Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Angiosperm Phylogeny Group

From Wikipedia, the free encyclopedia
Collaborative research group for the classification of flowering plants
Evolution of theangiosperms according to the Angiosperm Phylogeny Group (2013) Key: C3 –C3 carbon fixation; C4 –C4 carbon fixation

TheAngiosperm Phylogeny Group (APG) is an informal international group of systematicbotanists who collaborate to establish a consensus on thetaxonomy offlowering plants (angiosperms) that reflects new knowledge about plant relationships discovered throughphylogenetic studies.

As of 2016[update], four incremental versions of a classification system have resulted from this collaboration, published in 1998, 2003, 2009 and 2016. An important motivation for the group was what they considered deficiencies in prior angiosperm classifications since they were not based onmonophyletic groups (i.e., groups that include all the descendants of a common ancestor).

APG publications are increasingly influential, with a number of major herbaria changing the arrangement of their collections to match the latest APG system.

Angiosperm classification and the APG

[edit]
See also:Flowering plant § History of classification

In the past, classification systems were typically produced by an individual botanist or by a small group. The result was a large number of systems (seeList of systems of plant taxonomy). Different systems and their updates were generally favoured in different countries. Examples are theEngler system in continental Europe, theBentham & Hooker system in Britain (particularly influential because it was used byKew), theTakhtajan system in the former Soviet Union and countries within its sphere of influence and theCronquist system in the United States.[1]

Before the availability of genetic evidence, the classification ofangiosperms (also known asflowering plants,Angiospermae,Anthophyta orMagnoliophyta) was based on theirmorphology (particularly of their flower) andbiochemistry (the kinds of chemical compounds in the plant).

After the 1980s, detailed genetic evidence analysed byphylogenetic methods became available and while confirming or clarifying some relationships in existing classification systems, it radically changed others. This genetic evidence created a rapid increase in knowledge that led to many proposed changes; stability was "rudely shattered".[2] This posed problems for all users of classification systems (including encyclopaedists). The impetus came from a major molecular study published in 1993[3] based on 5000 flowering plants and aphotosynthesis gene (rbcL).[4] This produced a number of surprising results in terms of the relationships between groupings of plants, for instance the dicotyledons were not supported as a distinct group. At first there was a reluctance to develop a new system based entirely on a single gene. However, subsequent work continued to support these findings. These research studies involved an unprecedented collaboration between a very large number of scientists. Therefore, rather than naming all the individual contributors a decision was made to adopt the name Angiosperm Phylogeny Group classification, or APG for short.[4] The first publication under this name was in 1998,[2] and attracted considerable media attention.[4] The intention was to provide a widely accepted and more stable point of reference for angiosperm classification.

As of 2016[update], three revisions have been published, in 2003 (APG II), in 2009 (APG III) and in 2016 (APG IV), each superseding the previous system. Thirteen researchers have been listed as authors to the three papers, and a further 43 as contributors (seeMembers of the APG below).[5]

A classification presents a view at a particular point in time, based on a particular state of research. Independent researchers, including members of the APG, continue to publish their own views on areas of angiosperm taxonomy. Classifications change, however inconvenient this is to users. However, the APG publications are increasingly regarded as an authoritative point of reference and the following are some examples of the influence of the APG system:

  • A significant number of major herbaria, includingKew, are changing the order of their collections in accordance with APG.[6]
  • The influentialWorld Checklist of Selected Plant Families (also from Kew) is being updated to the APG III system.[7]
  • In the United States in 2006, a photographic survey of the plants of the US and Canada is organized according to the APG II system.[8]
  • In the UK, the 2010 edition of the standard flora of the British Isles (byStace) is based on the APG III system. The previous editions were based on theCronquist system.[9]

Principles of the APG system

[edit]

The principles of the APG's approach to classification were set out in the first paper of 1998, and have remained unchanged in subsequent revisions. Briefly, these are:[2]

  • The Linnean system oforders andfamilies should be retained. "The family is central in flowering plant systematics." An ordinal classification of families is proposed as a "reference tool of broad utility". Orders are considered to be of particular value in teaching and in studying family relationships.
  • Groups should bemonophyletic (i.e. consist ofall descendants of a common ancestor). The main reason why existing systems are rejected is because they do not have this property, they are notphylogenetic.
  • A broad approach is taken to defining the limits of groups such as orders and families. Thus of orders, it is said that a limited number of larger orders will be more useful. Families containing only a single genus and orders containing only a single family are avoided where this is possible without violating the over-riding requirement for monophyly.
  • Above or parallel to the level of orders and families, the termclades is used more freely. (Some clades have later been given formal names in a paper associated with the 2009 revision of the APG system.[10]) The authors say that it is "not possible, nor is it desirable" to name all clades in a phylogenetic tree; however, systematists need to agree on names for some clades, particularly orders and families, to facilitate communication and discussion.

For a detailed discussion on phylogenetic nomenclature, see Cantinoet al. (2007).[11])

APG I (1998)

[edit]
See also:APG system

The initial 1998 paper by the APG made angiosperms the first large group of organisms to be systematically re-classified primarily on the basis of genetic characteristics.[2] The paper explained the authors' view that there is a need for a classification system for angiosperms at the level of families, orders and above, but that existing classifications were "outdated". The main reason why existing systems were rejected was because they were notphylogenetic,i.e. not based on strictlymonophyletic groups (groups which consist ofall descendants of a common ancestor). An ordinal classification of flowering plant families was proposed as a "reference tool of broad utility". The broad approach adopted to defining the limits of orders resulted in the recognition of 40 orders, compared to, for example, 232 inTakhtajan's 1997 classification.[2][1]

In 1998 only a handful of families had been adequately studied, but the primary aim was to obtain a consensus on the naming of higher orders. Such a consensus proved relatively easy to achieve but the resultant tree was highly unresolved. That is, while the relationship of orders was established, their composition was not.[12]

Other features of the proposed classification included:[citation needed]

  • Formal, scientific names are not used above the level of order, namedclades being used instead. Thuseudicots andmonocots are not given a formal rank on the grounds that "it is not yet clear at which level they should be recognized".
  • A substantial number of taxa whose classification had traditionally been uncertain are given places, although there still remain 25 families of "uncertain position".
  • Alternative classifications are provided for some groups, in which a number of families can either be regarded as separate or can be merged into a single larger family. For example, theFumariaceae can either be treated as a separate family or as part ofPapaveraceae.

A major outcome of the classification was the disappearance of the traditional division of the flowering plants into two groups,monocots anddicots. The monocots were recognized as a clade, but the dicots were not, with a number of former dicots being placed in separate groups basal to both monocots and the remaining dicots, the eudicots or 'true dicots'.[2] The overall scheme was relatively simple. This consisted of agrade consisting of isolated taxa (referred to asANITA), followed by the major angiospermradiation, clades of monocots, magnolids and eudicots. The last being a large clade with smaller subclades and two main groupings,rosids andasterids, each in turn having two major subclades.[12]

APG II (2003)

[edit]
See also:APG II system

As the overall relationship between groups of flowering plants became clearer, the focus shifted to the family level, in particular those families generally accepted as problematic. Again, consensus was achieved relatively easily resulting in an updated classification at the family level.[12] The second paper published by the APG in 2003 presented an update to the original classification of 1998. The authors stated that changes were proposed only when there was "substantial new evidence" which supported them.[13]

The classification continued the tradition of seeking broad circumscriptions of taxa, for example trying to place small families containing only one genus in a larger group. The authors stated that they have generally accepted the views of specialists, although noting that specialists "nearly always favour splitting of groups" regarded as too varied in their morphology.[13]

APG II continued and indeed extends the use of alternative 'bracketed' taxa allowing the choice of either a large family or a number of smaller ones. For example, the large familyAsparagaceae includes seven 'bracketed' families which can either be considered as part of the Asparagaceae or as separate families.Some of the main changes in APG II were:

  • New orders are proposed, particularly to accommodate the 'basal clades' left as families in the first system.
  • Many of the previously unplaced families are now located within the system.
  • Several major families are re-structured.[13]

In 2007, a paper was published giving a linear ordering of the families in APG II, suitable for ordering herbarium specimens, for example.[14]

APG III (2009)

[edit]
See also:APG III system

The third paper from the APG updates the system described in the 2003 paper. The broad outline of the system remains unchanged, but the number of previously unplaced families and genera is significantly reduced. This requires the recognition of both new orders and new families compared to the previous classification. The number of orders goes up from 45 to 59; only 10 families are not placed in an order and only two of these (Apodanthaceae andCynomoriaceae) are left entirely outside the classification. The authors say that they have tried to leave long-recognized families unchanged, while merging families with few genera. They "hope the classification [...] will not need much further change."[6]

A major change is that the paper discontinues the use of 'bracketed' families in favour of larger, more inclusive families. As a result, the APG III system contains only 415 families, rather than the 457 of APG II. For example, the agave family (Agavaceae) and the hyacinth family (Hyacinthaceae) are no longer regarded as distinct from the broader asparagus family (Asparagaceae). The authors say that alternative circumscriptions, as in APG I and II, are likely to cause confusion and that major herbaria which are re-arranging their collections in accordance with the APG approach have all agreed to use the more inclusive families.[6][15][12] This approach is being increasingly used in collections inherbaria andbotanic gardens.[16]

In the same volume of the journal, two related papers were published. One gives a linear ordering of the families in APG III; as with the linear ordering published for APG II, this is intended for ordering herbarium specimens, for example.[17] The other paper gives, for the first time, a classification of the families in APG III which uses formaltaxonomic ranks; previously only informal clade names were used above the ordinal level.[10]

APG IV (2016)

[edit]
Further information:APG IV system

In the development of a fourth version there was some controversy over the methodology,[18] and the development of a consensus proved more difficult than in previous iterations.[5] In particularPeter Stevens questioned the validity of discussions regarding family delimitation in the absence of changes of phylogenetic relationships.[19]

Further progress was made by the use of large banks of genes, including those ofplastid,mitochondrial andnuclearribosomal origin, such as that ofDouglas Soltis and colleagues (2011).[20] The fourth version was finally published in 2016.[12] It arose from an international conference hosted at the Royal Botanical Gardens in September 2015[4] and also an online survey of botanists and other users.[5] The broad outline of the system remains unchanged but several new orders are included (Boraginales,Dilleniales,Icacinales,Metteniusales andVahliales), some new families are recognised (Kewaceae,Macarthuriaceae,Maundiaceae,Mazaceae,Microteaceae,Nyssaceae,Peraceae,Petenaeaceae andPetiveriaceae) and some previously recognised families are lumped (Aristolochiaceae now includesLactoridaceae andHydnoraceae;Restionaceae now re-includesAnarthriaceae andCentrolepidaceae; andBuxaceae now includesHaptanthaceae). Due to nomenclatural issues, the family nameAsphodelaceae is used instead ofXanthorrhoeaceae, andFrancoaceae is used instead ofMelianthaceae (and now also includesVivianiaceae). This brings the total number of orders and families recognized in the APG system to 64 and 416, respectively. Two additional informal major clades,superrosids andsuperasterids, that each comprise the additional orders that are included in the larger clades dominated by therosids andasterids are also included. APG IV also uses the linear approach (LAPG) as advocated by Hastonet al. (2009)[17] In a supplemental fileBynget al. provide an alphabetical list of families by orders.[21]

Updates

[edit]

Peter Stevens, one of the authors of all four of the APG papers, maintains a web site, theAngiosperm Phylogeny Website (APWeb), hosted by theMissouri Botanical Garden, which has been regularly updated since 2001, and is a useful source for the latest research in angiosperm phylogeny which follows the APG approach.[22] Other sources include the Angiosperm Phylogeny Poster[23] and The Flowering Plants Handbook.[24]

Members of the APG

[edit]
NameAPG IAPG IIAPG IIIAPG IVInstitutional affiliation
Birgitta BremercaaSwedish Academy of Sciences
Kåre BremeraaaUppsala University; Stockholm University
James W. ByngaPlant Gateway; University of Aberdeen
Mark Wayne ChaseaaaaRoyal Botanic Gardens, Kew
Maarten J.M. ChristenhuszaPlant Gateway; Royal Botanic Gardens, Kew
Michael F. FayccaaRoyal Botanic Gardens, Kew
Walter S. JuddaUniversity of Florida
David J. MabberleyaUniversity of Oxford; Universiteit Leiden; Naturalis Biodiversity Center; Macquarie University; National Herbarium of New South Wales
James L. RevealaaUniversity of Maryland; Cornell University
Alexander N. SennikovaFinnish Museum of Natural History; Komarov Botanical Institute
Douglas E. SoltiscaaaUniversity of Florida
Pamela S. SoltiscaaaFlorida Museum of Natural History
Peter F. StevensaaaaHarvard University Herbaria; University of Missouri-St. Louis and Missouri Botanical Garden

a = listed as an author; c = listed as a contributor

References

[edit]
  1. ^abBhattacharyya & Bhattacharyya (2012)
  2. ^abcdefAPG I (1998)
  3. ^Chase et al. (1993)
  4. ^abcdFay (2016)
  5. ^abcChristenhusz et al. (2015)
  6. ^abcAPG III (2009)
  7. ^WCLSPF (2015)
  8. ^Spears (2006)
  9. ^Stace (2010)
  10. ^abChase & Reveal (2009)
  11. ^Cantino et al. (2007)
  12. ^abcdeAPG IV (2016)
  13. ^abcAPG II (2003)
  14. ^Haston et al. (2007)
  15. ^RBG (2009)
  16. ^Wearn et al. (2013)
  17. ^abHaston et al. (2009)
  18. ^Cole (2015)
  19. ^Stevens (2015),On this classification in particular
  20. ^Soltis et al. (2011)
  21. ^Byng et al 2016.
  22. ^Stevens (2015)
  23. ^Cole et al 2019.
  24. ^Byng (2014)

Bibliography

[edit]

APG

[edit]
APG I-IV (1998–2016)

External links

[edit]
Wikimedia Commons has media related toAPWebsite.
This is a selected list of the more influential systems. There are many other systems, for instance a review of earlier systems, published byLindley in his 1853 edition, andDahlgren (1982). Examples include the works ofScopoli,Ventenat,Batsch andGrisebach.
John Ray system (1686–1704)
  • A discourse on the seeds of plants
  • Methodus plantarum nova
  • De Variis Plantarum Methodis Dissertatio Brevis
  • Methodus plantarum emendata et aucta
Linnaean system (1735–51)
Adanson system (1763)
Familles naturelles des plantes
De Jussieu system (1789)
Genera Plantarum, secundum ordines naturales disposita juxta methodum in Horto Regio Parisiensi exaratam
De Candolle system (1819–24)
Berchtold andPresl
system (1820–1823)
Agardh system (1825)
Classes Plantarum
Gray system (1821)
The Natural Arrangement of British Plants
Perleb system (1826)
Lehrbuch der Naturgeschichte des Pflanzenreichs
Dumortier system (1829)
Analyse des familles des plantes
Lindley system (1830–45)
  • An Introduction to the Natural System of Botany
  • The Vegetable Kingdom
Don system (1834)
General History of Dichlamydious Plants.
Bentham & Hooker system
(1862–83)
Genera plantarum ad exemplaria imprimis in herbariis kewensibus servata definita.
Baillon system (1867–94)
Histoire des plantes
Post-Darwinian (Phyletic)
Nineteenth century
Eichler system (1875–1886)
  • Blüthendiagramme: construirt und erläutert
  • Syllabus der Vorlesungen über Phanerogamenkunde
Engler system (1886–1924)
van Tieghem system (1891)
Traité de botanique
Twentieth century
Dalla Torre & Harms
system (1900–07)
Genera Siphonogamarum, ad systema Englerianum conscripta
Warming system (1912)
Haandbog i den systematiske botanik
Hallier system (1912)
L'origine et le système phylétique des angiospermes
Bessey system (1915)
The phylogenetic taxonomy of flowering plants
Wettstein system (1901–35)
Handbuch der systematischen Botanik
Lotsy system (1907–11)
Vorträge über botanische Stammesgeschichte, gehalten an der Reichsuniversität zu Leiden. Ein Lehrbuch der Pflanzensystematik.
Hutchinson system (1926–73)
The families of flowering plants, arranged according to a new system based on their probable phylogeny
Calestani system (1933)
Le origini e la classificazione delle Angiosperme
Kimura system (1956)
Système et phylogénie des monocotyledones
Emberger system (1960)
Traité de Botanique systématique
Melchior system (1964)
Syllabus der Pflanzenfamilien
Takhtajan system (1966–97)
  • A system and phylogeny of the flowering plants
  • Flowering plants: origin and dispersal
  • Diversity and classification of flowering plants
Cronquist system (1968–81)
  • The evolution and classification of flowering plants
  • An integrated system of classification of flowering plants
Goldberg system (1986–89
Classification, Evolution and Phylogeny of the Families of Dicotyledons
Dahlgren system (1975–85)
The families of the monocotyledons: structure, evolution, and taxonomy
Thorne system (1968–2000)
An updated phylogenetic classification of the flowering plants
Kubitzki system (1990–)
The Families and Genera of Vascular Plants
Reveal system (1997)
Reveal System of Angiosperm Classification
See also
Plantae at Wikispecies •
Classification ofArchaeplastida orPlantaes.l.
incertae sedis
Glaucoplantae
Glaucophyta
Rhodoplantae
Picozoa
Rhodelphidia
Rhodophyta
(red algae)
Cyanidiophytina
Proteorhodophytina
Eurhodophytina
ViridiplantaeorPlantaes.s.
(green algae & land plants)
Prasinodermophyta
Chlorophyta
Prasinophytina
Chlorophytina
Streptophyta
Chlorokybophytina
Klebsormidiophytina
Phragmoplastophyta
Charophytina
Coleochaetophytina
Anydrophyta
Zygnematophytina
Embryophyta
(land plants)
Bryophytes
Marchantiophyta
(liverworts)
Anthocerotophyta
(hornworts)
Bryophyta
(mosses)
 Polysporangiophytes
Protracheophytes*
Tracheophytes
(vascular plants)
Paratracheophytes*
Eutracheophytes
Lycophytes
Euphyllophytes
Moniliformopses
Lignophytes
Progymnosperms*
Spermatophytes
(seed plants)
Pteridosperms*
(seed ferns)
and other extinct
seed plant groups
Acrogymnospermae
(living gymnosperms)
Angiospermae
(flowering plants)
Magnoliids
Monocots
Commelinids
Rosids
Fabids
Malvids
Asterids
Campanulids
Lamiids
Basal
angio
sperms
Amborellales
Nymphaeales
Austrobaileyales
Magnoliidae
Canellales
Piperales
Magnoliales
Laurales
Chloranthidae
Chloranthales
Lilidae
(Monocots)
Acorales
Alismatales
Petrosaviales
Dioscoreales
Pandanales
Liliales
Asparagales
Arecales
Commelinales
Zingiberales
Poales
Ceratophyllidae
Ceratophyllales
Eudicots
Buxales
Proteales
Ranunculales
Trochodendrales
Dilleniales
Gunnerales
Superrosids
Saxifragales
Rosids
Vitales
Fabids
Cucurbitales
Fabales
Fagales
Rosales
Zygophyllales
Celastrales
Malpighiales
Oxalidales
Malvids
Brassicales
Crossosomatales
Geraniales
Huerteales
Malvales
Myrtales
Picramniales
Sapindales
Superasterids
Berberidopsidales
Caryophyllales
Santalales
Asterids
Cornales
Ericales
Lamiids
Icacinales
Metteniusales
Garryales
Gentianales
Boraginales
Vahliales
Solanales
Lamiales
Campanulids
Apiales
Aquifoliales
Asterales
Bruniales
Dipsacales
Escalloniales
Paracryphiales
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Angiosperm_Phylogeny_Group&oldid=1296643107"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp