Chemical reaction of three alkynes to form a benzene ring
Analkyne trimerisation is a [2+2+2] cycloaddition reaction in which threealkyne units (C≡C) react to form abenzene ring. The reaction requires a metalcatalyst. The process is of historic interest as well as being applicable toorganic synthesis.[1] Being a cycloaddition reaction, it has highatom economy. Many variations have been developed, including cyclisation of mixtures of alkynes andalkenes as well as alkynes andnitriles.
Trimerisation of acetylene to benzene is highly exergonic, proceeding with a free energy change of 142 kcal/mol at room temperature. Kinetic barriers however prevent the reaction from proceeding smoothly. The breakthrough came in 1948, whenWalter Reppe and W. J. Schweckendiek reported their wartime results showing thatnickel compounds are effective catalysts:[2][3]
3 RC2H → C6R3H3
Since this discovery, many other cyclotrimerisations have been reported.[4]
In terms of mechanism, the reactions begin with the formation ofmetal-alkyne complexes. The combination of two alkynes within the coordination sphere affords a metallacyclopentadiene.[5] Starting from the metallacyclopentadiene intermediate, many pathways can be considered including metallocycloheptatrienes, metallanorbornadienes, and a more complicated structure featuring a carbenoid ligand.[4]
Simplified mechanism for metal-catalyzed trimerisation of alkynes
Trimerisation of unsymmetrical alkynes gives two isomeric benzenes. For example,phenylacetylene affords both 1,3,5- and 1,2,4-C6R3H3. The substitution pattern about the product arene is determined in two steps: formation of the metallocyclopentadiene intermediate and incorporation of the third equivalent ofalkyne.Steric bulk on thealkyne coupling partners and catalyst have been invoked as the controlling elements of regioselectivity.
Three proposed intermediates in alkyne trimerization.[4]
Chiral catalysts have been employed in combination with arynes to produce non-racemicatropisomeric products.[6]
Catalysts for cyclotrimerisation are selective for triple bonds, which gives the reaction a fairly wide substrate scope. Many functional groups are tolerated. Regioselective intermolecular trimerization of unsymmetrical alkynes remains an unsolved problem.[4]
Perhaps the most useful development in this area, at least from the commercial perspective is the cotrimerization ofnitriles and alkynes. This reaction is a practical route to some substitutedpyridines.[7]
Some catalysts are deactivated by formation of stable, 18-electron η4-complexes.Cyclobutadiene,cyclohexadiene, andarene complexes have all been observed as off-cycle, inactivated catalysts.[8] In addition to high-order polymers and dimers and trimers, which originate from low regio- and chemoselectivities,enyne side products derived from alkyne dimerisation have been observed. Rhodium catalysts are particularly adept at enyne formation (see below).[9] Fornickel catalysis, formation of larger rings (particularlycyclooctatetraene) can be a problem.
Alkyne trimerization is of no practical value, although the reaction was highly influential. The cotrimerization of alkynes and nitriles in the presence oforganocobalt catalysts has been commercialized for the production of substituted pyridines.[10]
Cyclization involving substrates in which some or all of the alkyne units aretethered together can provide fused ring systems. The length of the tether(s) controls the sizes of the additional rings. Addition of a 1,5-diyne with an alkyne produces abenzocyclobutene, astrained structure that can then be induced to undergo further reactions.[11]
All three alkyne units can be tethered, leading to creation of three rings in a single step, with each of the two additional ring sizes controlled by the respective tether lengths.[12]
Benzyne, generatedin situ from a benzene ring bearingortho-distributedtriflate andtrimethylsilyl substituents, can be used to generate anaryne in place of an acetylene and combined with a suitable diyne. Such a benzene derivative reacts with 1,7-octadiyne in the presence of a suitable catalyst to generate a naphthalene system.[15] This is an example of ahexadehydro Diels–Alder reaction.
Cyclotrimerization presents an alternative to the functionalization of pre-formed aromatic compounds throughelectrophilic ornucleophilic substitution, theregioselectivity of which can sometimes be difficult to control.
Other methods for the direct formation of aromatic rings from substituted, unsaturated precursors include theDötz reaction, palladium-catalyzed [4+2]benzannulation of enynes with alkynes,[20] and Lewis-acid-mediated [4+2] cycloaddition of enynes with alkynes.[21] Cyclization of transient benzyne species with alkynes, catalyzed by palladium, can also produce substituted aromatic compounds.[22]
Musso, F.; Solari, E.; Floriani, C. (1997). "Hydrocarbon Activation with Metal Halides: Zirconium Tetrachloride Catalyzing the Jacobsen Reaction and Assisting the Trimerization of Alkynes via the Formation of η6-Arene−Zirconium(IV) Complexes".Organometallics.16 (22): 4889.doi:10.1021/om970438g.
Rodríguez, J. Gonzalo; Martín-Villamil, Rosa; Fonseca, Isabel (1997). "Tris(2,4-pentanedionato)vanadium-catalysed cyclotrimerization and polymerization of 4-(N,N-dimethylamino)phenylethyne: X-ray structure of 1,2,4-tris[4-(N,N -dimethylamino)phenyl]benzene".Journal of the Chemical Society, Perkin Transactions 1 (6):945–948.doi:10.1039/a605474i.ISSN0300-922X.
Sakurai, H.; Nakadaira, Y.; Hosomi, A.; Eriyama, Y.; Hirama, K.; Kabuto, C. (1984). "Chemistry of organosilicon compounds. 193. Intramolecular cyclotrimerization of macrocylic and acyclic triynes with Group 6 metal carbonyls. The formation of fulvene and benzene".J. Am. Chem. Soc.106 (26): 8315.Bibcode:1984JAChS.106.8315S.doi:10.1021/ja00338a063.
Amer, I.; Bernstein, T.; Eisen, M.; Blum, J.; Vollhardt, K. P. C. (1990). "Oligomerization of alkynes by the RhCl3-aliquat 336 catalyst system Part 1. Formation of benzene derivatives".J. Mol. Catal.60 (3): 313.doi:10.1016/0304-5102(90)85254-F.
Lee, C. L.; Hunt, C. T.; Balch, A. L. (1981). "Novel reactions of metal-metal bonds. Reactions of Pd2{(C6H5)2PCH2P(C6H5)2}2Cl2 with acetylenes, olefins, and isothiocyanates".Inorg. Chem.20 (8): 2498.doi:10.1021/ic50222a026.
Aalten, H. L.; van Koten, G.; Riethorst, E.; Stam, C. H. (1989). "The Hurtley reaction. 2. Novel complexes of disubstituted acetylenes with copper(I) benzoates having a reactive ortho carbon-chlorine or carbon-bromine bond. X-ray structural characterization of tetrakis(2-chlorobenzoato)bis(diethyl acetylenedicarboxylate)tetracopper(I)".Inorg. Chem.28 (22): 4140.doi:10.1021/ic00321a020.
Hardesty, J. H.; Koerner, J. B.; Albright, T. A.; Lee, G. B. (1999). "Theoretical Study of the Acetylene Trimerization with CpCo".J. Am. Chem. Soc.121 (25): 6055.Bibcode:1999JAChS.121.6055H.doi:10.1021/ja983098e.
Ozerov, O. V.; Patrick, B. O.; Ladipo, F. T. (2000). "Highly Regioselective [2 + 2 + 2] Cycloaddition of Terminal Alkynes Catalyzed by η6-Arene Complexes of Titanium Supported by Dimethylsilyl-Bridgedp-tert-Butyl Calix[4]arene Ligand".J. Am. Chem. Soc.122 (27): 6423.Bibcode:2000JAChS.122.6423O.doi:10.1021/ja994543o.
^Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M. (2007). "Cotrimerizations of Acetylenic Compounds".Org. React.68:1–302.doi:10.1002/0471264180.or068.01.ISBN978-0471264187.
^Reppe, W.; Schweckendiek, W. J. (1948). "Cyclisierende Polymerisation von Acetylen. III Benzol, Benzolderivate und hydroaromatische Verbindungen".Liebigs Ann. Chem.560:104–116.doi:10.1002/jlac.19485600104.
^Reppe, W.; Vetter, H. (1953). "Carbonylierung VI. Synthesen mit Metallcarbonylwasserstoffen".Liebigs Ann. Chem.585:133–161.doi:10.1002/jlac.19535820107.
^abcdBroere, Daniel L. J.; Ruijter, Eelco (2012). "Recent advances in transition-metal-catalyzed [2 + 2 + 2]-cyclo(co)trimerization reactions".Synthesis.44 (17):2639–2672.doi:10.1055/s-0032-1316757.
^Varela, Jesus; Saa, Carlos (March 20, 2003). "Construction of Pyridine Rings by Metal-Mediated [2 + 2 + 2] Cycloaddition".Chemical Reviews.103 (9):3787–3802.doi:10.1021/cr030677f.PMID12964884.
^Kölle, U.; Fuss, B. (1986). "Pentamethylcyclopentadienyl-Übergangsmetall-Komplexe, X. Neue Co-Komplexe aus η5-C5Me5Co-Fragmenten und Acetylenen".Chem. Ber.119:116–128.doi:10.1002/cber.19861190112.
^Ardizzoia, G. A.; Brenna, S.; Cenini, S.; LaMonica, G.; Masciocchi, N.; Maspero, A. (2003). "Oligomerization and Polymerization of Alkynes Catalyzed by Rhodium(I) Pyrazolate Complexes".J. Mol. Catal. A: Chemical.204–205:333–340.doi:10.1016/S1381-1169(03)00315-7.
^Vollhardt, K. Peter C. (1984). "Cobalt-assisted [2+2+2] cycloadditions: a synthesis strategy grows to maturity".Angewandte Chemie.96 (8):525–41.doi:10.1002/ange.19840960804.
^Neeson, S. J.; Stevenson, P. J. (1988). "Rhodium catalysed [2+2+2] cycloadditions- an efficient regiospecific route to calomelanolactone".Tetrahedron Lett.29 (7): 813.doi:10.1016/S0040-4039(00)80217-8.
^abTeply, F.; Stara, I. G.; Stary, I.; Kollarovic, A.; Saman, D.; Rulisek, L.; Fiedler, P. (2002). "Synthesis of 5-, 6-, and 7helicene via Ni(0)- or Co(I)-catalyzed isomerization of aromatic cis,cis-dienetriynes".J. Am. Chem. Soc.124 (31):9175–80.Bibcode:2002JAChS.124.9175T.doi:10.1021/ja0259584.PMID12149022.
^Hillard, R. L.; Vollhardt, K. P. C. (1977). "Substituted Benzocyclobutenes, Indans, and Tetralins via Cobalt-Catalyzed Cooligomerization of α,ω-diynes with Substituted Acetylenes. Formation and Synthetic Utility of Trimethylsilylated Benzocycloalkenes".Journal of the American Chemical Society.99 (12):4058–4069.Bibcode:1977JAChS..99.4058H.doi:10.1021/ja00454a026.
^Hsieh, J.-C.; Cheng, C.-H. (2005). "Nickel-Catalyzed Cocyclotrimerization of Arynes with Diynes; A Novel Method for Synthesis of Naphthalene Derivatives".Chemical Communications.2005 (19):2459–2461.doi:10.1039/b415691a.PMID15886770.
^Gevorgyan, V.; Takeda, A.; Homma, M.; Sadayori, N.; Radhakrishnan, U.; Yamamoto, Y. (1999). "Palladium-Catalyzed [4+2]Cross-Benzannulation Reaction of Conjugated Enynes with Diynes and Triynes".J. Am. Chem. Soc.121 (27): 6391.Bibcode:1999JAChS.121.6391G.doi:10.1021/ja990749d.
^Wills, M. S. B.;Danheiser, R. L. (1998). "Intramolecular [4 + 2] Cycloaddition Reactions of Conjugated Ynones. Formation of Polycyclic Furans via the Generation and Rearrangement of Strained Heterocyclic Allenes".J. Am. Chem. Soc.120 (36): 9378.Bibcode:1998JAChS.120.9378W.doi:10.1021/ja9819209.
^Sato, Y.; Tamura, T.; Mori, M. (2004). "Arylnaphthalene lignans through Pd-Catalyzed 2+2+2 cocyclization of arynes and diynes: total synthesis of Taiwanins C and E".Angew. Chem. Int. Ed. Engl.43 (18):2436–40.doi:10.1002/anie.200453809.PMID15114584.