Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Narcissistic number

From Wikipedia, the free encyclopedia
(Redirected fromArmstrong number)
Concept in number theory
This article is about a type of integers. For other uses, seeNarcissism (disambiguation).

Innumber theory, anarcissistic number[1][2] (also known as apluperfect digital invariant (PPDI),[3] anArmstrong number[4] (after Michael F. Armstrong)[5] or aplus perfect number)[6] in a givennumber baseb{\displaystyle b} is a number that is the sum of its own digits each raised to the power of the number of digits.

Definition

[edit]

Letn{\displaystyle n} be a natural number. We define thenarcissistic function for baseb>1{\displaystyle b>1}Fb:NN{\displaystyle F_{b}:\mathbb {N} \rightarrow \mathbb {N} } to be the following:

Fb(n)=i=0k1dik.{\displaystyle F_{b}(n)=\sum _{i=0}^{k-1}d_{i}^{k}.}

wherek=logbn+1{\displaystyle k=\lfloor \log _{b}{n}\rfloor +1} is the number of digits in the number in baseb{\displaystyle b}, and

di=nmodbi+1nmodbibi{\displaystyle d_{i}={\frac {n{\bmod {b^{i+1}}}-n{\bmod {b}}^{i}}{b^{i}}}}

is the value of each digit of the number. A natural numbern{\displaystyle n} is anarcissistic number if it is afixed point forFb{\displaystyle F_{b}}, which occurs ifFb(n)=n{\displaystyle F_{b}(n)=n}. The natural numbers0n<b{\displaystyle 0\leq n<b} aretrivial narcissistic numbers for allb{\displaystyle b}, all other narcissistic numbers arenontrivial narcissistic numbers.

For example, the number 153 in baseb=10{\displaystyle b=10} is a narcissistic number, becausek=3{\displaystyle k=3} and153=13+53+33{\displaystyle 153=1^{3}+5^{3}+3^{3}}.

A natural numbern{\displaystyle n} is asociable narcissistic number if it is aperiodic point forFb{\displaystyle F_{b}}, whereFbp(n)=n{\displaystyle F_{b}^{p}(n)=n} for a positiveintegerp{\displaystyle p} (hereFbp{\displaystyle F_{b}^{p}} is thep{\displaystyle p}thiterate ofFb{\displaystyle F_{b}}), and forms acycle of periodp{\displaystyle p}. A narcissistic number is a sociable narcissistic number withp=1{\displaystyle p=1}, and anamicable narcissistic number is a sociable narcissistic number withp=2{\displaystyle p=2}.

All natural numbersn{\displaystyle n} arepreperiodic points forFb{\displaystyle F_{b}}, regardless of the base. This is because for any given digit countk{\displaystyle k}, the minimum possible value ofn{\displaystyle n} isbk1{\displaystyle b^{k-1}}, the maximum possible value ofn{\displaystyle n} isbk1bk{\displaystyle b^{k}-1\leq b^{k}}, and the narcissistic function value isFb(n)=k(b1)k{\displaystyle F_{b}(n)=k(b-1)^{k}}. Thus, any narcissistic number must satisfy the inequalitybk1k(b1)kbk{\displaystyle b^{k-1}\leq k(b-1)^{k}\leq b^{k}}. Multiplying all sides byb(b1)k{\displaystyle {\frac {b}{(b-1)^{k}}}}, we get(bb1)kbkb(bb1)k{\displaystyle {\left({\frac {b}{b-1}}\right)}^{k}\leq bk\leq b{\left({\frac {b}{b-1}}\right)}^{k}}, or equivalently,k(bb1)kbk{\displaystyle k\leq {\left({\frac {b}{b-1}}\right)}^{k}\leq bk}. Sincebb11{\displaystyle {\frac {b}{b-1}}\geq 1}, this means that there will be a maximum valuek{\displaystyle k} where(bb1)kbk{\displaystyle {\left({\frac {b}{b-1}}\right)}^{k}\leq bk}, because of theexponential nature of(bb1)k{\displaystyle {\left({\frac {b}{b-1}}\right)}^{k}} and thelinearity ofbk{\displaystyle bk}. Beyond this valuek{\displaystyle k},Fb(n)n{\displaystyle F_{b}(n)\leq n} always. Thus, there are a finite number of narcissistic numbers, and any natural number is guaranteed to reach a periodic point or a fixed point less thanbk1{\displaystyle b^{k}-1}, making it a preperiodic point. Settingb{\displaystyle b} equal to 10 shows that the largest narcissistic number in base 10 must be less than1060{\displaystyle 10^{60}}.[1]

The number of iterationsi{\displaystyle i} needed forFbi(n){\displaystyle F_{b}^{i}(n)} to reach a fixed point is the narcissistic function'spersistence ofn{\displaystyle n}, and undefined if it never reaches a fixed point.

A baseb{\displaystyle b} has at least one two-digit narcissistic numberif and only ifb2+1{\displaystyle b^{2}+1} is not prime, and the number of two-digit narcissistic numbers in baseb{\displaystyle b} equalsτ(b2+1)2{\displaystyle \tau (b^{2}+1)-2}, whereτ(n){\displaystyle \tau (n)} is the number of positive divisors ofn{\displaystyle n}.

Every baseb3{\displaystyle b\geq 3} that is not a multiple of nine has at least one three-digit narcissistic number. The bases that do not are

2, 72, 90, 108, 153, 270, 423, 450, 531, 558, 630, 648, 738, 1044, 1098, 1125, 1224, 1242, 1287, 1440, 1503, 1566, 1611, 1620, 1800, 1935, ... (sequenceA248970 in theOEIS)

There are only 88 narcissistic numbers in base 10, of which the largest is

115,132,219,018,763,992,565,095,597,973,971,522,401

with 39 digits.[1]

Narcissistic numbers and cycles ofFb for specificb

[edit]

All numbers are represented in baseb{\displaystyle b}. '#' is the length of each known finite sequence.

b{\displaystyle b}Narcissistic numbers#CyclesOEIS sequence(s)
20, 12{\displaystyle \varnothing }
30, 1, 2, 12, 22, 1226{\displaystyle \varnothing }
40, 1, 2, 3, 130, 131, 203, 223, 313, 332, 1103, 330312{\displaystyle \varnothing }A010344 andA010343
50, 1, 2, 3, 4, 23, 33, 103, 433, 2124, 2403, 3134, 124030, 124031, 242423, 434434444, ...18

1234 → 2404 → 4103 → 2323 → 1234

3424 → 4414 → 11034 → 20034 → 20144 → 31311 → 3424

1044302 → 2110314 → 1044302

1043300 → 1131014 → 1043300

A010346
60, 1, 2, 3, 4, 5, 243, 514, 14340, 14341, 14432, 23520, 23521, 44405, 435152, 5435254, 12222215, 555435035 ...31

44 → 52 → 45 → 105 → 330 → 130 → 44

13345 → 33244 → 15514 → 53404 → 41024 → 13345

14523 → 32253 → 25003 → 23424 → 14523

2245352 → 3431045 → 2245352

12444435 → 22045351 → 30145020 → 13531231 → 12444435

115531430 → 230104215 → 115531430

225435342 → 235501040 → 225435342

A010348
70, 1, 2, 3, 4, 5, 6, 13, 34, 44, 63, 250, 251, 305, 505, 12205, 12252, 13350, 13351, 15124, 36034, 205145, 1424553, 1433554, 3126542, 4355653, 6515652, 125543055, ...60A010350
80, 1, 2, 3, 4, 5, 6, 7, 24, 64, 134, 205, 463, 660, 661, 40663, 42710, 42711, 60007, 62047, 636703, 3352072, 3352272, ...63A010354 andA010351
90, 1, 2, 3, 4, 5, 6, 7, 8, 45, 55, 150, 151, 570, 571, 2446, 12036, 12336, 14462, 2225764, 6275850, 6275851, 12742452, ...59A010353
100, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, ...88A005188
110, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 56, 66, 105, 307, 708, 966, A06, A64, 8009, 11720, 11721, 12470, ...135A0161948
120, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 25, A5, 577, 668, A83, 14765, 938A4, 369862, A2394A, ...88A161949
130, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 14, 36, 67, 77, A6, C4, 490, 491, 509, B85, 3964, 22593, 5B350, ...202A0161950
140, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 136, 409, 74AB5, 153A632, ...103A0161951
150, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, 78, 88, C3A, D87, 1774, E819, E829, 7995C, 829BB, A36BC, ...203A0161952
160, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 156, 173, 208, 248, 285, 4A5, 5B0, 5B1, 60B, 64B, 8C0, 8C1, 99A, AA9, AC3, CA8, E69, EA0, EA1, B8D2, 13579, 2B702, 2B722, 5A07C, 5A47C, C00E0, C00E1, C04E0, C04E1, C60E7, C64E7, C80E0, C80E1, C84E0, C84E1, ...294A161953

Extension to negative integers

[edit]

Narcissistic numbers can be extended to the negative integers by use of asigned-digit representation to represent each integer.

See also

[edit]

References

[edit]
  1. ^abcWeisstein, Eric W."Narcissistic Number".MathWorld.
  2. ^Perfect and PluPerfect Digital InvariantsArchived 2007-10-10 at theWayback Machine by Scott Moore
  3. ^PPDI (Armstrong) Numbers by Harvey Heinz
  4. ^"Armstrong Numbers".deimel.org. Retrieved2025-02-02.
  5. ^Deimel, Lionel."Mystery Solved!". Retrieved2025-02-02.
  6. ^(sequenceA005188 in theOEIS)
  • Joseph S. Madachy,Mathematics on Vacation, Thomas Nelson & Sons Ltd. 1966, pages 163-175.
  • Rose, Colin (2005),Radical narcissistic numbers, Journal of Recreational Mathematics, 33(4), 2004–2005, pages 250-254.
  • Perfect Digital Invariants by Walter Schneider

External links

[edit]
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Narcissistic_number&oldid=1314314515"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp