| ||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weightAr°(Ar) | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Argon (18Ar) has 26 knownisotopes, from29Ar to54Ar, of which three arestable (36Ar,38Ar, and40Ar). On Earth,40Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are39Ar with a half-life of 268 years,42Ar with a half-life of 32.9 years, and37Ar with a half-life of 35.04 days. All other isotopes have half-lives of less than two hours, and most less than one minute.
The naturally occurring40K, with ahalf-life of 1.248×109 years, decays to stable40Ar byelectron capture (10.72%) and bypositron emission (0.001%), and also to stable40Ca viabeta decay (89.28%). These properties and ratios are used to determine the age ofrocks throughpotassium–argon dating.[4]
Despite the trapping of40Ar in many rocks, it can be released by melting, grinding, and diffusion. Almost all argon in the Earth's atmosphere is the product of40K decay, since 99.6% of Earth's atmospheric argon is40Ar, whereas in the Sun and presumably in primordial star-forming clouds, argon consists of < 15%38Ar and mostly (85%)36Ar. Similarly, the ratio of the isotopes36Ar:38Ar:40Ar in the atmospheres of theouter planets is measured to be 8400:1600:1.[5]
In the Earth'satmosphere, radioactive39Ar (half-life 268(8) years) is made bycosmic ray activity, primarily from40Ar. In the subsurface environment, it is also produced throughneutron capture by39>K oralpha emission bycalcium. The content of39Ar in natural argon is measured to be of (8.0±0.6)×10−16 g/g, or (1.01±0.08) Bq/kg of36, 38, 40Ar.[6] The content of42Ar (half-life 33 years) in the Earth's atmosphere is lower than 6×10−21 parts per part of36, 38, 40Ar.[7] Many endeavors require argon depleted in thecosmogenic isotopes, known as depleted argon.[8] Lighter radioactive isotopes can decay to different elements (usuallychlorine) while heavier ones decay topotassium.
36Ar, in the form ofargon hydride, was detected in theCrab Nebulasupernova remnant during 2013.[9][10] This was the first time anoble molecule was detected inouter space.[9][10]
37Ar is a synthetic radionuclide that is created vianeutron capture of40Ca followed byalpha particle emission, as a result of subsurfacenuclear explosions. It has a half-life of 35 days.[4]
Nuclide [n 1] | Z | N | Isotopic mass(Da)[11] [n 2][n 3] | Half-life[1] | Decay mode[1] [n 4] | Daughter isotope [n 5] | Spin and parity[1] [n 6][n 7] | Natural abundance(mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
29Ar[12] | 18 | 11 | 29.04076(47)# | 2p | 27S | 5/2+# | |||||||||||||
30Ar | 18 | 12 | 30.02369(19)# | <10 ps | 2p | 28S | 0+ | ||||||||||||
31Ar | 18 | 13 | 31.01216(22)# | 15.0(3) ms | β+, p (68.3%) | 30S | 5/2+ | ||||||||||||
β+ (22.63%) | 31Cl | ||||||||||||||||||
β+, 2p (9.0%) | 29P | ||||||||||||||||||
β+, 3p (0.07%) | 28Si | ||||||||||||||||||
β+, p,α? (<0.38%) | 26Si | ||||||||||||||||||
β+, α? (<0.03%) | 27P | ||||||||||||||||||
2p? (<0.03%) | 29S | ||||||||||||||||||
32Ar | 18 | 14 | 31.9976378(19) | 98(2) ms | β+ (64.42%) | 32Cl | 0+ | ||||||||||||
β+, p (35.58%) | 31S | ||||||||||||||||||
33Ar | 18 | 15 | 32.98992555(43) | 173.0(20) ms | β+ (61.3%) | 33Cl | 1/2+ | ||||||||||||
β+, p (38.7%) | 32S | ||||||||||||||||||
34Ar | 18 | 16 | 33.980270092(83) | 846.46(35) ms | β+ | 34Cl | 0+ | ||||||||||||
35Ar | 18 | 17 | 34.97525772(73) | 1.7756(10) s | β+ | 35Cl | 3/2+ | ||||||||||||
36Ar | 18 | 18 | 35.967545106(28) | Observationally Stable[n 8] | 0+ | 0.003336(210) | |||||||||||||
37Ar | 18 | 19 | 36.96677630(22) | 35.011(19) d | EC | 37Cl | 3/2+ | Trace[n 9] | |||||||||||
38Ar | 18 | 20 | 37.96273210(21) | Stable | 0+ | 0.000629(70) | |||||||||||||
39Ar[n 10] | 18 | 21 | 38.9643130(54) | 268.2+3.1 −2.9 y[13] | β− | 39K | 7/2− | 8×10−16[14][n 9] | |||||||||||
40Ar[n 11] | 18 | 22 | 39.9623831220(23) | Stable | 0+ | 0.996035(250)[n 12] | |||||||||||||
41Ar | 18 | 23 | 40.96450057(37) | 109.61(4) min | β− | 41K | 7/2− | Trace[n 9] | |||||||||||
42Ar | 18 | 24 | 41.9630457(62) | 32.9(11) y | β− | 42K | 0+ | ||||||||||||
43Ar | 18 | 25 | 42.9656361(57) | 5.37(6) min | β− | 43K | 5/2(−) | ||||||||||||
44Ar | 18 | 26 | 43.9649238(17) | 11.87(5) min | β− | 44K | 0+ | ||||||||||||
45Ar | 18 | 27 | 44.96803973(55) | 21.48(15) s | β− | 45K | (5/2−,7/2−) | ||||||||||||
46Ar | 18 | 28 | 45.9680392(25) | 8.4(6) s | β− | 46K | 0+ | ||||||||||||
47Ar | 18 | 29 | 46.9727671(13) | 1.23(3) s | β− (>99.8%) | 47K | (3/2)− | ||||||||||||
β−,n? (<0.2%) | 46K | ||||||||||||||||||
48Ar | 18 | 30 | 47.976001(18) | 415(15) ms | β− (62%) | 48K | 0+ | ||||||||||||
β−, n (38%) | 47K | ||||||||||||||||||
49Ar | 18 | 31 | 48.98169(43)# | 236(8) ms | β− | 49K | 3/2−# | ||||||||||||
β−, n (29%) | 48K | ||||||||||||||||||
β−, 2n? | 47K | ||||||||||||||||||
50Ar | 18 | 32 | 49.98580(54)# | 106(6) ms | β− (63%) | 50K | 0+ | ||||||||||||
β−, n (37%) | 49K | ||||||||||||||||||
β−, 2n? | 48K | ||||||||||||||||||
51Ar | 18 | 33 | 50.99303(43)# | 30# ms [>200 ns] | β−? | 51K | 1/2−# | ||||||||||||
β−, n? | 50K | ||||||||||||||||||
β−, 2n? | 49K | ||||||||||||||||||
52Ar | 18 | 34 | 51.99852(64)# | 40# ms [>620 ns] | β−? | 52K | 0+ | ||||||||||||
β−, n? | 51K | ||||||||||||||||||
β−, 2n? | 50K | ||||||||||||||||||
53Ar | 18 | 35 | 53.00729(75)# | 20# ms [>620 ns] | β−? | 53K | 5/2−# | ||||||||||||
β−, n? | 52K | ||||||||||||||||||
β−, 2n? | 51K | ||||||||||||||||||
54Ar | 18 | 36 | 54.01348(86)# | 5# ms [>400 ns] | β−? | 54K | 0+ | ||||||||||||
β−, n? | 53K | ||||||||||||||||||
β−, 2n? | 52K | ||||||||||||||||||
This table header & footer: |
EC: | Electron capture |
n: | Neutron emission |
p: | Proton emission |