Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Abundance of elements in Earth's crust

From Wikipedia, the free encyclopedia

Theabundance of elements in Earth's crust is shown in tabulated form with the estimatedcrustal abundance for eachchemical element shown as mg/kg, orparts per million (ppm) bymass (10,000 ppm = 1%).

Reservoirs

[edit]

The Earth's crust is one "reservoir" for measurements of abundance. A reservoir is any large body to be studied as unit, like the ocean, atmosphere, mantle or crust. Different reservoirs may have different relative amounts of each element due to different chemical or mechanical processes involved in the creation of the reservoir.[1]: 18 

Difficulties in measurement

[edit]

Estimates of elemental abundance are difficult because (a) the composition of the upper and lower crust are quite different, and (b) the composition of the continental crust can vary drastically by locality.[2] The composition of the Earth changed after its formation due to loss of volatile compounds, melting and recrystalization, selective loss of some elements to the deep interior, and erosion by water.[3]: 55 Thelanthanides are especially difficult to measure accurately.[4]

Graphs of abundance vs atomic number

[edit]
Abundance (atom fraction) of the chemical elements in Earth's upper continental crust as a function of atomic number;[5] siderophiles shown in yellow

Graphs of abundance against atomic number can reveal patterns relating abundance tostellar nucleosynthesis andgeochemistry.The alternation of abundance between even and odd atomic number is known as theOddo–Harkins rule. The rarest elements in the crust are not the heaviest, but are rather thesiderophile elements (iron-loving) in theGoldschmidt classification of elements. These have been depleted by being relocated deeper into the Earth's core; their abundance inmeteoroids is higher. Tellurium and selenium are concentrated as sulfides in the core and have also been depleted by preaccretional sorting in the nebula that caused them to form volatilehydrogen selenide andhydrogen telluride.[6]

List of abundance by element

[edit]

This table gives the estimated abundance in parts per million by mass of elements in the continental crust; values of the less abundant elements may vary with location by several orders of magnitude.[7]

Colour indicates each element'sGoldschmidt classification:
LithophileSiderophileAtmophileChalcophileTrace
Abundance of chemical elements in Earth's (continental) crust, by mass
ZElementSym­bolGoldschmidt
classification
Abundance (ppm)[7]Extraction
tonnes/year[8]
8oxygenOLithophile461,000 (46.1%)10,335,000[9]
14siliconSiLithophile282,000 (28.2%)7,200,000
13aluminiumAlLithophile82,300 (8.23%)57,600,000
26ironFeSiderophile56,300 (5.63%)1,150,000,000
20calciumCaLithophile41,500 (4.15%)18,000
11sodiumNaLithophile23,600 (2.36%)255,000,000
12magnesiumMgLithophile23,300 (2.33%)27,700,000
19potassiumKLithophile20,900 (2.09%)53,200,000[10]
22titaniumTiLithophile5,650 (0.565%)6,600,000
1hydrogenHAtmophile1,400 (0.14%)75,000,000[11]
15phosphorusPLithophile1,050 (0.105%)226,000,000[12]
25manganeseMnLithophile950 (0.095%)16,000,000
9fluorineFLithophile585 (0.0585%)17,000
56bariumBaLithophile425 (0.0425%)6,000,000[13]
38strontiumSrLithophile370 (0.037%)350,000
16sulfurSChalcophile350 (0.035%)69,300,000
6carbonCAtmophile200 (0.02%)9,700,000,000
40zirconiumZrLithophile165 (0.0165%)1,460,000
17chlorineClLithophile145 (0.0145%)71,250,000[14]
23vanadiumVLithophile120 (0.012%)76,000
24chromiumCrLithophile102 (0.0102%)26,000,000
37rubidiumRbLithophile90 (0.009%)2
28nickelNiSiderophile84 (0.0084%)2,250,000
30zincZnChalcophile70 (0.007%)11,900,000
58ceriumCeLithophile66.5 (0.00665%)24,000[15]
29copperCuChalcophile60 (0.006%)19,400,000
60neodymiumNdLithophile41.5 (0.00415%)7,000[16]
57lanthanumLaLithophile39 (0.0039%)12,500[17]
39yttriumYLithophile33 (0.0033%)6,000
27cobaltCoSiderophile25 (0.0025%)123,000
21scandiumScLithophile22 (0.0022%)14[18]
3lithiumLiLithophile20 (0.002%)35,000
41niobiumNbLithophile20 (0.002%)64,000
7nitrogenNAtmophile19 (0.0019%)140,000,000
31galliumGaChalcophile19 (0.0019%)315
82leadPbChalcophile14 (0.0014%)4,820,000
5boronBLithophile10 (0.001%)9,400,000
90thoriumThLithophile9.6 (0.00096%)5,000[19]
59praseodymiumPrLithophile9.2 (0.00092%)2,500[20]
62samariumSmLithophile7.05 (0.000705%)700[21]
64gadoliniumGdLithophile6.2 (0.00062%)400[22]
66dysprosiumDyLithophile5.2 (0.00052%)0.2[23]
68erbiumErLithophile3.5 (0.00035%)500[24]
18argonArAtmophile3.5 (0.00035%)
70ytterbiumYbLithophile3.2 (0.00032%)
72hafniumHfLithophile3.0 (0.0003%)35[25]
55caesiumCsLithophile3.0 (0.0003%)
4berylliumBeLithophile2.8 (0.00028%)220
92uraniumULithophile2.7 (0.00027%)74,119
35bromineBrLithophile2.4 (0.00024%)391,000
50tinSnChalcophile2.3 (0.00023%)280,000
73tantalumTaLithophile2.0 (0.0002%)1,100
63europiumEuLithophile2.0 (0.0002%)35.8[26]
33arsenicAsChalcophile1.8 (0.00018%)36,500
32germaniumGeChalcophile1.5 (0.00015%)155
67holmiumHoLithophile1.3 (0.00013%)
74tungstenWSiderophile1.25 (0.000125%)86,400
42molybdenumMoSiderophile1.2 (0.00012%)227,000
65terbiumTbLithophile1.2 (0.00012%)
81thalliumTlChalcophile0.85 (8.5×10−5%)10
71lutetiumLuLithophile0.8 (8×10−5%)
69thuliumTmLithophile0.52 (5.2×10−5%)
53iodineILithophile0.45 (4.5×10−5%)31,600
49indiumInChalcophile0.25 (2.5×10−5%)655
51antimonySbChalcophile0.2 (2×10−5%)130,000
48cadmiumCdChalcophile0.15 (1.5×10−5%)23,000
80mercuryHgChalcophile0.085 (8.5×10−6%)4,500
47silverAgChalcophile0.075 (7.5×10−6%)27,000
34seleniumSeChalcophile0.05 (5×10−6%)2,200
46palladiumPdSiderophile0.015 (1.5×10−6%)208
83bismuthBiChalcophile0.0085 (8.5×10−7%)10,200
2heliumHeAtmophile0.008 (8×10−7%)
10neonNeAtmophile0.005 (5×10−7%)
78platinumPtSiderophile0.005 (5×10−7%)172
79goldAuSiderophile0.004 (4×10−7%)3,100
76osmiumOsSiderophile0.0015 (1.5×10−7%)
52telluriumTeChalcophile0.001 (1×10−7%)2,200
44rutheniumRuSiderophile0.001 (1×10−7%)30
77iridiumIrSiderophile0.001 (1×10−7%)7.3
45rhodiumRhSiderophile0.001 (1×10−7%)30
75rheniumReSiderophile0.0007 (7×10−8%)47.2
36kryptonKrAtmophile0.0001 (1×10−8%)
54xenonXeAtmophile3×10−5 (3×10−9%)
91protactiniumPatrace1.4×10−6 (1.4×10−10%)
88radiumRatrace9×10−7 (9×10−11%)
89actiniumActrace5.5×10−10 (6×10−14%)
84poloniumPotrace2×10−10 (2×10−14%)
86radonRntrace4×10−13 (4×10−17%)
43technetiumTctrace
61promethiumPmtrace
85astatineAttrace
87franciumFrtrace
94plutoniumPutrace
93neptuniumNptrace

See also

[edit]

References

[edit]
  1. ^Albarède, Francis (2009-06-25).Geochemistry: An Introduction (2 ed.). Cambridge University Press.doi:10.1017/cbo9780511807435.005.ISBN 978-0-521-88079-4.
  2. ^Kring, David A."Composition of Earth's continental crust as inferred from the compositions of impact melt sheets". 28th Annual Lunar and Planetary Science Conference, March 17–21, 1997, Houston, TX, p. 763. Vol. 28. 1997.
  3. ^Suess, Hans E.; Urey, Harold C. (1956-01-01)."Abundances of the Elements".Reviews of Modern Physics.28 (1):53–74.Bibcode:1956RvMP...28...53S.doi:10.1103/RevModPhys.28.53.ISSN 0034-6861.
  4. ^Surendra P. Verma, E. Santoyo & Fernando Velasco-Tapia (2002) "Statistical Evaluation of Analytical Methods for the Determination of Rare-Earth Elements in Geological Materials and Implications for Detection Limits", International Geology Review, 44:4, 287–335,doi:10.2747/0020-6814.44.4.287 (note geochemists refer to lanthanides as rare earth per ref.).
  5. ^"Rare Earth Elements—Critical Resources for High Technology: USGS Fact Sheet 087-02".pubs.usgs.gov. Retrieved2024-03-23.
  6. ^Anderson, Don L.; "Chemical Composition of the Mantle",Theory of the Earth, pp. 147–175ISBN 0865421234
  7. ^ab"Abundance of Elements in the Earth's Crust and in the Sea",CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), sec. 14, pg. 17
  8. ^2016 extraction perCommodity Statistics and InformationArchived 2019-04-15 at theWayback Machine. USGS. All production numbers are for mines, except for Al, Cd, Fe, Ge, In, N, Se (plants, refineries), S (all forms) and As, Br, Mg, Si (unspecified). Data for B, K, Ti, Y are given not for the pure element but for the most common oxide, data for Na and Cl are for NaCl. For many elements like Si, Al, data are ambiguous (many forms produced) and are taken for the pure element. U data is pure element required for consumption by current reactor fleet[1]Archived 2017-10-01 at theWayback Machine. WNA.
  9. ^"Oxygen Supply Chain – Executive Summary"(PDF). Retrieved2024-05-23.
  10. ^Canada, Natural Resources (2018-01-23)."Potash facts".natural-resources.canada.ca. Retrieved2024-05-23.
  11. ^"Hydrogen".www.irena.org. 2024-05-29. Retrieved2024-05-23.
    "Hydrogen Production". Retrieved2024-05-23.
  12. ^"Phosphate rock production capacity worldwide".Statista. Retrieved2024-05-23.
  13. ^"Barium - Element information, properties and uses | Periodic Table".www.rsc.org. Retrieved2024-05-23.
  14. ^"Chlorine global market volume 2030".Statista. Retrieved2024-05-23.
  15. ^MMTA."Cerium".MMTA. Retrieved2024-05-23.
  16. ^"Neodymium - Elements Database".www.elementsdatabase.com. Retrieved2024-05-23.
  17. ^MMTA."Lanthanum".MMTA. Retrieved2024-05-23.
  18. ^Phoung, Sinoun; Williams, Eric; Gaustad, Gabrielle; Gupta, Ajay (2023)."Exploring global supply and demand of scandium oxide in 2030".Journal of Cleaner Production.401 136673.Bibcode:2023JCPro.40136673P.doi:10.1016/j.jclepro.2023.136673.
  19. ^Emsley, John (2010-09-01)."Thorium".RSC Education. Retrieved2024-05-23.
  20. ^"Praseodymium (Pr) - Chemical properties, Health and Environmental effects".www.lenntech.com. Retrieved2024-05-23.
  21. ^MMTA."Samarium".MMTA. Retrieved2024-05-23.
  22. ^"Gadolinium (Gd)".RWMM. Retrieved2024-05-23.
  23. ^"Dysprosium (Dy)".doi:10.1016/j.oregeorev.2023.105428.
  24. ^"Erbium (Er) - Chemical properties, Health and Environmental effects".www.lenntech.com. Retrieved2024-05-23.
  25. ^"Hafnium (Hf)"(PDF).
  26. ^"Europium (Eu)"(PDF).

Further reading

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Abundance_of_elements_in_Earth%27s_crust&oldid=1338256793"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp