Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Aromatization

From Wikipedia, the free encyclopedia
Chemical reaction

Aromatization is achemical reaction in which anaromatic system is formed from a single nonaromatic precursor. Typically aromatization is achieved by dehydrogenation of existing cyclic compounds, illustrated by the conversion ofcyclohexane intobenzene. Aromatization includes the formation of heterocyclic systems.[1]

The conversion ofmethylcyclohexane totoluene is a classic aromatization reaction. This platinum (Pt)-catalyzed process is practiced on scale in the production ofgasoline from petroleum.

Industrial practice

[edit]

Although not practiced under the name, aromatization is a cornerstone ofoil refining. One of the major reforming reactions is thedehydrogenation ofparaffins andnaphthenes into aromatics.

The process, which is catalyzed by platinum supported by aluminium oxide, is exemplified in the conversionmethylcyclohexane (a naphthene) intotoluene (an aromatic).[2]Dehydrocyclization converts paraffins (acyclic hydrocarbons) into aromatics.[3] A related aromatization process includesdehydroisomerization ofmethylcyclopentane to benzene:

As of alkanes, they first dehydrogenate to olefins, thenform rings at the place of the double bond, becoming cycloalkanes, and finally gradually lose hydrogen to become aromatic hydrocarbons.[4]

For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization. The activation barrier decreases with the degree of unsaturation. Thus, cyclohexadienes are especially prone to aromatization. Formally, dehydrogenation is aredox process. Dehydrogenative aromatization is the reverse of arene hydrogenation. As such, hydrogenation catalysts are effective for the reverse reaction. Platinum-catalyzed dehydrogenations of cyclohexanes and related feedstocks are the largest scale applications of this reaction (see above).[1]

Biochemical processes

[edit]

Aromatases areenzymes that aromatize rings within steroids. The specific conversions aretestosterone toestradiol andandrostenedione toestrone.[5] Each of these aromatizations involves the oxidation of the C-19methyl group to allow for the elimination offormic acid concomitant with aromatization. Such conversions are relevant to estrogentumorogenesis in the development ofbreast cancer andovarian cancer inpostmenopausal women andgynecomastia in men.[6]Aromatase inhibitors likeexemestane (which forms a permanent and deactivating bond with the aromatase enzyme)[7] andanastrozole andletrozole (whichcompete for the enzyme)[8] have been shown to be more effective than anti-estrogen medications such astamoxifen likely because they prevent the formation of estradiol.[6]

Laboratory methods

[edit]

Although practiced on a very small scale compared to the petrochemical routes, diverse methods have been developed for fine chemical syntheses.

Oxidative dehydrogenation

[edit]

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is often the reagent of choice. DDQ and an acid catalyst has been used to synthesise a steroid with aphenanthrene core by oxidation accompanied by a doublemethyl migration.[9] In the process, DDQ is itself reduced into an aromatichydroquinone product.

Sulfur and selenium are traditionally used in aromatization, the leaving group beinghydrogen sulfide.[10]

Soluble transition metal complexes can induce oxidative aromatization concomitant with complexation.α-Phellandrene (2-methyl-5-iso-propyl-1,3-cyclohexadiene) is oxidised top-iso-propyltoluene with the reduction ofruthenium trichloride.[11]

Oxidative dehydrogenation of dihydropyridine results in aromatization, givingpyridine.[12]

Dehydration

[edit]
Semmler-Wolff synthesis of aniline

Non-aromatic rings can be aromatized in many ways.Dehydration allows theSemmler-Wolff reaction of2-cyclohexenoneoxime toaniline under acidic conditions.[13]

Tautomerization

[edit]
1,4-Dioxotetralin and its aromatized tautomer 1,4-naphthalenediol coexist in equal abundance in solution.

Theisomerization of cyclohexadienones gives the aromatic tautomerphenol.[14][15] Isomerization of 1,4-naphthalenediol at 200 °C produces a 2:1 mixture with its keto form, 1,4-dioxotetralin.[16]

Hydride and proton abstraction

[edit]

Classically, aromatization reactions involve changing the C:H ratio of a substrate. When applied tocyclopentadiene, proton removal gives the aromatic conjugate basecyclopentadienyl anion, isolable assodium cyclopentadienide:[17]

2 Na + 2 C5H6 → 2 NaC5H5 +H2

Aromatization can entail removal of hydride. Tropylium,C
7
H+
7
arises by the aromatization reaction of cycloheptatriene with hydride acceptors.

C
7
H
8
+Br
2
C
7
H+
7
+Br
+HBr
Ciamician-Dennstedt rearrangement of a pyrrole to a pyridine. The first step involvesdearomatization. The second step involves aromatization.

From acyclic precursors

[edit]

The aromatization of acyclic precursors is rarer in organic synthesis, although it is a significant component of theBTX production in refineries.

Among acyclic precursors, alkynes are relatively prone to aromatizations since they are partially dehydrogenated. TheBergman cyclization converts anenediyne to a dehydrobenzene intermediate diradical, which abstracts hydrogen to aromatize.[18] The enediyne moiety can be included within an existing ring, allowing access to a bicyclic system under mild conditions as a consequence of thering strain in the reactant. Cyclodeca-3-en-1,5-diyne reacts with1,3-cyclohexadiene to produce benzene andtetralin at 37 °C, the reaction being highly favorable owing to the formation of two new aromatic rings:

Scheme 1. Bergman cyclization
Scheme 1. Bergman cyclization

See also

[edit]

References

[edit]
  1. ^abSmith, Michael B.;March, Jerry (2007),Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience,ISBN 978-0-471-72091-1
  2. ^Gary, J.H.; Handwerk, G.E. (1984).Petroleum Refining Technology and Economics (2nd ed.). Marcel Dekker, Inc.ISBN 0-8247-7150-8.
  3. ^Ono, Y. (1992). "Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites".Catal. Rev. - Sci. Eng.34 (3):179–226.doi:10.1080/01614949208020306.
  4. ^Oxtoby, David W.; Gillis, H. Pat; Butler, Laurie J. (2016-01-01).Principles of Modern Chemistry. Cengage AU. p. 302.ISBN 978-1-305-07911-3.
  5. ^Lephart, E. D. (1996). "A Review of Brain Aromatase Cytochrome P450".Brain Res. Rev.22 (1):1–26.doi:10.1016/0165-0173(96)00002-1.PMID 8871783.S2CID 11987113.
  6. ^abAvendaño, C.; Menéndez, J. C. (2008)."Aromatase Inhibitors".Medicinal Chemistry of Anticancer Drugs.Elsevier. pp. 65–73.doi:10.1016/B978-0-444-52824-7.00003-2.ISBN 9780080559629.
  7. ^Jasek, W., ed. (2007).Austria-Codex (in German) (62nd ed.). Vienna: Österreichischer Apothekerverlag. pp. 656–660.ISBN 9783852001814.
  8. ^Dinnendahl, V.; Fricke, U., eds. (2007).Arzneistoff-Profile (in German). Vol. 4 (21st ed.). Eschborn, Germany: Govi Pharmazeutischer Verlag.ISBN 9783774198463.
  9. ^Brown, W.; Turner, A. B. (1971). "Applications of High-Potential Quinones. Part VII. The Synthesis of Steroidal Phenanthrenes by Double Methyl Migration".Journal of the Chemical Society C: Organic.14:2566–2572.doi:10.1039/J39710002566.PMID 5167256.
  10. ^Bergmann, F.; Szmuszkowicz, J.; Fawaz, G. (1947). "The Condensation of 1,1-Diarylethylenes with Maleic Anhydride".Journal of the American Chemical Society.69 (7):1773–1777.doi:10.1021/ja01199a055.PMID 20251415.
  11. ^Bennett, M. A.; Huang, T. N.; Matheson, T. W.; Smith, A. K. (1982).6-Hexamethylbenzene)ruthenium Complexes.Inorganic Syntheses. Vol. 21. pp. 74–78.doi:10.1002/9780470132524.ch16.ISBN 9780470132524.
  12. ^Shimizu, S.; Watanabe, N.; Kataoka, T.; Shoji, T.; Abe, N.; Morishita, S.; Ichimura, H. (2005). "Pyridine and Pyridine Derivatives".Ullmann's Encyclopedia of Industrial Chemistry.Wiley-VCH.doi:10.1002/14356007.a22_399.ISBN 3527306730.
  13. ^Horning, E. C.; Stromberg, V. L.; Lloyd, H. A. (1952). "Beckmann Rearrangements. An Investigation of Special Cases".Journal of the American Chemical Society.74 (20):5153–5155.doi:10.1021/ja01140a048.
  14. ^Clayden, J.; Greeves, N.;Warren, S.;Wothers, P. (2001).Organic Chemistry (1st ed.).Oxford University Press. p. 531.ISBN 9780198503460.
  15. ^Capponi, M.; Gut, I. G.; Hellrung, B.; Persy, G.; Wirz, J. (1999). "Ketonization Equilibria of Phenol in Aqueous Solution".Canadian Journal of Chemistry.77 (5–6):605–613.doi:10.1139/cjc-77-5-6-605.
  16. ^Kündig, E. P.; Garcia, A. E.; Lomberget, T.; Bernardinelli, G. (2005). "Rediscovery, Isolation, and Asymmetric Reduction of 1,2,3,4-Tetrahydronaphthalene-1,4-dione and Studies of its [Cr(CO)3] Complex".Angewandte Chemie International Edition.45 (1):98–101.doi:10.1002/anie.200502588.PMID 16304647.
  17. ^Cotton, F. A.;Wilkinson, G. (1999).Advanced Inorganic Chemistry (6th ed.).John Wiley and Sons.ISBN 9780471199571.
  18. ^Mohamed, R. K.; Peterson, P. W.; Alabugin, I. V. (2013). "Concerted Reactions that Produce Diradicals and Zwitterions: Electronic, Steric, Conformational and Kinetic Control of Cycloaromatization Processes".Chemical Reviews.113 (9):7089–7129.doi:10.1021/cr4000682.PMID 23600723.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Aromatization&oldid=1315845281"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp