Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Arithmetic genus

From Wikipedia, the free encyclopedia
This articlemay be too technical for most readers to understand. Pleasehelp improve it tomake it understandable to non-experts, without removing the technical details.(August 2023) (Learn how and when to remove this message)

Inmathematics, thearithmetic genus of analgebraic variety is one of a few possible generalizations of thegenus of an algebraic curve orRiemann surface.

Projective varieties

[edit]

LetX be aprojective scheme of dimensionr over a fieldk, thearithmetic genuspa{\displaystyle p_{a}} ofX is defined aspa(X)=(1)r(χ(OX)1).{\displaystyle p_{a}(X)=(-1)^{r}(\chi ({\mathcal {O}}_{X})-1).}Hereχ(OX){\displaystyle \chi ({\mathcal {O}}_{X})} is theEuler characteristic of the structure sheafOX{\displaystyle {\mathcal {O}}_{X}}.[1]

Complex projective manifolds

[edit]

The arithmetic genus of acomplex projective manifold of dimensionn can be defined as a combination ofHodge numbers, namely

pa=j=0n1(1)jhnj,0.{\displaystyle p_{a}=\sum _{j=0}^{n-1}(-1)^{j}h^{n-j,0}.}

Whenn=1, the formula becomespa=h1,0{\displaystyle p_{a}=h^{1,0}}. According to theHodge theorem,h0,1=h1,0{\displaystyle h^{0,1}=h^{1,0}}. Consequentlyh0,1=h1(X)/2=g{\displaystyle h^{0,1}=h^{1}(X)/2=g}, whereg is the usual (topological) meaning of genus of a surface, so the definitions are compatible.

WhenX is a compactKähler manifold, applyinghp,q =hq,p recovers the earlier definition for projective varieties.

Kähler manifolds

[edit]

By usinghp,q =hq,p for compact Kähler manifolds this can be reformulated as theEuler characteristic incoherent cohomology for thestructure sheafOM{\displaystyle {\mathcal {O}}_{M}}:

pa=(1)n(χ(OM)1).{\displaystyle p_{a}=(-1)^{n}(\chi ({\mathcal {O}}_{M})-1).\,}

This definition therefore can be applied to some otherlocally ringed spaces.

See also

[edit]

References

[edit]
  1. ^Hartshorne, Robin (1977).Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. New York, NY: Springer New York. p. 230.doi:10.1007/978-1-4757-3849-0.ISBN 978-1-4419-2807-8.S2CID 197660097.

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Arithmetic_genus&oldid=1280304719"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp