Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Abrikosov vortex

From Wikipedia, the free encyclopedia
Vortex of supercurrent within a type-II superconductor
Vortices in a 200-nm-thickYBCO film imaged byscanning SQUID microscopy[1]

Insuperconductivity, afluxon (also called anAbrikosov vortex orquantum vortex) is a vortex ofsupercurrent in atype-II superconductor, used by Soviet physicistAlexei Abrikosov to explain magnetic behavior of type-II superconductors.[2] Abrikosov vortices occur generically in theGinzburg–Landau theory of superconductivity.

Overview

[edit]

The solution is a combination of fluxon solution byFritz London,[3][4] combined with a concept of core of quantum vortex byLars Onsager.[5][6]

In the quantum vortex,supercurrent circulates around the normal (i.e. non-superconducting) core of the vortex. The core has a sizeξ{\displaystyle \sim \xi } — thesuperconducting coherence length (parameter of aGinzburg–Landau theory). The supercurrents decay on the distance aboutλ{\displaystyle \lambda } (London penetration depth) from the core. Note that intype-II superconductorsλ>ξ/2{\displaystyle \lambda >\xi /{\sqrt {2}}}. The circulatingsupercurrents induce magnetic fields with the total flux equal to a singleflux quantumΦ0{\displaystyle \Phi _{0}}. Therefore, an Abrikosov vortex is often called afluxon.

The magnetic field distribution of a single vortex far from its core can be described by the same equation as in the London's fluxoid[3][4]

B(r)=Φ02πλ2K0(rλ)λrexp(rλ),{\displaystyle B(r)={\frac {\Phi _{0}}{2\pi \lambda ^{2}}}K_{0}\left({\frac {r}{\lambda }}\right)\approx {\sqrt {\frac {\lambda }{r}}}\exp \left(-{\frac {r}{\lambda }}\right),}[7]

whereK0(z){\displaystyle K_{0}(z)} is a zeroth-orderBessel function. Note that, according to the above formula, atr0{\displaystyle r\to 0} the magnetic fieldB(r)ln(λ/r){\displaystyle B(r)\propto \ln(\lambda /r)}, i.e. logarithmically diverges. In reality, forrξ{\displaystyle r\lesssim \xi } the field is simply given by

B(0)Φ02πλ2lnκ,{\displaystyle B(0)\approx {\frac {\Phi _{0}}{2\pi \lambda ^{2}}}\ln \kappa ,}

whereκ =λ/ξ is known as the Ginzburg–Landau parameter, which must beκ>1/2{\displaystyle \kappa >1/{\sqrt {2}}} intype-II superconductors.

Abrikosov vortices can be trapped in atype-II superconductor by chance, on defects, etc. Even if initiallytype-II superconductor contains no vortices, and one applies a magnetic fieldH{\displaystyle H} larger than thelower critical fieldHc1{\displaystyle H_{c1}} (but smaller than theupper critical fieldHc2{\displaystyle H_{c2}}), the field penetrates into superconductor in terms of Abrikosov vortices. Each vortex obeys London's magnetic flux quantization and carries one quantum of magnetic fluxΦ0{\displaystyle \Phi _{0}}.[3][4] Abrikosov vortices form a lattice, usually triangular, with the average vortex density (flux density) approximately equal to the externally applied magnetic field. As with other lattices, defects may form as dislocations.

See also

[edit]

References

[edit]
  1. ^Wells, Frederick S.; Pan, Alexey V.; Wang, X. Renshaw; Fedoseev, Sergey A.; Hilgenkamp, Hans (2015)."Analysis of low-field isotropic vortex glass containing vortex groups in YBa2Cu3O7−x thin films visualized by scanning SQUID microscopy".Scientific Reports.5 8677.arXiv:1807.06746.Bibcode:2015NatSR...5.8677W.doi:10.1038/srep08677.PMC 4345321.PMID 25728772.
  2. ^Abrikosov, A. A. (1957). "The magnetic properties of superconducting alloys".Journal of Physics and Chemistry of Solids.2 (3):199–208.Bibcode:1957JPCS....2..199A.doi:10.1016/0022-3697(57)90083-5.
  3. ^abcLondon, F. (1948-09-01). "On the Problem of the Molecular Theory of Superconductivity".Physical Review.74 (5):562–573.Bibcode:1948PhRv...74..562L.doi:10.1103/PhysRev.74.562.
  4. ^abcLondon, Fritz (1961).Superfluids (2nd ed.). New York, NY: Dover.
  5. ^Onsager, L. (March 1949)."Statistical hydrodynamics".Il Nuovo Cimento.6 (S2):279–287.Bibcode:1949NCim....6S.279O.doi:10.1007/BF02780991.ISSN 0029-6341.S2CID 186224016.
  6. ^Feynman, R.P. (1955),Chapter II Application of Quantum Mechanics to Liquid Helium, Progress in Low Temperature Physics, vol. 1, Elsevier, pp. 17–53,doi:10.1016/s0079-6417(08)60077-3,ISBN 978-0-444-53307-4, retrieved2021-04-11{{citation}}:ISBN / Date incompatibility (help)
  7. ^de Gennes, Pierre-Gilles (2018) [1965].Superconductivity of Metals and Alloys. Addison Wesley Publishing Company, Inc. p. 59.ISBN 978-0-7382-0101-6.
Theories
Characteristic parameters
Phenomena
Classification
By magnetic response
By explanation
By critical temperature
By composition
Technological applications
List of superconductors
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Abrikosov_vortex&oldid=1315643783"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp