Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Anthraquinone

From Wikipedia, the free encyclopedia
Yellow chemical compound: building block of many dyes
9,10-Anthraquinone[1]
Names
Preferred IUPAC name
Anthracene-9,10-dione[2]
Other names
  • Anthraquinone
  • 9,10-Anthracenedione
  • Anthradione
  • 9,10-Anthrachinon
  • Anthracene-9,10-quinone
  • 9,10-Dihydro-9,10-dioxoanthracene
  • Hoelite
  • Morkit
  • Corbit
Identifiers
3D model (JSmol)
390030
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard100.001.408Edit this at Wikidata
EC Number
  • 201-549-0
102870
KEGG
RTECS number
  • CB4725000
UNII
UN number3143
  • InChI=1S/C14H8O2/c15-13-9-5-1-2-6-10(9)14(16)12-8-4-3-7-11(12)13/h1-8H
    Key: RZVHIXYEVGDQDX-UHFFFAOYSA-N
  • O=C1c2ccccc2C(=O)c3ccccc13
Properties
C14H8O2
Molar mass208.216 g·mol−1
AppearanceYellow solid
Density1.438 g/cm3[1]
Melting point284.8 °C (544.6 °F; 558.0 K)[1]
Boiling point377 °C (711 °F; 650 K)[1]
Insoluble
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
possible carcinogen
GHS labelling:
GHS08: Health hazard
Danger
H350
P201,P202,P281,P308+P313,P405,P501
Flash point185 °C (365 °F; 458 K)
Related compounds
Related compounds
quinone,
anthracene
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Anthraquinone, also calledanthracenedione ordioxoanthracene, is anaromaticorganic compound with formulaC
14
H
8
O
2
. Severalisomers exist but these terms usually refer to 9,10-anthraquinone (IUPAC: 9,10-dioxoanthracene) wherein theketo groups are located on the central ring. It is used as a digester additive towood pulp for papermaking. Manyanthraquinone derivatives are generated by organisms or synthesised industrially for use asdyes, pharmaceuticals, andcatalysts. Anthraquinone is a yellow, highly crystalline solid, poorlysoluble inwater but soluble in hot organic solvents. It is almost completely insoluble inethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineralhoelite.

Synthesis

[edit]

There are several current industrial methods to produce 9,10-anthraquinone:

  1. The oxidation ofanthracene.Chromium(VI) is the typical oxidant.
  2. TheFriedel–Crafts reaction ofbenzene andphthalic anhydride in presence ofAlCl3. o-Benzoylbenzoic acid is an intermediate. This reaction is useful for producing substitutedanthraquinones.
  3. TheDiels-Alder reaction ofnaphthoquinone andbutadiene followed by oxidative dehydrogenation.
  4. The acid-catalyzed dimerization ofstyrene to give a 1,3-diphenylbutene, which then can be transformed to the anthraquinone.[3] This process was pioneered byBASF.

It also arises via the Rickert–Alder reaction, aretro-Diels–Alder reaction.

Reactions

[edit]

Hydrogenation givesdihydroanthraquinone (anthrahydroquinone). Reduction with copper givesanthrone.[4] Sulfonation with sulfuric acid gives anthroquinone-1-sulfonic acid,[5] which reacts with sodium chlorate to give 1-chloroanthaquinone.[6]

Applications

[edit]
See also:Anthraquinones

Digester additive in papermaking

[edit]

9,10-Anthraquinone is used as a digester additive in production ofpaper pulp byalkaline processes, like thekraft, the alkalinesulfite or theSoda-AQ processes. The anthraquinone is aredoxcatalyst. The reaction mechanism may involvesingle electron transfer (SET).[7] The anthraquinone oxidizes the reducing end of polysaccharides in the pulp, i.e.,cellulose andhemicellulose, and thereby protecting it from alkaline degradation (peeling). The anthraquinone is reduced to9,10-dihydroxyanthracene which then can react withlignin. The lignin is degraded and becomes more watersoluble and thereby more easy to wash away from the pulp, while the anthraquinone is regenerated. This process gives an increase in yield of pulp, typically 1–3% and a reduction inkappa number.[8]

Hydrogen peroxide production

[edit]

2-Alkyl-9,10-Anthroquinones are used as a catalyst in theanthraquinone process for the production of hydrogen peroxide. This process is the dominant industrial method of hydrogen peroxide production.[9]

Niche uses

[edit]

9,10-anthraquinone is used as a bird repellant on seeds, and as a gas generator in satellite balloons.[10] It has also been mixed with lanolin and used as a wool spray to protect sheep flocks againstkea attacks in New Zealand.[11]

Other isomers

[edit]

Several other isomers of anthraquinone exist, including the 1,2-, 1,4-, and 2,6-anthraquinones. They are of minor importance compared to 9,10-anthraquinone.

Safety

[edit]

Anthraquinone has no recordedLD50, probably because it is so insoluble in water.

In terms of metabolism of substituted anthraquinones, the enzyme encoded by the geneUGT1A8 has glucuronidase activity with many substrates including anthraquinones.[12]

See also

[edit]

References

[edit]
  1. ^abcdHaynes, William M., ed. (2016).CRC Handbook of Chemistry and Physics (97th ed.).CRC Press. p. 3.28.ISBN 9781498754293.
  2. ^International Union of Pure and Applied Chemistry (2014).Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013.The Royal Society of Chemistry. p. 724.doi:10.1039/9781849733069.ISBN 978-0-85404-182-4.
  3. ^Vogel, A. "Anthraquinone".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a02_347.ISBN 978-3-527-30673-2.
  4. ^Macleod, L. C.; Allen, C. F. H. (1934). "Benzanthrone".Organic Syntheses.14: 4.doi:10.15227/orgsyn.014.0004.
  5. ^Scott, W. J.; Allen, C. F. H. (1938). "Potassium Anthraquinone-α-Sulfonate".Organic Syntheses.18: 72.doi:10.15227/orgsyn.018.0072.
  6. ^Scott, W. J.; Allen, C. F. H. (1938). "α-Chloroanthraquinone".Organic Syntheses.18: 15.doi:10.15227/orgsyn.018.0015.
  7. ^Samp, J. C. (2008).A comprehensive mechanism for anthraquinone mass transfer in alkaline pulping (Thesis). Georgia Institute of Technology. p. 30.hdl:1853/24767.
  8. ^Sturgeoff, L. G.; Pitl, Y. (1997) [1993]. "Low Kappa Pulping without Capital Investment". In Goyal, G. C. (ed.).Anthraquinone Pulping. TAPPI Press. pp. 3–9.ISBN 0-89852-340-0.
  9. ^Campos-Martin, Jose M.; Blanco-Brieva, Gema; Fierro, Jose L. G. (2006)."Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process".Angewandte Chemie International Edition.45 (42):6962–6984.doi:10.1002/anie.200503779.ISSN 1521-3773.
  10. ^"www.americanheritage.com". Archived fromthe original on 2009-06-09. Retrieved2009-09-22.
  11. ^Dudding, Adam (29 July 2012)."How to solve a problem like a kea".Sunday Star Times. New Zealand. Retrieved11 November 2014.
  12. ^Ritter, J. K.; Chen, F.; Sheen, Y. Y.; Tran, H. M.; Kimura, S.; Yeatman, M. T.; Owens, I. S. (1992)."A Novel Complex Locus UGT1 Encodes Human Bilirubin, Phenol, and other UDP-Glucuronosyltransferase Isozymes with Identical Carboxyl Termini"(PDF).Journal of Biological Chemistry.267 (5):3257–3261.doi:10.1016/S0021-9258(19)50724-4.PMID 1339448.

External links

[edit]
International
Other
Carbon-carbon
bond forming
reactions
Homologation reactions
Olefination reactions
Carbon-heteroatom
bond forming
reactions
Degradation
reactions
Organic redox
reactions
Rearrangement
reactions
Ring forming
reactions
Cycloaddition
Heterocycle forming reactions
Retrieved from "https://en.wikipedia.org/w/index.php?title=Anthraquinone&oldid=1315035073"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp