forall x.\forall y.\exists w.\forall z.{\Big (}z\in w\leftrightarrow {\big (}(z\in x\lor z=y)\land \phi {\big )}{\Big )}},

whereϕ{\displaystyle \phi } is not allowed to havew{\displaystyle w} free. This combines axioms of set theory: Forϕ{\displaystyle \phi } trivially true it reduced to the adjunction axiom above, and for(zy)P{\displaystyle (z\neq y)\land P} it gives theaxiom of separation withP{\displaystyle P}.

References

[edit]
  1. ^Mancini, Antonella; Montagna, Franco (Spring 1994)."A minimal predicative set theory".Notre Dame Journal of Formal Logic.35 (2):186–203.doi:10.1305/ndjfl/1094061860. Retrieved23 November 2021.
  2. ^Friedman, Harvey M. (June 2, 2002)."Issues in the foundations of mathematics"(PDF).Department of Mathematics. Ohio State University. RetrievedJanuary 18, 2023.
  • Bernays, Paul (1937), "A System of Axiomatic Set Theory--Part I",The Journal of Symbolic Logic,2 (1), Association for Symbolic Logic:65–77,doi:10.2307/2268862,JSTOR 2268862
  • Kirby, Laurence (2009), "Finitary Set Theory",Notre Dame J. Formal Logic,50 (3):227–244,doi:10.1215/00294527-2009-009,MR 2572972
  • Tarski, Alfred (1953),Undecidable theories, Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland Publishing Company,MR 0058532
  • Tarski, Alfred; Givant, Steven R. (1987).A Formalization of Set Theory without Variables. AMS Colloquium Publications, v. 41. American Mathematical Soc.ISBN 978-0-8218-1041-5.
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types ofsets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
Overview
Venn diagram of set intersection
Axioms
Operations
  • Concepts
  • Methods
Set types
Theories
Set theorists


Stub icon

Thisset theory-related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Axiom_of_adjunction&oldid=1304123659"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp