Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Amplitude amplification

From Wikipedia, the free encyclopedia
Quantum computing technique

Amplitude amplification is a technique inquantum computing that generalizes the idea behindGrover's search algorithm, and gives rise to a family ofquantum algorithms.It was discovered byGilles Brassard andPeter Høyer in 1997,[1] and independently rediscovered byLov Grover in 1998.[2]

In a quantum computer, amplitude amplification can be used to obtain a quadratic speedup over several classical algorithms.

Algorithm

[edit]

The derivation presented here roughly follows the one given by Brassard et al. in 2000.[3]Assume we have anN{\displaystyle N}-dimensionalHilbert spaceH{\displaystyle {\mathcal {H}}} representing thestate space of a quantum system, spanned by the orthonormal computational basis statesB:={|k}k=0N1{\displaystyle B:=\{|k\rangle \}_{k=0}^{N-1}}.Furthermore assume we have aHermitianprojection operatorP:HH{\displaystyle P\colon {\mathcal {H}}\to {\mathcal {H}}}.Alternatively,P{\displaystyle P} may be given in terms of a Booleanoracle functionχ:Z{0,1}{\displaystyle \chi \colon \mathbb {Z} \to \{0,1\}}and an orthonormal operational basisBop:={|ωk}k=0N1{\displaystyle B_{\text{op}}:=\{|\omega _{k}\rangle \}_{k=0}^{N-1}},in which case

P:=χ(k)=1|ωkωk|{\displaystyle P:=\sum _{\chi (k)=1}|\omega _{k}\rangle \langle \omega _{k}|}.

P{\displaystyle P} can be used to partitionH{\displaystyle {\mathcal {H}}} into a direct sum of two mutually orthogonal subspaces, thegood subspaceH1{\displaystyle {\mathcal {H}}_{1}} and thebad subspaceH0{\displaystyle {\mathcal {H}}_{0}}:H1:=ImageP=span{|ωkBop|χ(k)=1},H0:=KerP=span{|ωkBop|χ(k)=0}.{\displaystyle {\begin{aligned}{\mathcal {H}}_{1}&:={\text{Image}}\;P&=\operatorname {span} \{|\omega _{k}\rangle \in B_{\text{op}}\;|\;\chi (k)=1\},\\{\mathcal {H}}_{0}&:={\text{Ker}}\;P&=\operatorname {span} \{|\omega _{k}\rangle \in B_{\text{op}}\;|\;\chi (k)=0\}.\end{aligned}}}In other words, we are defining a "good subspace"H1{\displaystyle {\mathcal {H}}_{1}} via the projectorP{\displaystyle P}. The goal of the algorithm is then to evolve some initial state|ψH{\displaystyle |\psi \rangle \in {\mathcal {H}}} into a state belonging toH1{\displaystyle {\mathcal {H}}_{1}}.

Given a normalized state vector|ψH{\displaystyle |\psi \rangle \in {\mathcal {H}}} with nonzero overlap with both subspaces, we can uniquely decompose it as

|ψ=sin(θ)|ψ1+cos(θ)|ψ0{\displaystyle |\psi \rangle =\sin(\theta )|\psi _{1}\rangle +\cos(\theta )|\psi _{0}\rangle },

whereθ=arcsin(|P|ψ|)[0,π/2]{\displaystyle \theta =\arcsin \left(\left|P|\psi \rangle \right|\right)\in [0,\pi /2]},and|ψ1{\displaystyle |\psi _{1}\rangle } and|ψ0{\displaystyle |\psi _{0}\rangle } are the normalized projections of|ψ{\displaystyle |\psi \rangle } into the subspacesH1{\displaystyle {\mathcal {H}}_{1}} andH0{\displaystyle {\mathcal {H}}_{0}}, respectively. This decomposition defines a two-dimensional subspaceHψ{\displaystyle {\mathcal {H}}_{\psi }}, spanned by the vectors|ψ0{\displaystyle |\psi _{0}\rangle } and|ψ1{\displaystyle |\psi _{1}\rangle }.The probability of finding the system in agood state when measured issin2(θ){\displaystyle \sin ^{2}(\theta )}.

Define a unitary operatorQ(ψ,P):=SψSP{\displaystyle Q(\psi ,P):=-S_{\psi }S_{P}\,\!}, where

Sψ=I2|ψψ|andSP=I2P.{\displaystyle {\begin{aligned}S_{\psi }&=I-2|\psi \rangle \langle \psi |\quad {\text{and}}\\S_{P}&=I-2P.\end{aligned}}}

SP{\displaystyle S_{P}} flips the phase of the states in thegood subspace, whereasSψ{\displaystyle S_{\psi }} flips the phase of the initial state|ψ{\displaystyle |\psi \rangle }.

The action of this operator onHψ{\displaystyle {\mathcal {H}}_{\psi }} is given by

Q|ψ0=Sψ|ψ0=(2cos2(θ)1)|ψ0+2sin(θ)cos(θ)|ψ1{\displaystyle Q|\psi _{0}\rangle =-S_{\psi }|\psi _{0}\rangle =(2\cos ^{2}(\theta )-1)|\psi _{0}\rangle +2\sin(\theta )\cos(\theta )|\psi _{1}\rangle } and
Q|ψ1=Sψ|ψ1=2sin(θ)cos(θ)|ψ0+(12sin2(θ))|ψ1{\displaystyle Q|\psi _{1}\rangle =S_{\psi }|\psi _{1}\rangle =-2\sin(\theta )\cos(\theta )|\psi _{0}\rangle +(1-2\sin ^{2}(\theta ))|\psi _{1}\rangle }.

Thus in theHψ{\displaystyle {\mathcal {H}}_{\psi }} subspaceQ{\displaystyle Q} corresponds to a rotation by the angle2θ{\displaystyle 2\theta \,\!}:

Q=(cos(2θ)sin(2θ)sin(2θ)cos(2θ)){\displaystyle Q={\begin{pmatrix}\cos(2\theta )&-\sin(2\theta )\\\sin(2\theta )&\cos(2\theta )\end{pmatrix}}}.

ApplyingQ{\displaystyle Q}n{\displaystyle n} times on the state|ψ{\displaystyle |\psi \rangle }gives

Qn|ψ=cos((2n+1)θ)|ψ0+sin((2n+1)θ)|ψ1{\displaystyle Q^{n}|\psi \rangle =\cos((2n+1)\theta )|\psi _{0}\rangle +\sin((2n+1)\theta )|\psi _{1}\rangle },

rotating the state between thegood andbad subspaces.Aftern{\displaystyle n} iterations the probability of finding thesystem in agood state issin2((2n+1)θ){\displaystyle \sin ^{2}((2n+1)\theta )\,\!}.
The probability is maximized if we choose

n=π4θ{\displaystyle n=\left\lfloor {\frac {\pi }{4\theta }}\right\rfloor }.

Up until this point each iteration increases the amplitude of thegood states, hence the name of the technique.

Applications

[edit]

Assume we have an unsorted database with N elements, and anoracle functionχ{\displaystyle \chi } which can recognize thegood entries we are searching for, andBop=B{\displaystyle B_{\text{op}}=B} for simplicity.

If there areG{\displaystyle G}good entries in the database in total, then we can find them by initializing aquantum register|ψ{\displaystyle |\psi \rangle } withn{\displaystyle n}qubits where2n=N{\displaystyle 2^{n}=N} intoa uniform superposition of all the database elementsN{\displaystyle N} such that

|ψ=1Nk=0N1|k{\displaystyle |\psi \rangle ={\frac {1}{\sqrt {N}}}\sum _{k=0}^{N-1}|k\rangle }

and running the above algorithm. In this case the overlap of the initial state with thegood subspace is equal to the square root of the frequency of thegood entries in the database,sin(θ)=|P|ψ|=G/N{\displaystyle \sin(\theta )=|P|\psi \rangle |={\sqrt {G/N}}}. Ifsin(θ)1{\displaystyle \sin(\theta )\ll 1}, we can approximate the number of required iterations as

n=π4θπ4sin(θ)=π4NG=O(N).{\displaystyle n=\left\lfloor {\frac {\pi }{4\theta }}\right\rfloor \approx \left\lfloor {\frac {\pi }{4\sin(\theta )}}\right\rfloor =\left\lfloor {\frac {\pi }{4}}{\sqrt {\frac {N}{G}}}\right\rfloor =O({\sqrt {N}}).}

Measuring the state will now give one of thegood entrieswith high probability. Since each application ofSP{\displaystyle S_{P}} requires a single oracle query (assuming that the oracle is implemented as aquantum gate), we can find agood entry with justO(N){\displaystyle O({\sqrt {N}})} oracle queries, thus obtaining a quadratic speedup over the best possible classical algorithm. (The classical method for searching the database would be to perform the query for everye{0,1,,N1}{\displaystyle e\in \{0,1,\dots ,N-1\}} until a solution is found, thus costingO(N){\displaystyle O(N)} queries.) Moreover, we can find allG{\displaystyle G} solutions usingO(GN){\displaystyle O({\sqrt {GN}})} queries.

If we set the size of the setG{\displaystyle G} to one, the above scenario essentially reduces to the originalGrover search.

Quantum counting

[edit]

Suppose that the number ofgood entries is unknown. We aim to estimateG~{\displaystyle {\tilde {G}}} such that(1δ)GG~(1+δ)G{\displaystyle (1-\delta )G\leq {\tilde {G}}\leq (1+\delta )G} for smallδ>0{\displaystyle \delta >0}. We can solve forG~{\displaystyle {\tilde {G}}} by applying the quantum phase estimation algorithm on unitary operatorQ{\displaystyle Q}.

Sincee2iθ{\displaystyle e^{2i\theta }} ande2iθ{\displaystyle e^{-2i\theta }} are the only two eigenvalues ofQ{\displaystyle Q}, we can let their corresponding eigenvectors be|ψ1{\displaystyle |\psi _{1}\rangle } and|ψ2{\displaystyle |\psi _{2}\rangle }. We can find the eigenvaluee2iθ{\displaystyle e^{2i\theta }} of|ψ{\displaystyle |\psi \rangle }, which in this case is equivalent to estimating the phaseθ{\displaystyle \theta }. This can be done by applying Fourier transforms and controlled unitary operations, as described in the quantum phase estimation algorithm. With the estimateθ~{\displaystyle {\tilde {\theta }}}, we can estimatesinθ{\displaystyle \sin {\theta }}, which in turn estimatesG{\displaystyle G}.

Suppose we want to estimateθ{\displaystyle \theta } with arbitrary starting state|s{\displaystyle |s\rangle }, instead of the eigenvectors|ψ1{\displaystyle |\psi _{1}\rangle } and|ψ2{\displaystyle |\psi _{2}\rangle }. We can do this by decomposing|s{\displaystyle |s\rangle } into a linear combination of|ψ1{\displaystyle |\psi _{1}\rangle } and|ψ2{\displaystyle |\psi _{2}\rangle }, and then applying the phase estimation algorithm.

References

[edit]
  1. ^Gilles Brassard; Peter Høyer (June 1997). "An exact quantum polynomial-time algorithm for Simon's problem".Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems. IEEE Computer Society Press. pp. 12–23.arXiv:quant-ph/9704027.Bibcode:1997quant.ph..4027B.doi:10.1109/ISTCS.1997.595153.ISBN 0-8186-8037-7.S2CID 5177739.
  2. ^Grover, Lov K. (May 1998). "Quantum Computers Can Search Rapidly by Using Almost Any Transformation".Phys. Rev. Lett.80 (19):4329–4332.arXiv:quant-ph/9712011.Bibcode:1998PhRvL..80.4329G.doi:10.1103/PhysRevLett.80.4329.S2CID 17879840.
  3. ^Gilles Brassard; Peter Høyer; Michele Mosca; Alain Tapp (2000-05-15). "Quantum amplitude amplification and estimation".Quantum Computation and Information. Contemporary Mathematics. Vol. 305. pp. 53–74.arXiv:quant-ph/0005055.doi:10.1090/conm/305/05215.ISBN 9780821821404.S2CID 54753.
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Amplitude_amplification&oldid=1279532575"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp