Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Arachidonic acid

From Wikipedia, the free encyclopedia
Fatty acid used metabolically in many organisms

Arachidonic acid
Structural formula of arachidonic acid
Structural formula of arachidonic acid
Names
Preferred IUPAC name
(5Z,8Z,11Z,14Z)-Icosa-5,8,11,14-tetraenoic acid[1]
Other names
5,8,11,14-all-cis-Eicosatetraenoic acid
all-cis-5,8,11,14-Eicosatetraenoic acid
Identifiers
3D model (JSmol)
1713889
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard100.007.304Edit this at Wikidata
EC Number
  • 208-033-4
58972
KEGG
MeSHArachidonic+acid
RTECS number
  • CE6675000
UNII
  • InChI=1S/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10,12-13,15-16H,2-5,8,11,14,17-19H2,1H3,(H,21,22) ☒N
    Key: YZXBAPSDXZZRGB-UHFFFAOYSA-N ☒N
  • InChI=1S/C20H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10,12-13,15-16H,2-5,8,11,14,17-19H2,1H3,(H,21,22)/b7-6-,10-9-,13-12-,16-15-
  • Key: YZXBAPSDXZZRGB-DOFZRALJSA-N
  • CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O
Properties
C20H32O2
Molar mass304.474 g·mol−1
Density0.922 g/cm3
Melting point−49 °C (−56 °F; 224 K)
Boiling point169 to 171 °C (336 to 340 °F; 442 to 444 K) at 0.15 mmHg
logP6.994
Acidity (pKa)4.752
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H302,H312,H315,H319,H332,H335
P261,P264,P270,P271,P280,P301+P312,P302+P352,P304+P312,P304+P340,P305+P351+P338,P312,P321,P322,P330,P332+P313,P337+P313,P362,P363,P403+P233,P405,P501
NFPA 704 (fire diamond)
Flash point113 °C (235 °F; 386 K)
Related compounds
Related compounds
Eicosatetraenoic acid
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Arachidonic acid (AA, sometimesARA) is apolyunsaturatedomega−6 fatty acid 20:4(ω−6), or 20:4(5,8,11,14).[2][3] It is aprecursor in the formation ofleukotrienes,prostaglandins, andthromboxanes.[4]

Together withomega−3 fatty acids and other omega−6 fatty acids, arachidonic acid provides energy for body functions, contributes tocell membrane structure, and participates in the synthesis ofeicosanoids, which have numerous roles in physiology assignaling molecules.[2][5]

Its name derives from theancient Greekneologismarachis 'peanut', althoughpeanut oil does not contain any arachidonic acid.[6]Arachidonate is the name of the derivedcarboxylate anion (conjugate base of the acid), salts, and someesters.

Chemistry

[edit]

Inchemical structure, arachidonic acid is acarboxylic acid with a 20-carbon chain and fourcis-double bonds; the first double bond is located at the sixth carbon from the omega end.

Some chemistry sources define 'arachidonic acid' to designate any of theeicosatetraenoic acids. However, almost all writings in biology, medicine, and nutrition limit the term toall cis-5,8,11,14-eicosatetraenoic acid.

Biology

[edit]

Arachidonic acid is a polyunsaturated fatty acid present in thephospholipids (especiallyphosphatidylethanolamine,phosphatidylcholine, andphosphatidylinositides) ofmembranes of the body'scells, and is abundant in thebrain,muscles, andliver. Skeletal muscle is an especially active site of arachidonic acid retention, accounting for roughly 10–20% of the phospholipid fatty acid content typically.[7]

In addition to being involved incellular signaling as a lipidsecond messenger involved in the regulation of signaling enzymes, such asPLC-γ, PLC-δ, andPKC-α, -β, and -γ isoforms, arachidonic acid is a key inflammatory intermediate and can also act as avasodilator.[8] (Note separate synthetic pathways, as described in section below.)

Biosynthesis and cascade in humans

[edit]
Eicosanoid synthesis

Arachidonic acid is freed fromphospholipids by hydrolysis, catalyzed by thephospholipase A2 (PLA2).[8]

Arachidonic acid for signaling purposes appears to be derived by the action of group IVA cytosolic phospholipase A2 (cPLA2, 85 kDa), whereas inflammatory arachidonic acid is generated by the action of a low-molecular-weight secretory PLA2 (sPLA2, 14-18 kDa).[8]

Arachidonic acid is a precursor to a wide range ofeicosanoids:

The production of these derivatives and their actions in the body are collectively known as the "arachidonic acid cascade"; seeEssential fatty acid interactions and the enzyme and metabolite linkages given in the previous paragraph for more details.

PLA2 activation

[edit]
Further information:Phospholipase A2 § Regulation

PLA2, in turn, is activated by ligand binding to receptors, including:

Furthermore, any agent increasing intracellularcalcium may cause activation of some forms of PLA2.[20]

PLC activation

[edit]
Further information:Phospholipase C § Activation

Alternatively, arachidonic acid may be cleaved from phospholipids afterphospholipase C (PLC) cleaves off theinositol trisphosphate group, yieldingdiacylglycerol (DAG), which subsequently is cleaved byDAG lipase to yield arachidonic acid.[19]

Receptors that activate this pathway include:

PLC may also be activated byMAP kinase. Activators of this pathway includePDGF andFGF.[20]

In the body

[edit]

Cell membranes

[edit]

Along with other omega−6 and omega−3 fatty acids, arachidonic acid contributes to the structure of cell membranes.[2] When incorporated intophospholipids, the omega fatty acids affect cell membrane properties, such as permeability and the activity of enzymes and cell-signaling mechanisms.[2]

Brain

[edit]

Arachidonic acid, one of the most abundant fatty acids in the brain, is present in similar quantities todocosahexaenoic acid, with the two accounting for about 20% of brain fatty-acid content.[21] Arachidonic acid is involved in the early neurological development of infants.[22]

Dietary supplement

[edit]
icon
This sectionis missing information about Typical dietary intake — needed to put supplement dose into context. Please expand the section to include this information. Further details may exist on thetalk page.(February 2025)

Arachidonic acid is marketed as adietary supplement.[2][5] A 2019 review of clinical studies investigating the potential health effects of arachidonic acid supplementation of up to 1500 mg per day on human health found there were no clear benefits.[23] There were noadverse effects in adults of using high daily doses (1500 mg) of arachidonic acid on severalbiomarkers ofblood chemistry,immune function, andinflammation.[23]

A 2009 review indicated that consumption of 5−10% offood energy from omega−6 fatty acids including arachidonic acid may reduce the risk ofcardiovascular diseases compared to lower intakes.[24] A 2014 meta-analysis of possible associations between heart disease risk and individual fatty acids reported a significantly reduced risk of heart disease with higher levels of EPA, DHA, and arachidonic acid.[25]

See also

[edit]

References

[edit]
  1. ^Pubchem."5,8,11,14-Eicosatetraenoic acid | C20H32O2 - PubChem".pubchem.ncbi.nlm.nih.gov. Retrieved2016-03-31.
  2. ^abcde"Essential fatty acids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University. June 2019. Retrieved13 May 2024.
  3. ^"IUPAC Lipid nomenclature: Appendix A: names of and symbols for higher fatty acids".www.sbcs.qmul.ac.uk.
  4. ^"Dorland's Medical Dictionary – 'A'".Archived from the original on 11 January 2007. Retrieved2007-01-12.
  5. ^ab"Omega-3 fatty acids". Office of Dietary Supplements, US National Institutes of Health. 15 February 2023. Retrieved13 May 2024.
  6. ^Truswell A, Choudhury N, Peterson D, Mann J, Agostoni C, Riva E, Giovannini M, Marangoni F, Galli C (1994)."Arachidonic acid and peanut oil".The Lancet.344 (8928):1030–1031.doi:10.1016/S0140-6736(94)91695-0.PMID 7999151.S2CID 1522233.
  7. ^Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (Sep 2011)."Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women".Clinical Science.121 (6):267–78.doi:10.1042/cs20100597.PMC 3499967.PMID 21501117.
  8. ^abcBaynes JW, Marek H. Dominiczak (2005).Medical Biochemistry 2nd. Edition.Elsevier Mosby. p. 555.ISBN 0-7234-3341-0.
  9. ^Wlodawer P, Samuelsson B (1973)."On the organization and mechanism of prostaglandin synthetase".The Journal of Biological Chemistry.248 (16):5673–8.doi:10.1016/S0021-9258(19)43558-8.PMID 4723909.
  10. ^Smith WL, Song I (2002). "The enzymology of prostaglandin endoperoxide H synthases-1 and -2".Prostaglandins & Other Lipid Mediators.68–69:115–28.doi:10.1016/s0090-6980(02)00025-4.PMID 12432913.
  11. ^Powell WS, Rokach J (Apr 2015)."Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid".Biochim Biophys Acta.1851 (4):340–355.doi:10.1016/j.bbalip.2014.10.008.PMC 5710736.PMID 25449650.
  12. ^Brash AR, Boeglin WE, Chang MS (Jun 1997)."Discovery of a second 15S-lipoxygenase in humans".Proc Natl Acad Sci U S A.94 (12):6148–52.Bibcode:1997PNAS...94.6148B.doi:10.1073/pnas.94.12.6148.PMC 21017.PMID 9177185.
  13. ^Zhu D, Ran Y (May 2012)."Role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in hypoxia-induced pulmonary hypertension".J Physiol Sci.62 (3):163–72.doi:10.1007/s12576-012-0196-9.PMC 10717549.PMID 22331435.S2CID 2723454.
  14. ^Romano M, Cianci E, Simiele F, Recchiuti A (Aug 2015). "Lipoxins and aspirin-triggered lipoxins in resolution of inflammation".Eur J Pharmacol.760:49–63.doi:10.1016/j.ejphar.2015.03.083.PMID 25895638.
  15. ^Feltenmark S, Gautam N, Brunnström A, Griffiths W, Backman L, Edenius C, Lindbom L, Björkholm M, Claesson HE (Jan 2008)."Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells".Proc Natl Acad Sci U S A.105 (2):680–5.Bibcode:2008PNAS..105..680F.doi:10.1073/pnas.0710127105.PMC 2206596.PMID 18184802.
  16. ^Porro B, Songia P, Squellerio I, Tremoli E, Cavalca V (Aug 2014). "Analysis, physiological and clinical significance of 12-HETE: A neglected platelet-derived 12-lipoxygenase product".J Chromatogr B.964:26–40.doi:10.1016/j.jchromb.2014.03.015.PMID 24685839.
  17. ^Ueda N, Tsuboi K, Uyama T (May 2013)."Metabolism of endocannabinoids and related N -acylethanolamines: Canonical and alternative pathways".FEBS J.280 (9):1874–94.doi:10.1111/febs.12152.PMID 23425575.S2CID 205133026.
  18. ^Walter F., PhD. Boron (2003).Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 108.ISBN 1-4160-2328-3.
  19. ^abcdefWalter F., PhD. Boron (2003).Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 103.ISBN 1-4160-2328-3.
  20. ^abcdefWalter F., PhD. Boron (2003).Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 104.ISBN 1-4160-2328-3.
  21. ^Crawford MA, Sinclair AJ (1971).Nutritional influences in the evolution of mammalian brain. In: lipids, malnutrition & the developing brain. pp. 267–92.doi:10.1002/9780470719862.ch16.PMID 4949878.{{cite book}}:|journal= ignored (help)
  22. ^Crawford MA, Sinclair AJ, Hall B, et al. (July 2023)."The imperative of arachidonic acid in early human development".Progress in Lipid Research.91 101222.doi:10.1016/j.plipres.2023.101222.hdl:10044/1/103039.PMID 36746351.
  23. ^abCalder PC, Campoy C, Eilander A, Fleith M, Forsyth S, Larsson PO, Schelkle B, Lohner S, Szommer A, van de Heijning BJ, Mensink RP (June 2019)."A systematic review of the effects of increasing arachidonic acid intake on PUFA status, metabolism and health-related outcomes in humans".The British Journal of Nutrition.121 (11):1201–1214.doi:10.1017/S0007114519000692.hdl:10481/60184.PMID 31130146.
  24. ^Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, Engler MM, Engler MB, Sacks F (2009)."Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention".Circulation.119 (6):902–7.doi:10.1161/CIRCULATIONAHA.108.191627.PMID 19171857.S2CID 15072227.
  25. ^Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, Franco OH, Butterworth AS, Forouhi NG, Thompson SG, Khaw KT, Mozaffarian D, Danesh J, Di Angelantonio E (Mar 18, 2014). "Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis".Annals of Internal Medicine.160 (6):398–406.doi:10.7326/M13-1788.PMID 24723079.

External links

[edit]
Precursor
Prostanoids
Prostaglandins (PG)
Precursor
Active
D/J
E/F
I
Thromboxanes (TX)
Leukotrienes (LT)
Precursor
Initial
SRS-A
Eoxins (EX)
Precursor
Eoxins
Nonclassic
By function
Saturated
ω−3 Unsaturated
ω−5 Unsaturated
ω−6 Unsaturated
ω−7 Unsaturated
ω−9 Unsaturated
ω−10 Unsaturated
ω−11 Unsaturated
ω−12 Unsaturated
Receptor
(ligands)
BLTTooltip Leukotriene B4 receptor
BLT1Tooltip Leukotriene B4 receptor 1
BLT2Tooltip Leukotriene B4 receptor 2
CysLTTooltip Cysteinyl leukotriene receptor
CysLT1Tooltip Cysteinyl leukotriene receptor 1
CysLT2Tooltip Cysteinyl leukotriene receptor 2
CysLTETooltip Cysteinyl leukotriene receptor E
Enzyme
(inhibitors)
5-LOXTooltip Arachidonate 5-lipoxygenase
12-LOXTooltip Arachidonate 12-lipoxygenase
15-LOXTooltip Arachidonate 15-lipoxygenase
LTA4HTooltip Leukotriene A4 hydrolase
LTB4HTooltip Leukotriene B4 ω-hydroxylase
LTC4STooltip Leukotriene C4 synthase
LTC4HTooltip Leukotriene C4 hydrolase
LTD4Tooltip Leukotriene D4 hydrolase
Others
PPARTooltip Peroxisome proliferator-activated receptormodulators
PPARαTooltip Peroxisome proliferator-activated receptor alpha
PPARδTooltip Peroxisome proliferator-activated receptor delta
PPARγTooltip Peroxisome proliferator-activated receptor gamma
Non-selective
Receptor
(ligands)
DP (D2)Tooltip Prostaglandin D2 receptor
DP1Tooltip Prostaglandin D2 receptor 1
DP2Tooltip Prostaglandin D2 receptor 2
EP (E2)Tooltip Prostaglandin E2 receptor
EP1Tooltip Prostaglandin EP1 receptor
EP2Tooltip Prostaglandin EP2 receptor
EP3Tooltip Prostaglandin EP3 receptor
EP4Tooltip Prostaglandin EP4 receptor
Unsorted
FP (F)Tooltip Prostaglandin F receptor
IP (I2)Tooltip Prostacyclin receptor
TP (TXA2)Tooltip Thromboxane receptor
Unsorted
Enzyme
(inhibitors)
COX
(
PTGS)
PGD2STooltip Prostaglandin D synthase
PGESTooltip Prostaglandin E synthase
PGFSTooltip Prostaglandin F synthase
PGI2STooltip Prostacyclin synthase
TXASTooltip Thromboxane A synthase
Others
TRPA
Activators
Blockers
TRPC
Activators
Blockers
TRPM
Activators
Blockers
TRPML
Activators
Blockers
TRPP
Activators
Blockers
TRPV
Activators
Blockers
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Arachidonic_acid&oldid=1313790420"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp