Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Apollonius's theorem

From Wikipedia, the free encyclopedia
Relates the length of a median of a triangle to the lengths of its sides
This article is about the lengths of the sides of a triangle. For his work on circles, seeProblem of Apollonius.
green area + blue area = red area
Pythagoras as a special case:
green area = red area

Ingeometry,Apollonius's theorem is atheorem relating the length of amedian of atriangle to the lengths of its sides. It states that the sum of the squares of any two sides of any triangle equals twice the square on half the third side plus twice the square on the median bisecting the third side.

The theorem is found as proposition VII.122 ofPappus of Alexandria'sCollection (c. 340 AD). It may have been inApollonius of Perga's lost treatisePlane Loci (c. 200 BC), and was included inRobert Simson's 1749 reconstruction of that work.[1]

Statement and relation to other theorem

[edit]

In any triangleABC,{\displaystyle ABC,} ifAD{\displaystyle AD} is a median (|BD|=|CD|{\displaystyle |BD|=|CD|}), then|AB|2+|AC|2=2(|BD|2+|AD|2).{\displaystyle |AB|^{2}+|AC|^{2}=2(|BD|^{2}+|AD|^{2}).}It is aspecial case ofStewart's theorem. For anisosceles triangle with|AB|=|AC|,{\displaystyle |AB|=|AC|,} the medianAD{\displaystyle AD} is perpendicular toBC{\displaystyle BC} and the theorem reduces to thePythagorean theorem for triangleADB{\displaystyle ADB} (or triangleADC{\displaystyle ADC}). From the fact that the diagonals of aparallelogram bisect each other, the theorem isequivalent to theparallelogram law.

Proof

[edit]
Proof of Apollonius's theorem

The theorem can be proved as a special case ofStewart's theorem, or can be proved using vectors (seeparallelogram law). The following is an independent proof using the law of cosines.[2]

Let the triangle have sidesa,b,c{\displaystyle a,b,c} with a mediand{\displaystyle d} drawn to sidea.{\displaystyle a.} Letm{\displaystyle m} be the length of the segments ofa{\displaystyle a} formed by the median, som{\displaystyle m} is half ofa.{\displaystyle a.} Let the angles formed betweena{\displaystyle a} andd{\displaystyle d} beθ{\displaystyle \theta } andθ,{\displaystyle \theta ^{\prime },} whereθ{\displaystyle \theta } includesb{\displaystyle b} andθ{\displaystyle \theta ^{\prime }} includesc.{\displaystyle c.} Thenθ{\displaystyle \theta ^{\prime }} is the supplement ofθ{\displaystyle \theta } andcosθ=cosθ.{\displaystyle \cos \theta ^{\prime }=-\cos \theta .} Thelaw of cosines forθ{\displaystyle \theta } andθ{\displaystyle \theta ^{\prime }} states thatb2=m2+d22dmcosθc2=m2+d22dmcosθ=m2+d2+2dmcosθ.{\displaystyle {\begin{aligned}b^{2}&=m^{2}+d^{2}-2dm\cos \theta \\c^{2}&=m^{2}+d^{2}-2dm\cos \theta '\\&=m^{2}+d^{2}+2dm\cos \theta .\,\end{aligned}}}

Add the first and third equations to obtainb2+c2=2(m2+d2){\displaystyle b^{2}+c^{2}=2(m^{2}+d^{2})}as required.

See also

[edit]

References

[edit]
  1. ^Ostermann, Alexander; Wanner, Gerhard (2012). "The Theorems of Apollonius–Pappus–Stewart".Geometry by Its History. Springer. § 4.5, pp. 89–91.doi:10.1007/978-3-642-29163-0_4.
  2. ^Godfrey, Charles; Siddons, Arthur Warry (1908).Modern Geometry. University Press. p. 20.

Further reading

[edit]
  • Allen, Frank B. (1950). "Teaching for Generalization in Geometry".The Mathematics Teacher.43:245–251.JSTOR 27953576.
  • Bunt, Lucas N. H.; Jones, Phillip S.; Bedient, Jack D. (1976).The Historical Roots of Elementary Mathematics. Englewood Cliffs, New Jersey: Prentice-Hall. pp. 198–199.ISBN 0133890155. Dover reprint, 1988.
  • Dlab, Vlastimil; Williams, Kenneth S. (2019). "The Many Sides of the Pythagorean Theorem".The College Mathematics Journal.50 (3):162–172.JSTOR 48661800.
  • Godfrey, Charles; Siddons, Arthur W. (1908).Modern Geometry. Cambridge University Press. pp. 20–21.
  • Hajja, Mowaffaq; Krasopoulos, Panagiotis T.; Martini, Horst (2022). "The median triangle theorem as an entrance to certain issues in higher-dimensional geometry".Mathematische Semesterberichte.69:19–40.doi:10.1007/s00591-021-00308-5.
  • Lawes, C. Peter (2013). "Proof Without Words: The Length of a Triangle Median via the Parallelogram".Mathematics Magazine.86 (2): 146.doi:10.4169/math.mag.86.2.146.
  • Lopes, André Von Borries (2024). "Apollonius's Theorem via Heron's Formula".Mathematics Magazine.97 (3):272–273.doi:10.1080/0025570X.2024.2336425.
  • Nelsen, Roger B. (2024). "Apollonius's Theorem via Ptolemy's Theorem".Mathematics Magazine.doi:10.1080/0025570X.2024.2385255.
  • Rose, Mike (2007). "27. Reflections on Apollonius' Theorem". Resource Notes.Mathematics in School.36 (5):24–25.JSTOR 30216074.
  • Stokes, G. D. C. (1929). "The theorem of Apollonius by dissection".Mathematical Notes.24: xviii.doi:10.1017/S1757748900001973.
  • Surowski, David B. (2010) [2007].Advanced High-School Mathematics (lecture notes) (9th draft ed.). Shanghai American School. p. 27.


Mathematicians
(timeline)
Treatises
Concepts
and definitions
Results
InElements
Centers/Schools
Related
History of
Other cultures
Retrieved from "https://en.wikipedia.org/w/index.php?title=Apollonius%27s_theorem&oldid=1309196471"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp