Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hermitian adjoint

From Wikipedia, the free encyclopedia
(Redirected fromAdjoint operator)
Conjugate transpose of an operator in infinite dimensions

Inmathematics, specifically inoperator theory, eachlinear operatorA{\displaystyle A} on aninner product space defines aHermitian adjoint (oradjoint) operatorA{\displaystyle A^{*}} on that space according to the rule

Ax,y=x,Ay,{\displaystyle \langle Ax,y\rangle =\langle x,A^{*}y\rangle ,}

where,{\displaystyle \langle \cdot ,\cdot \rangle } is theinner product on thevector space.

The adjoint may also be called theHermitian conjugate or simply theHermitian[1] afterCharles Hermite. It is often denoted byA in fields likephysics, especially when used in conjunction withbra–ket notation inquantum mechanics. Infinite dimensions where operators can be represented bymatrices, the Hermitian adjoint is given by theconjugate transpose (also known as the Hermitian transpose).

The above definition of an adjoint operator extends verbatim tobounded linear operators onHilbert spacesH{\displaystyle H}. The definition has been further extended to include unboundeddensely defined operators, whose domain is topologicallydense in, but not necessarily equal to,H.{\displaystyle H.}

Informal definition

[edit]

Consider alinear mapA:H1H2{\displaystyle A:H_{1}\to H_{2}} betweenHilbert spaces. Without taking care of any details, the adjoint operator is the (in most cases uniquely defined) linear operatorA:H2H1{\displaystyle A^{*}:H_{2}\to H_{1}} fulfilling

Ah1,h2H2=h1,Ah2H1,{\displaystyle \left\langle Ah_{1},h_{2}\right\rangle _{H_{2}}=\left\langle h_{1},A^{*}h_{2}\right\rangle _{H_{1}},}

where,Hi{\displaystyle \langle \cdot ,\cdot \rangle _{H_{i}}} is theinner product in the Hilbert spaceHi{\displaystyle H_{i}}, which is linear in the first coordinate andconjugate linear in the second coordinate. Note the special case where both Hilbert spaces are identical andA{\displaystyle A} is an operator on that Hilbert space.

When one trades the inner product for thedual pairing, one can define the adjoint, also called thetranspose, of an operatorA:EF{\displaystyle A:E\to F}, whereE,F{\displaystyle E,F} areBanach spaces with correspondingnormsE,F{\displaystyle \|\cdot \|_{E},\|\cdot \|_{F}}. Here (again not considering any technicalities), its adjoint operator is defined asA:FE{\displaystyle A^{*}:F^{*}\to E^{*}} with

Af=fA:uf(Au),{\displaystyle A^{*}f=f\circ A:u\mapsto f(Au),}

i.e.,(Af)(u)=f(Au){\displaystyle \left(A^{*}f\right)(u)=f(Au)} forfF,uE{\displaystyle f\in F^{*},u\in E}.

The above definition in the Hilbert space setting is really just an application of the Banach space case when one identifies a Hilbert space with its dual (via theRiesz representation theorem). Then it is only natural that we can also obtain the adjoint of an operatorA:HE{\displaystyle A:H\to E}, whereH{\displaystyle H} is a Hilbert space andE{\displaystyle E} is a Banach space. The dual is then defined asA:EH{\displaystyle A^{*}:E^{*}\to H} withAf=hf{\displaystyle A^{*}f=h_{f}} such that

hf,hH=f(Ah).{\displaystyle \langle h_{f},h\rangle _{H}=f(Ah).}

Definition for unbounded operators between Banach spaces

[edit]

Let(E,E),(F,F){\displaystyle \left(E,\|\cdot \|_{E}\right),\left(F,\|\cdot \|_{F}\right)} beBanach spaces. SupposeA:D(A)F{\displaystyle A:D(A)\to F} andD(A)E{\displaystyle D(A)\subset E}, and suppose thatA{\displaystyle A} is a (possibly unbounded) linear operator which isdensely defined (i.e.,D(A){\displaystyle D(A)} is dense inE{\displaystyle E}). Then its adjoint operatorA{\displaystyle A^{*}} is defined as follows. The domain is

D(A):={gF: c0:  for all uD(A): |g(Au)|cuE}.{\displaystyle D\left(A^{*}\right):=\left\{g\in F^{*}:~\exists c\geq 0:~{\mbox{ for all }}u\in D(A):~|g(Au)|\leq c\cdot \|u\|_{E}\right\}.}

Now for arbitrary but fixedgD(A){\displaystyle g\in D(A^{*})} we setf:D(A)R{\displaystyle f:D(A)\to \mathbb {R} } withf(u)=g(Au){\displaystyle f(u)=g(Au)}. By choice ofg{\displaystyle g} and definition ofD(A){\displaystyle D(A^{*})}, f is (uniformly) continuous onD(A){\displaystyle D(A)} as|f(u)|=|g(Au)|cuE{\displaystyle |f(u)|=|g(Au)|\leq c\cdot \|u\|_{E}}. Then by theHahn–Banach theorem, or alternatively through extension by continuity, this yields an extension off{\displaystyle f}, calledf^{\displaystyle {\hat {f}}}, defined on all ofE{\displaystyle E}. This technicality is necessary to later obtainA{\displaystyle A^{*}} as an operatorD(A)E{\displaystyle D\left(A^{*}\right)\to E^{*}} instead ofD(A)(D(A)).{\displaystyle D\left(A^{*}\right)\to (D(A))^{*}.} Remark also that this does not mean thatA{\displaystyle A} can be extended on all ofE{\displaystyle E} but the extension only worked for specific elementsgD(A){\displaystyle g\in D\left(A^{*}\right)}.

Now, we can define the adjoint ofA{\displaystyle A} as

A:FD(A)EgAg=f^.{\displaystyle {\begin{aligned}A^{*}:F^{*}\supset D(A^{*})&\to E^{*}\\g&\mapsto A^{*}g={\hat {f}}.\end{aligned}}}

The fundamental defining identity is thus

g(Au)=(Ag)(u){\displaystyle g(Au)=\left(A^{*}g\right)(u)} foruD(A).{\displaystyle u\in D(A).}

Definition for bounded operators between Hilbert spaces

[edit]

SupposeH is a complexHilbert space, withinner product,{\displaystyle \langle \cdot ,\cdot \rangle }. Consider acontinuouslinear operatorA :HH (for linear operators, continuity is equivalent to being abounded operator). Then the adjoint ofA is the continuous linear operatorA :HH satisfying

Ax,y=x,Ayfor all x,yH.{\displaystyle \langle Ax,y\rangle =\left\langle x,A^{*}y\right\rangle \quad {\mbox{for all }}x,y\in H.}

Existence and uniqueness of this operator follows from theRiesz representation theorem.[2]

This can be seen as a generalization of theadjoint matrix of a square matrix which has a similar property involving the standard complex inner product.

Properties

[edit]

The following properties of the Hermitian adjoint ofbounded operators are immediate:[2]

  1. Involutivity:A∗∗ =A
  2. IfA is invertible, then so isA, with(A)1=(A1){\textstyle \left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}}
  3. Conjugate linearity:
  4. "Anti-distributivity":(AB) =BA

If we define theoperator norm ofA by

Aop:=sup{Ax:x1}{\displaystyle \|A\|_{\text{op}}:=\sup \left\{\|Ax\|:\|x\|\leq 1\right\}}

then

Aop=Aop.{\displaystyle \left\|A^{*}\right\|_{\text{op}}=\|A\|_{\text{op}}.}[2]

Moreover,

AAop=Aop2.{\displaystyle \left\|A^{*}A\right\|_{\text{op}}=\|A\|_{\text{op}}^{2}.}[2]

One says that a norm that satisfies this condition behaves like a "largest value", extrapolating from the case of self-adjoint operators.

The set of bounded linear operators on a complex Hilbert spaceH together with the adjoint operation and the operator norm form the prototype of aC*-algebra.

Adjoint of densely defined unbounded operators between Hilbert spaces

[edit]

Definition

[edit]

Let the inner product,{\displaystyle \langle \cdot ,\cdot \rangle } be linear in thefirst argument. Adensely defined operatorA from a complex Hilbert spaceH to itself is a linear operator whose domainD(A) is a denselinear subspace ofH and whose values lie inH.[3] By definition, the domainD(A) of its adjointA is the set of allyH for which there is azH satisfying

Ax,y=x,zfor all xD(A).{\displaystyle \langle Ax,y\rangle =\langle x,z\rangle \quad {\mbox{for all }}x\in D(A).}

Owing to the density ofD(A){\displaystyle D(A)} andRiesz representation theorem,z{\displaystyle z} is uniquely defined, and, by definition,Ay=z.{\displaystyle A^{*}y=z.}[4]

Properties 1.–5. hold with appropriate clauses aboutdomains andcodomains.[clarification needed] For instance, the last property now states that(AB) is an extension ofBA ifA,B andAB are densely defined operators.[5]

ker A* = (im A)

[edit]

For everyykerA,{\displaystyle y\in \ker A^{*},} the linear functionalxAx,y=x,Ay{\displaystyle x\mapsto \langle Ax,y\rangle =\langle x,A^{*}y\rangle } is identically zero, and hencey(imA).{\displaystyle y\in (\operatorname {im} A)^{\perp }.}

Conversely, the assumption thaty(imA){\displaystyle y\in (\operatorname {im} A)^{\perp }} causes the functionalxAx,y{\displaystyle x\mapsto \langle Ax,y\rangle } to be identically zero. Since the functional is obviously bounded, the definition ofA{\displaystyle A^{*}} assures thatyD(A).{\displaystyle y\in D(A^{*}).} The fact that, for everyxD(A),{\displaystyle x\in D(A),}Ax,y=x,Ay=0{\displaystyle \langle Ax,y\rangle =\langle x,A^{*}y\rangle =0} shows thatAyD(A)=D(A)¯={0},{\displaystyle A^{*}y\in D(A)^{\perp }={\overline {D(A)}}^{\perp }=\{0\},} given thatD(A){\displaystyle D(A)} is dense.

This property shows thatkerA{\displaystyle \operatorname {ker} A^{*}} is a topologically closed subspace even whenD(A){\displaystyle D(A^{*})} is not.

Geometric interpretation

[edit]

IfH1{\displaystyle H_{1}} andH2{\displaystyle H_{2}} are Hilbert spaces, thenH1H2{\displaystyle H_{1}\oplus H_{2}} is a Hilbert space with the inner product

(a,b),(c,d)H1H2=defa,cH1+b,dH2,{\displaystyle {\bigl \langle }(a,b),(c,d){\bigr \rangle }_{H_{1}\oplus H_{2}}{\stackrel {\text{def}}{=}}\langle a,c\rangle _{H_{1}}+\langle b,d\rangle _{H_{2}},}

wherea,cH1{\displaystyle a,c\in H_{1}} andb,dH2.{\displaystyle b,d\in H_{2}.}

LetJ:HHHH{\displaystyle J\colon H\oplus H\to H\oplus H} be thesymplectic mapping, i.e.J(ξ,η)=(η,ξ).{\displaystyle J(\xi ,\eta )=(-\eta ,\xi ).} Then the graph

G(A)={(x,y)xD(A), y=Ax}HH{\displaystyle G(A^{*})=\{(x,y)\mid x\in D(A^{*}),\ y=A^{*}x\}\subseteq H\oplus H}

ofA{\displaystyle A^{*}} is theorthogonal complement ofJG(A):{\displaystyle JG(A):}

G(A)=(JG(A))={(x,y)HH:(x,y),(Aξ,ξ)HH=0ξD(A)}.{\displaystyle G(A^{*})=(JG(A))^{\perp }=\{(x,y)\in H\oplus H:{\bigl \langle }(x,y),(-A\xi ,\xi ){\bigr \rangle }_{H\oplus H}=0\;\;\forall \xi \in D(A)\}.}

The assertion follows from the equivalences

(x,y),(Aξ,ξ)=0Aξ,x=ξ,y,{\displaystyle {\bigl \langle }(x,y),(-A\xi ,\xi ){\bigr \rangle }=0\quad \Leftrightarrow \quad \langle A\xi ,x\rangle =\langle \xi ,y\rangle ,}

and

[ξD(A)  Aξ,x=ξ,y]xD(A) & y=Ax.{\displaystyle {\Bigl [}\forall \xi \in D(A)\ \ \langle A\xi ,x\rangle =\langle \xi ,y\rangle {\Bigr ]}\quad \Leftrightarrow \quad x\in D(A^{*})\ \&\ y=A^{*}x.}

Corollaries

[edit]
A* is closed
[edit]

An operatorA{\displaystyle A} isclosed if the graphG(A){\displaystyle G(A)} is topologically closed inHH.{\displaystyle H\oplus H.} The graphG(A){\displaystyle G(A^{*})} of the adjoint operatorA{\displaystyle A^{*}} is the orthogonal complement of a subspace, and therefore is closed.

A* is densely defined ⇔ A is closable
[edit]

An operatorA{\displaystyle A} isclosable if the topological closureGcl(A)HH{\displaystyle G^{\text{cl}}(A)\subseteq H\oplus H} of the graphG(A){\displaystyle G(A)} is the graph of a function. SinceGcl(A){\displaystyle G^{\text{cl}}(A)} is a (closed) linear subspace, the word "function" may be replaced with "linear operator". For the same reason,A{\displaystyle A} is closable if and only if(0,v)Gcl(A){\displaystyle (0,v)\notin G^{\text{cl}}(A)} unlessv=0.{\displaystyle v=0.}

The adjointA{\displaystyle A^{*}} is densely defined if and only ifA{\displaystyle A} is closable. This follows from the fact that, for everyvH,{\displaystyle v\in H,}

vD(A)  (0,v)Gcl(A),{\displaystyle v\in D(A^{*})^{\perp }\ \Leftrightarrow \ (0,v)\in G^{\text{cl}}(A),}

which, in turn, is proven through the following chain of equivalencies:

vD(A)(v,0)G(A)(v,0)(JG(A))cl=JGcl(A)(0,v)=J1(v,0)Gcl(A)(0,v)Gcl(A).{\displaystyle {\begin{aligned}v\in D(A^{*})^{\perp }&\Longleftrightarrow (v,0)\in G(A^{*})^{\perp }\Longleftrightarrow (v,0)\in (JG(A))^{\text{cl}}=JG^{\text{cl}}(A)\\&\Longleftrightarrow (0,-v)=J^{-1}(v,0)\in G^{\text{cl}}(A)\\&\Longleftrightarrow (0,v)\in G^{\text{cl}}(A).\end{aligned}}}
A** = Acl
[edit]

TheclosureAcl{\displaystyle A^{\text{cl}}} of an operatorA{\displaystyle A} is the operator whose graph isGcl(A){\displaystyle G^{\text{cl}}(A)} if this graph represents a function. As above, the word "function" may be replaced with "operator". Furthermore,A=Acl,{\displaystyle A^{**}=A^{\text{cl}},} meaning thatG(A)=Gcl(A).{\displaystyle G(A^{**})=G^{\text{cl}}(A).}

To prove this, observe thatJ=J,{\displaystyle J^{*}=-J,} i.e.Jx,yHH=x,JyHH,{\displaystyle \langle Jx,y\rangle _{H\oplus H}=-\langle x,Jy\rangle _{H\oplus H},} for everyx,yHH.{\displaystyle x,y\in H\oplus H.} Indeed,

J(x1,x2),(y1,y2)HH=(x2,x1),(y1,y2)HH=x2,y1H+x1,y2H=x1,y2H+x2,y1H=(x1,x2),J(y1,y2)HH.{\displaystyle {\begin{aligned}\langle J(x_{1},x_{2}),(y_{1},y_{2})\rangle _{H\oplus H}&=\langle (-x_{2},x_{1}),(y_{1},y_{2})\rangle _{H\oplus H}=\langle -x_{2},y_{1}\rangle _{H}+\langle x_{1},y_{2}\rangle _{H}\\&=\langle x_{1},y_{2}\rangle _{H}+\langle x_{2},-y_{1}\rangle _{H}=\langle (x_{1},x_{2}),-J(y_{1},y_{2})\rangle _{H\oplus H}.\end{aligned}}}

In particular, for everyyHH{\displaystyle y\in H\oplus H} and every subspaceVHH,{\displaystyle V\subseteq H\oplus H,}y(JV){\displaystyle y\in (JV)^{\perp }} if and only ifJyV.{\displaystyle Jy\in V^{\perp }.} Thus,J[(JV)]=V{\displaystyle J[(JV)^{\perp }]=V^{\perp }} and[J[(JV)]]=Vcl.{\displaystyle [J[(JV)^{\perp }]]^{\perp }=V^{\text{cl}}.} SubstitutingV=G(A),{\displaystyle V=G(A),} obtainGcl(A)=G(A).{\displaystyle G^{\text{cl}}(A)=G(A^{**}).}

A* = (Acl)*
[edit]

For a closable operatorA,{\displaystyle A,}A=(Acl),{\displaystyle A^{*}=\left(A^{\text{cl}}\right)^{*},} meaning thatG(A)=G((Acl)).{\displaystyle G(A^{*})=G\left(\left(A^{\text{cl}}\right)^{*}\right).} Indeed,

G((Acl))=(JGcl(A))=((JG(A))cl)=(JG(A))=G(A).{\displaystyle G\left(\left(A^{\text{cl}}\right)^{*}\right)=\left(JG^{\text{cl}}(A)\right)^{\perp }=\left(\left(JG(A)\right)^{\text{cl}}\right)^{\perp }=(JG(A))^{\perp }=G(A^{*}).}

Counterexample where the adjoint is not densely defined

[edit]

LetH=L2(R,l),{\displaystyle H=L^{2}(\mathbb {R} ,l),} wherel{\displaystyle l} is the linear measure. Select a measurable, bounded, non-identically zero functionfL2,{\displaystyle f\notin L^{2},} and pickφ0L2{0}.{\displaystyle \varphi _{0}\in L^{2}\setminus \{0\}.} Define

Aφ=f,φφ0.{\displaystyle A\varphi =\langle f,\varphi \rangle \varphi _{0}.}

It follows thatD(A)={φL2f,φ}.{\displaystyle D(A)=\{\varphi \in L^{2}\mid \langle f,\varphi \rangle \neq \infty \}.} The subspaceD(A){\displaystyle D(A)} contains all theL2{\displaystyle L^{2}} functions with compact support. Since1[n,n]φ L2 φ,{\displaystyle \mathbf {1} _{[-n,n]}\cdot \varphi \ {\stackrel {L^{2}}{\to }}\ \varphi ,}A{\displaystyle A} is densely defined. For everyφD(A){\displaystyle \varphi \in D(A)} andψD(A),{\displaystyle \psi \in D(A^{*}),}

φ,Aψ=Aφ,ψ=f,φφ0,ψ=f,φφ0,ψ=φ,φ0,ψf.{\displaystyle \langle \varphi ,A^{*}\psi \rangle =\langle A\varphi ,\psi \rangle =\langle \langle f,\varphi \rangle \varphi _{0},\psi \rangle =\langle f,\varphi \rangle \cdot \langle \varphi _{0},\psi \rangle =\langle \varphi ,\langle \varphi _{0},\psi \rangle f\rangle .}

Thus,Aψ=φ0,ψf.{\displaystyle A^{*}\psi =\langle \varphi _{0},\psi \rangle f.} The definition of adjoint operator requires thatImAH=L2.{\displaystyle \mathop {\text{Im}} A^{*}\subseteq H=L^{2}.} SincefL2,{\displaystyle f\notin L^{2},} this is only possible ifφ0,ψ=0.{\displaystyle \langle \varphi _{0},\psi \rangle =0.} For this reason,D(A)={φ0}.{\displaystyle D(A^{*})=\{\varphi _{0}\}^{\perp }.} Hence,A{\displaystyle A^{*}} is not densely defined and is identically zero onD(A).{\displaystyle D(A^{*}).} As a result,A{\displaystyle A} is not closable and has no second adjointA.{\displaystyle A^{**}.}

Hermitian operators

[edit]

Abounded operatorA :HH is called Hermitian orself-adjoint if

A=A{\displaystyle A=A^{*}}

which is equivalent to

Ax,y=x,Ay for all x,yH.{\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle {\mbox{ for all }}x,y\in H.}[6]

In some sense, these operators play the role of thereal numbers (being equal to their own "complex conjugate") and form a realvector space. They serve as the model of real-valuedobservables inquantum mechanics. See the article onself-adjoint operators for a full treatment.

Adjoints of conjugate-linear operators

[edit]

For aconjugate-linear operator the definition of adjoint needs to be adjusted in order to compensate for the complex conjugation. An adjoint operator of the conjugate-linear operatorA on a complex Hilbert spaceH is an conjugate-linear operatorA :HH with the property:

Ax,y=x,Ay¯for all x,yH.{\displaystyle \langle Ax,y\rangle ={\overline {\left\langle x,A^{*}y\right\rangle }}\quad {\text{for all }}x,y\in H.}

Other adjoints

[edit]

The equation

Ax,y=x,Ay{\displaystyle \langle Ax,y\rangle =\left\langle x,A^{*}y\right\rangle }

is formally similar to the defining properties of pairs ofadjoint functors incategory theory, and this is where adjoint functors got their name.

See also

[edit]

References

[edit]
  1. ^Miller, David A. B. (2008).Quantum Mechanics for Scientists and Engineers. Cambridge University Press. pp. 262, 280.
  2. ^abcdReed & Simon 2003, pp. 186–187;Rudin 1991, §12.9
  3. ^Seeunbounded operator for details.
  4. ^Reed & Simon 2003, p. 252;Rudin 1991, §13.1
  5. ^Rudin 1991, Thm 13.2
  6. ^Reed & Simon 2003, pp. 187;Rudin 1991, §12.11
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Other results
Maps
Examples
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hermitian_adjoint&oldid=1301938408"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp