Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of argon

From Wikipedia, the free encyclopedia
(Redirected fromArgon-41)

Isotopes ofargon (18Ar)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
36Ar0.334%stable
37Artrace35 dε37Cl
38Ar0.0630%stable
39Artrace268 yβ39K
40Ar99.6%stable
41Artrace109.34 minβ41K
42Arsynth32.9 yβ42K
Standard atomic weightAr°(Ar)

Argon (18Ar) has 26 knownisotopes, from29Ar to54Ar, of which three arestable (36Ar,38Ar, and40Ar). On Earth,40Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are39Ar with a half-life of 268 years,42Ar with a half-life of 32.9 years, and37Ar with a half-life of 35.04 days. All other isotopes have half-lives of less than two hours, and most less than one minute.

The naturally occurring40K, with ahalf-life of 1.248×109 years, decays to stable40Ar byelectron capture (10.72%) and bypositron emission (0.001%), and also to stable40Ca viabeta decay (89.28%). These properties and ratios are used to determine the age ofrocks throughpotassium–argon dating.[4]

Despite the trapping of40Ar in many rocks, it can be released by melting, grinding, and diffusion. Almost all argon in the Earth's atmosphere is the product of40K decay, since 99.6% of Earth's atmospheric argon is40Ar, whereas in the Sun and presumably in primordial star-forming clouds, argon consists of < 15%38Ar and mostly (85%)36Ar. Similarly, the ratio of the isotopes36Ar:38Ar:40Ar in the atmospheres of theouter planets is measured to be 8400:1600:1.[5]

In the Earth'satmosphere, radioactive39Ar (half-life 268(8) years) is made bycosmic ray activity, primarily from40Ar. In the subsurface environment, it is also produced throughneutron capture by39>K oralpha emission bycalcium. The content of39Ar in natural argon is measured to be of (8.0±0.6)×10−16 g/g, or (1.01±0.08) Bq/kg of36, 38, 40Ar.[6] The content of42Ar (half-life 33 years) in the Earth's atmosphere is lower than 6×10−21 parts per part of36, 38, 40Ar.[7] Many endeavors require argon depleted in thecosmogenic isotopes, known as depleted argon.[8] Lighter radioactive isotopes can decay to different elements (usuallychlorine) while heavier ones decay topotassium.

36Ar, in the form ofargon hydride, was detected in theCrab Nebulasupernova remnant during 2013.[9][10] This was the first time anoble molecule was detected inouter space.[9][10]

37Ar is a synthetic radionuclide that is created vianeutron capture of40Ca followed byalpha particle emission, as a result of subsurfacenuclear explosions. It has a half-life of 35 days.[4]

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[11]
[n 2][n 3]
Half-life[1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5]
Spin and
parity[1]
[n 6][n 7]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
29Ar[12]181129.04076(47)#2p27S5/2+#
30Ar181230.02369(19)#<10 ps2p28S0+
31Ar181331.01216(22)#15.0(3) msβ+, p (68.3%)30S5/2+
β+ (22.63%)31Cl
β+, 2p (9.0%)29P
β+, 3p (0.07%)28Si
β+, p,α? (<0.38%)26Si
β+, α? (<0.03%)27P
2p? (<0.03%)29S
32Ar181431.9976378(19)98(2) msβ+ (64.42%)32Cl0+
β+, p (35.58%)31S
33Ar181532.98992555(43)173.0(20) msβ+ (61.3%)33Cl1/2+
β+, p (38.7%)32S
34Ar181633.980270092(83)846.46(35) msβ+34Cl0+
35Ar181734.97525772(73)1.7756(10) sβ+35Cl3/2+
36Ar181835.967545106(28)Observationally Stable[n 8]0+0.003336(210)
37Ar181936.96677630(22)35.011(19) dEC37Cl3/2+Trace[n 9]
38Ar182037.96273210(21)Stable0+0.000629(70)
39Ar[n 10]182138.9643130(54)268.2+3.1
−2.9
 y[13]
β39K7/2−8×10−16[14][n 9]
40Ar[n 11]182239.9623831220(23)Stable0+0.996035(250)[n 12]
41Ar182340.96450057(37)109.61(4) minβ41K7/2−Trace[n 9]
42Ar182441.9630457(62)32.9(11) yβ42K0+
43Ar182542.9656361(57)5.37(6) minβ43K5/2(−)
44Ar182643.9649238(17)11.87(5) minβ44K0+
45Ar182744.96803973(55)21.48(15) sβ45K(5/2−,7/2−)
46Ar182845.9680392(25)8.4(6) sβ46K0+
47Ar182946.9727671(13)1.23(3) sβ (>99.8%)47K(3/2)−
β,n? (<0.2%)46K
48Ar183047.976001(18)415(15) msβ (62%)48K0+
β, n (38%)47K
49Ar183148.98169(43)#236(8) msβ49K3/2−#
β, n (29%)48K
β, 2n?47K
50Ar183249.98580(54)#106(6) msβ (63%)50K0+
β, n (37%)49K
β, 2n?48K
51Ar183350.99303(43)#30# ms
[>200 ns]
β?51K1/2−#
β, n?50K
β, 2n?49K
52Ar183451.99852(64)#40# ms
[>620 ns]
β?52K0+
β, n?51K
β, 2n?50K
53Ar183553.00729(75)#20# ms
[>620 ns]
β?53K5/2−#
β, n?52K
β, 2n?51K
54Ar183654.01348(86)#5# ms
[>400 ns]
β?54K0+
β, n?53K
β, 2n?52K
This table header & footer:
  1. ^mAr – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Modes of decay:
    EC:Electron capture



    n:Neutron emission
    p:Proton emission
  5. ^Bold symbol as daughter – Daughter product is stable.
  6. ^( ) spin value – Indicates spin with weak assignment arguments.
  7. ^# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. ^Believed to undergo double electron capture to36S (lightest theoretically unstable nuclide for which no evidence of radioactivity has been observed)
  9. ^abcCosmogenic nuclide
  10. ^Used inargon–argon dating
  11. ^Used inargon–argon dating andpotassium–argon dating
  12. ^Generated from40K in rocks. These ratios are terrestrial. Cosmic abundance is far less than36Ar.

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Argon".CIAAW. 2017.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^ab"40Ar/39Ar dating and errors". Archived fromthe original on 9 May 2007. Retrieved7 March 2007.
  5. ^Cameron, A.G.W. (1973). "Elemental and isotopic abundances of the volatile elements in the outer planets".Space Science Reviews.14 (3–4):392–400.Bibcode:1973SSRv...14..392C.doi:10.1007/BF00214750.S2CID 119861943.
  6. ^P. Benetti; et al. (2007). "Measurement of the specific activity of39Ar in natural argon".Nuclear Instruments and Methods A.574 (1):83–88.arXiv:astro-ph/0603131.Bibcode:2007NIMPA.574...83B.doi:10.1016/j.nima.2007.01.106.S2CID 17073444.
  7. ^V. D. Ashitkov; et al. (1998). "New experimental limit on the42Ar content in the Earth's atmosphere".Nuclear Instruments and Methods A.416 (1):179–181.Bibcode:1998NIMPA.416..179A.doi:10.1016/S0168-9002(98)00740-2.
  8. ^H. O. Back; et al. (2012)."Depleted Argon from Underground Sources".Physics Procedia.37:1105–1112.Bibcode:2012PhPro..37.1105B.doi:10.1016/j.phpro.2012.04.099.
  9. ^abQuenqua, Douglas (13 December 2013)."Noble Molecules Found in Space".The New York Times. Retrieved13 December 2013.
  10. ^abBarlow, M. J.; et al. (2013). "Detection of a Noble Gas Molecular Ion,36ArH+, in the Crab Nebula".Science.342 (6164):1343–1345.arXiv:1312.4843.Bibcode:2013Sci...342.1343B.doi:10.1126/science.1243582.PMID 24337290.S2CID 37578581.
  11. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  12. ^Mukha, I.; et al. (2018). "Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains".Physical Review C.98 (6): 064308–1–064308–13.arXiv:1803.10951.Bibcode:2018PhRvC..98f4308M.doi:10.1103/PhysRevC.98.064308.S2CID 119384311.
  13. ^Golovko, Victor V. (15 October 2023). "Application of the most frequent value method for39Ar half-life determination".The European Physical Journal C.83 (10): 930.arXiv:2310.06867.Bibcode:2023EPJC...83..930G.doi:10.1140/epjc/s10052-023-12113-6.ISSN 1434-6052.
  14. ^Lu, Zheng-Tian (1 March 2013). "What trapped atoms reveal about global groundwater".Physics Today.66 (3):74–75.Bibcode:2013PhT....66c..74L.doi:10.1063/PT.3.1926.

External links

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_argon&oldid=1268457671#Argon-41"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp