Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Projected normal distribution

From Wikipedia, the free encyclopedia
(Redirected fromACG distribution)
Probability distribution
Projected normal distribution
NotationPNn(μ,Σ){\displaystyle {\mathcal {PN}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})}
ParametersμRn{\displaystyle {\boldsymbol {\mu }}\in \mathbb {R} ^{n}} (location)
ΣRn×n{\displaystyle {\boldsymbol {\Sigma }}\in \mathbb {R} ^{n\times n}} (scale)
Support

Unitn-sphere, with angular or Cartesian coordinates:
Θ=[0,π]n2×[0,2π){\displaystyle {\boldsymbol {\Theta }}=[0,\pi ]^{n-2}\times [0,2\pi )}

Sn1={zRn:z=1}{\displaystyle \mathbb {S} ^{n-1}=\{{\boldsymbol {z}}\in \mathbb {R} ^{n}:\lVert {\boldsymbol {z}}\rVert =1\}}
PDFcomplicated, see text

Indirectional statistics, theprojected normal distribution (also known asoffset normal distribution,angular normal distribution orangular Gaussian distribution)[1][2] is aprobability distribution overdirections that describes the radial projection of arandom variable withn-variate normal distribution over the unit(n-1)-sphere.

Definition and properties

[edit]

Given a random variableXRn{\displaystyle {\boldsymbol {X}}\in \mathbb {R} ^{n}} that follows a multivariate normal distributionNn(μ,Σ){\displaystyle {\mathcal {N}}_{n}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})}, the projected normal distributionPNn(μ,Σ){\displaystyle {\mathcal {PN}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} represents the distribution of the random variableY=XX{\displaystyle {\boldsymbol {Y}}={\frac {\boldsymbol {X}}{\lVert {\boldsymbol {X}}\rVert }}} obtained projectingX{\displaystyle {\boldsymbol {X}}} over the unit sphere. In the general case, the projected normal distribution can be asymmetric andmultimodal. In caseμ{\displaystyle {\boldsymbol {\mu }}} is parallel to aneigenvector ofΣ{\displaystyle {\boldsymbol {\Sigma }}}, the distribution is symmetric.[3] The first version of such distribution was introduced in Pukkila and Rao (1988).[4]

Support

[edit]

The support of this distribution is the unit (n-1)-sphere, which can be variously given in terms of a set of(n1){\displaystyle (n-1)}-dimensionalangular spherical cooordinates:

Θ=[0,π]n2×[0,2π)Rn1{\displaystyle {\boldsymbol {\Theta }}=[0,\pi ]^{n-2}\times [0,2\pi )\subset \mathbb {R} ^{n-1}}

or in terms ofn{\displaystyle n}-dimensionalCartesian coordinates:

Sn1={zRn:z=1}Rn{\displaystyle \mathbb {S} ^{n-1}=\{{\boldsymbol {z}}\in \mathbb {R} ^{n}:\lVert {\boldsymbol {z}}\rVert =1\}\subset \mathbb {R} ^{n}}

The two are linked via theembedding function,e:ΘRn{\displaystyle e:{\boldsymbol {\Theta }}\to \mathbb {R} ^{n}}, with rangee(Θ)=Sn1.{\displaystyle e({\boldsymbol {\Theta }})=\mathbb {S} ^{n-1}.} This function is defined bythe formula for spherical coordinates atr=1.{\displaystyle r=1.}

Density function

[edit]

The density of the projected normal distributionPNn(μ,Σ){\displaystyle {\mathcal {PN}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} can be constructed from the density of its generatorn-variate normal distributionNn(μ,Σ){\displaystyle {\mathcal {N}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} by re-parametrising ton-dimensional spherical coordinates and then integrating over the radial coordinate.

Infull spherical coordinates with radial componentr[0,){\displaystyle r\in [0,\infty )} and anglesθ=(θ1,,θn1)Θ{\displaystyle {\boldsymbol {\theta }}=(\theta _{1},\dots ,\theta _{n-1})\in {\boldsymbol {\Theta }}}, a pointx=(x1,,xn)Rn{\displaystyle {\boldsymbol {x}}=(x_{1},\dots ,x_{n})\in \mathbb {R} ^{n}} can be written asx=rv{\displaystyle {\boldsymbol {x}}=r{\boldsymbol {v}}}, withvSn1{\displaystyle {\boldsymbol {v}}\in \mathbb {S} ^{n-1}}. To be clear,v=e(θ){\displaystyle {\boldsymbol {v}}=e({\boldsymbol {\theta }})}, as given by the above-defined embedding function. The joint density becomes

p(r,θ|μ,Σ)=rn1Nn(rvμ,Σ)=rn1|Σ|(2π)n2e12(rvμ)Σ1(rvμ){\displaystyle p(r,{\boldsymbol {\theta }}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})=r^{n-1}{\mathcal {N}}_{n}(r{\boldsymbol {v}}\mid {\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\frac {r^{n-1}}{{\sqrt {|{\boldsymbol {\Sigma }}|}}(2\pi )^{\frac {n}{2}}}}e^{-{\frac {1}{2}}(r{\boldsymbol {v}}-{\boldsymbol {\mu }})^{\top }\Sigma ^{-1}(r{\boldsymbol {v}}-{\boldsymbol {\mu }})}}

where the factorrn1{\displaystyle r^{n-1}} is due to thechange of variablesx=rv{\displaystyle {\boldsymbol {x}}=r{\boldsymbol {v}}}. The density ofPNn(μ,Σ){\displaystyle {\mathcal {PN}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} can then be obtained via marginalization overr{\displaystyle r} as[5]

p(θ|μ,Σ)=0p(r,θ|μ,Σ)dr.{\displaystyle p({\boldsymbol {\theta }}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})=\int _{0}^{\infty }p(r,{\boldsymbol {\theta }}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})dr.}

The same density had been previously obtained in Pukkila and Rao (1988, Eq. (2.4))[4] using a different notation.

Note on density definition

[edit]

This subsection gives some clarification lest the various forms ofprobability density used in this article be misunderstood. Take for example a random variateu(0,1]{\displaystyle u\in (0,1]}, with uniform density,pU(u)=1{\displaystyle p_{U}(u)=1}. If=logu{\displaystyle \ell =-\log u}, it has density,pL()=e{\displaystyle p_{L}(\ell )=e^{-\ell }}. This works if both densities are defined with respect toLebesgue measure on the real line. By default convention:

Neither of these conventions apply to thePNn{\displaystyle {\mathcal {PN_{n}}}} densities in this article:

The pullback and Hausdorff measures agree, so that:

p(θμ,Σ)=p~(vμ,Σ){\displaystyle p({\boldsymbol {\theta }}\mid {\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\tilde {p}}({\boldsymbol {v}}\mid {\boldsymbol {\mu }},{\boldsymbol {\Sigma }})}

where there is no change-of-variables factor, because the densities usedifferent measures.

To better understand what is meant by a density being defined w.r.t. ameasure (a function that maps subsets insample space to a non-negative real-valued 'volume'), consider a measureable subset,UΘ{\displaystyle U\subseteq {\boldsymbol {\Theta }}}, with embedded imageV=e(U)Sn1{\displaystyle V=e(U)\subseteq \mathbb {S} ^{n-1}} and letv=e(θ)PNn{\displaystyle {\boldsymbol {v}}=e({\boldsymbol {\theta }})\sim {\mathcal {PN_{n}}}}, then the probability for finding the sample in the subset is:

P(θU)=Updπ=P(vV)=Vp~dh{\displaystyle P({\boldsymbol {\theta }}\in U)=\int _{U}p\,d\pi =P({\boldsymbol {v}}\in V)=\int _{V}{\tilde {p}}\,dh}

whereπ,h{\displaystyle \pi ,h} are respectively the pullback and Hausdorff measures; and the integrals areLebesgue integrals, which can berewritten as Riemann integrals thus:

Updπ=0π({θU:p(θ)>t})dt(1){\displaystyle \int _{U}p\,d\pi =\int _{0}^{\infty }\pi \left(\{{\boldsymbol {\theta }}\in U:p({\boldsymbol {\theta }})>t\}\right)\,dt\quad (1)}

Pullback measure

[edit]

Thetangent space atvSn1{\displaystyle {\boldsymbol {v}}\in \mathbb {S} ^{n-1}} is the(n1){\displaystyle (n-1)}-dimensionallinear subspace perpendicular tov{\displaystyle {\boldsymbol {v}}}, where Lebesgue measurecan be used. At very small scale, the tangent space is indistinguishable from the sphere (e.g. Earth looks locally flat), so that Lebesgue measure in tangent space agrees with area on the hypersphere. The tangent space Lebesgue measure is pulled back via the embedding function, as follows, to define the measure in coordinate space. ForUΘ,{\displaystyle U\subseteq {\boldsymbol {\Theta }},} a measureable subset in coordinate space, thepullback measure, as aRiemann integral is:

π(U)=U|det(EθEθ)|dθ1dθn1(2){\displaystyle \pi (U)=\int _{U}{\sqrt {\left|\operatorname {det} (\mathbf {E} _{\boldsymbol {\theta }}'\mathbf {E} _{\boldsymbol {\theta }})\right|}}\,d\theta _{1}\,\cdots \,d\theta _{n-1}\quad (2)}

where theJacobian of the embedding function,e(θ){\displaystyle e({\boldsymbol {\theta }})}, is then-by-(n1){\displaystyle n{\text{-by-}}(n-1)} matrixEθ,{\displaystyle \mathbf {E} _{\boldsymbol {\theta }},} the columns of which span the(n1){\displaystyle (n-1)}-dimensional tangent space where the Lebesgue measure is applied.It can be shown:|det(EθEθ)|=i=1n2sinn1i(θi).{\displaystyle {\sqrt {\left|\operatorname {det} (\mathbf {E} _{\boldsymbol {\theta }}'\mathbf {E} _{\boldsymbol {\theta }})\right|}}=\prod _{i=1}^{n-2}\sin ^{n-1-i}(\theta _{i}).} When plugging the pullback measure (2), into equation (1) and exchanging the order of integration:[6]

P(θU)=Updπ=Up(θμ,Σ)|det(EθEθ)|dθ1dθn1{\displaystyle P({\boldsymbol {\theta }}\in {\mathcal {U}})=\int _{U}p\,d\pi =\int _{U}p({\boldsymbol {\theta }}\mid {\boldsymbol {\mu }},{\boldsymbol {\Sigma }})\,{\sqrt {\left|\operatorname {det} (\mathbf {E} _{\boldsymbol {\theta }}'\mathbf {E} _{\boldsymbol {\theta }})\right|}}\,d\theta _{1}\,\cdots \,d\theta _{n-1}}

where the first integral is Lebesgue and the second Riemann. Finally, for better geometric understanding of the square-root factor, consider:

Circular distribution

[edit]

Forn=2{\displaystyle n=2}, parametrising the position on theunit circle inpolar coordinates asv=(cosθ,sinθ){\displaystyle {\boldsymbol {v}}=(\cos \theta ,\sin \theta )}, the density function can be written with respect to the parametersμ{\displaystyle {\boldsymbol {\mu }}} andΣ{\displaystyle {\boldsymbol {\Sigma }}} of the initial normal distribution as

p(θ|μ,Σ)=e12μΣ1μ2π|Σ|vΣ1v(1+T(θ)Φ(T(θ))ϕ(T(θ)))I[0,2π)(θ){\displaystyle p(\theta |{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\frac {e^{-{\frac {1}{2}}{\boldsymbol {\mu }}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}}{2\pi {\sqrt {|{\boldsymbol {\Sigma }}|}}{\boldsymbol {v}}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {v}}}}\left(1+T(\theta ){\frac {\Phi (T(\theta ))}{\phi (T(\theta ))}}\right)I_{[0,2\pi )}(\theta )}

whereϕ{\displaystyle \phi } andΦ{\displaystyle \Phi } are thedensity andcumulative distribution of astandard normal distribution,T(θ)=vΣ1μvΣ1v{\displaystyle T(\theta )={\frac {{\boldsymbol {v}}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}{\sqrt {{\boldsymbol {v}}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {v}}}}}}, andI{\displaystyle I} is theindicator function.[3]

In the circular case, if the mean vectorμ{\displaystyle {\boldsymbol {\mu }}} is parallel to theeigenvector associated to the largesteigenvalue of the covariance, the distribution is symmetric and has amode atθ=α{\displaystyle \theta =\alpha } and either a mode or an antimode atθ=α+π{\displaystyle \theta =\alpha +\pi }, whereα{\displaystyle \alpha } is the polar angle ofμ=(rcosα,rsinα){\displaystyle {\boldsymbol {\mu }}=(r\cos \alpha ,r\sin \alpha )}. If the mean is parallel to the eigenvector associated to the smallest eigenvalue instead, the distribution is also symmetric but has either a mode or an antimode atθ=α{\displaystyle \theta =\alpha } and an antimode atθ=α+π{\displaystyle \theta =\alpha +\pi }.[7]

Spherical distribution

[edit]

Forn=3{\displaystyle n=3}, parametrising the position on theunit sphere inspherical coordinates asv=(cosθ1sinθ2,sinθ1sinθ2,cosθ2){\displaystyle {\boldsymbol {v}}=(\cos \theta _{1}\sin \theta _{2},\sin \theta _{1}\sin \theta _{2},\cos \theta _{2})} whereθ=(θ1,θ2){\displaystyle {\boldsymbol {\theta }}=(\theta _{1},\theta _{2})} are theazimuthθ1[0,2π){\displaystyle \theta _{1}\in [0,2\pi )} and inclinationθ2[0,π]{\displaystyle \theta _{2}\in [0,\pi ]} angles respectively, the density function becomes

p(θ|μ,Σ)=e12μΣ1μ|Σ|(2πvΣ1v)32(Φ(T(θ))ϕ(T(θ))+T(θ)(1+T(θ)Φ(T(θ))ϕ(T(θ))))I[0,2π)(θ1)I[0,π](θ2){\displaystyle p({\boldsymbol {\theta }}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\frac {e^{-{\frac {1}{2}}{\boldsymbol {\mu }}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}}{{\sqrt {|{\boldsymbol {\Sigma }}|}}\left(2\pi {\boldsymbol {v}}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {v}}\right)^{\frac {3}{2}}}}\left({\frac {\Phi (T({\boldsymbol {\theta }}))}{\phi (T({\boldsymbol {\theta }}))}}+T({\boldsymbol {\theta }})\left(1+T({\boldsymbol {\theta }}){\frac {\Phi (T({\boldsymbol {\theta }}))}{\phi (T({\boldsymbol {\theta }}))}}\right)\right)I_{[0,2\pi )}(\theta _{1})I_{[0,\pi ]}(\theta _{2})}

whereϕ{\displaystyle \phi },Φ{\displaystyle \Phi },T{\displaystyle T}, andI{\displaystyle I} have the same meaning as the circular case.[8]

Angular Central Gaussian Distribution

[edit]

In the special case,μ=0{\displaystyle {\boldsymbol {\mu }}=\mathbf {0} }, the projected normal distribution, withn2{\displaystyle n\geq 2} is known as theangular central Gaussian (ACG)[9] and in this case, the density function can be obtained in closed form as a function ofCartesian coordinates. LetxNn(0,Σ){\displaystyle \mathbf {x} \sim {\mathcal {N}}_{n}(\mathbf {0} ,{\boldsymbol {\Sigma }})} and project radially:v=x1x{\displaystyle \mathbf {v} =\lVert \mathbf {x} \rVert ^{-1}\mathbf {x} } so thatvSn1={zRn:z=1}{\displaystyle \mathbf {v} \in \mathbb {S} ^{n-1}=\{\mathbf {z} \in \mathbb {R} ^{n}:\lVert \mathbf {z} \rVert =1\}} (the unit hypersphere). We writevACG(Σ){\displaystyle \mathbf {v} \sim \operatorname {ACG} ({\boldsymbol {\Sigma }})}, which as explained above, atv=e(θ){\displaystyle {\boldsymbol {v}}=e({\boldsymbol {\theta }})}, has density:

p~ACG(vΣ)=p(θ0,Σ)=0rn1Nn(rv0,Σ)dr=Γ(n2)2πn2|Σ|12(vΣ1v)n2{\displaystyle {\tilde {p}}_{\text{ACG}}(\mathbf {v} \mid {\boldsymbol {\Sigma }})=p({\boldsymbol {\theta }}\mid {\boldsymbol {0}},{\boldsymbol {\Sigma }})=\int _{0}^{\infty }r^{n-1}{\mathcal {N}}_{n}(r\mathbf {v} \mid \mathbf {0} ,{\boldsymbol {\Sigma }})\,dr={\frac {\Gamma ({\frac {n}{2}})}{2\pi ^{\frac {n}{2}}}}\left|{\boldsymbol {\Sigma }}\right|^{-{\frac {1}{2}}}(\mathbf {v} '{\boldsymbol {\Sigma }}^{-1}\mathbf {v} )^{-{\frac {n}{2}}}}

where the integral can be solved by a change of variables and then using the standard definition of thegamma function. Notice that:

p~ACG(vkΣ)=p~ACG(vΣ){\displaystyle {\tilde {p}}_{\text{ACG}}(\mathbf {v} \mid k{\boldsymbol {\Sigma }})={\tilde {p}}_{\text{ACG}}(\mathbf {v} \mid {\boldsymbol {\Sigma }})}.
p~ACG(vkIn)=puniform=Γ(n2)2πn2{\displaystyle {\tilde {p}}_{\text{ACG}}(\mathbf {v} \mid k\mathbf {I} _{n})=p_{\text{uniform}}={\frac {\Gamma ({\frac {n}{2}})}{2\pi ^{\frac {n}{2}}}}}

ACG via transformation of normal or uniform variates

[edit]

LetT{\displaystyle \mathbf {T} } be anyn{\displaystyle n}-by-n{\displaystyle n}invertible matrix such thatTT=Σ{\displaystyle \mathbf {T} \mathbf {T} '={\boldsymbol {\Sigma }}}. LetuACG(In){\displaystyle \mathbf {u} \sim \operatorname {ACG} (\mathbf {I} _{n})} (uniform) andsχ(n){\displaystyle s\sim \chi (n)} (chi distribution), so that:x=sTuNn(0,Σ){\displaystyle \mathbf {x} =s\mathbf {Tu} \sim {\mathcal {N}}_{n}(\mathbf {0} ,{\boldsymbol {\Sigma }})} (multivariate normal). Now consider:

v=TuTu=xxACG(Σ){\displaystyle \mathbf {v} ={\frac {\mathbf {Tu} }{\lVert \mathbf {Tu} \rVert }}={\frac {\mathbf {x} }{\lVert \mathbf {x} \rVert }}\sim \operatorname {ACG} ({\boldsymbol {\Sigma }})}

which shows that the ACG distributionalso results from applying, to uniform variates, thenormalized linear transform:[9]

fT(u)=TuTu{\displaystyle f_{\mathbf {T} }(\mathbf {u} )={\frac {\mathbf {Tu} }{\lVert \mathbf {Tu} \rVert }}}

Some further explanation of these two ways to obtainvACG(Σ){\displaystyle \mathbf {v} \sim \operatorname {ACG} ({\boldsymbol {\Sigma }})} may be helpful:

Caveat: whenμ{\displaystyle {\boldsymbol {\mu }}} is nonzero, althoughsTu+μNd(μ,Σ){\displaystyle s\mathbf {Tu} +{\boldsymbol {\mu }}\sim {\mathcal {N}}_{d}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})}, a similar duality doesnot hold:

Tu+μTu+μsTu+μsTu+μPNn(μ,Σ){\displaystyle {\frac {\mathbf {Tu} +{\boldsymbol {\mu }}}{\lVert \mathbf {Tu} +{\boldsymbol {\mu }}\rVert }}\neq {\frac {s\mathbf {Tu} +{\boldsymbol {\mu }}}{\lVert s\mathbf {Tu} +{\boldsymbol {\mu }}\rVert }}\sim {\mathcal {PN}}_{n}({\boldsymbol {\mu ,\Sigma }})}

Although we can radially project affine-transformed normal variates to getPNn{\displaystyle {\mathcal {PN}}_{n}} variates, this does not work for uniform variates.

Wider application of the normalized linear transform

[edit]

The normalized linear transform,v=fT(u){\displaystyle \mathbf {v} =f_{\mathbf {T} }(\mathbf {u} )}, is abijection from the unitsphere to itself; the inverse isu=fT1(v){\displaystyle \mathbf {u} =f_{\mathbf {T} ^{-1}}(\mathbf {v} )}. This transform is of independent interest, as it may be applied as aprobabilistic flow on the hypersphere (similar to anormalizing flow) to generalize also other (non-uniform) distributions on hyperspheres, for example theVon Mises-Fisher distribution. The fact that we have a closed form for the ACG density allows us to recover also in closed form thedifferential volume change induced by this transform.

For the change of variables,v=fT(u){\displaystyle \mathbf {v} =f_{\mathbf {T} }(\mathbf {u} )} on themanifold,Sn1{\displaystyle \mathbb {S} ^{n-1}}, the uniform and ACG densities are related as:[6]

p~ACG(vΣ)=puniformR(v,Σ){\displaystyle {\tilde {p}}_{\text{ACG}}(\mathbf {v} \mid {\boldsymbol {\Sigma }})={\frac {p_{\text{uniform}}}{R(\mathbf {v} ,{\boldsymbol {\Sigma }})}}}

where the (constant) uniform density ispuniform=Γ(n/2)2πn/2{\displaystyle p_{\text{uniform}}={\frac {\Gamma (n/2)}{2\pi ^{n/2}}}} and whereR(v,Σ){\displaystyle R(\mathbf {v} ,{\boldsymbol {\Sigma }})} is the differential volume change factor from the input to the output of the transformation; specifically, it is given by the absolute value of thedeterminant of an(n1){\displaystyle (n-1)}-by-(n1){\displaystyle (n-1)} matrix:

R(v,Σ)=abs|QvJuQu|{\displaystyle R(\mathbf {v} ,{\boldsymbol {\Sigma }})=\operatorname {abs} \left|\mathbf {Q} _{\mathbf {v} }'\mathbf {J} _{\mathbf {u} }\mathbf {Q} _{\mathbf {u} }\right|}

whereJu{\displaystyle \mathbf {J} _{\mathbf {u} }} is then{\displaystyle n}-by-n{\displaystyle n}Jacobian matrix of thetransformation in Euclidean space,fT:RnRn{\displaystyle f_{\mathbf {T} }:\mathbb {R} ^{n}\to \mathbb {R} ^{n}}, evaluated atu{\displaystyle \mathbf {u} }. InEuclidean space, the transformation and its Jacobian are non-invertible, but when the domain and co-domain are restricted toSn1{\displaystyle \mathbb {S} ^{n-1}}, thenfT:Sn1Sn1{\displaystyle f_{\mathbf {T} }:\mathbb {S} ^{n-1}\to \mathbb {S} ^{n-1}} is a bijection and the induced differential volume ratio,R(v,Σ){\displaystyle R(\mathbf {v} ,{\boldsymbol {\Sigma }})} is obtained by projectingJu{\displaystyle \mathbf {J} _{\mathbf {u} }} onto the(n1){\displaystyle (n-1)}-dimensional tangent spaces at the transformation input and output:Qu,Qv{\displaystyle \mathbf {Q} _{\mathbf {u} },\mathbf {Q} _{\mathbf {v} }} aren{\displaystyle n}-by-(n1){\displaystyle (n-1)} matrices whose orthonormal columns span the tangent spaces. Although the above determinant formula is relatively easy to evaluate numerically on a software platform equipped withlinear algebra andautomatic differentiation, a simple closed form is hard to derive directly. However, since we already havep~ACG{\displaystyle {\tilde {p}}_{\text{ACG}}}, we can recover:

R(v,Σ)=|Σ|12(vΣ1v)n2=abs|T|Tun{\displaystyle R(\mathbf {v} ,{\boldsymbol {\Sigma }})=\left|{\boldsymbol {\Sigma }}\right|^{\frac {1}{2}}(\mathbf {v} '{\boldsymbol {\Sigma }}^{-1}\mathbf {v} )^{\frac {n}{2}}={\frac {\operatorname {abs} \left|\mathbf {T} \right|}{\lVert \mathbf {Tu} \rVert ^{n}}}}

where in the final RHS it is understood thatΣ=TT{\displaystyle {\boldsymbol {\Sigma }}=\mathbf {T} \mathbf {T} '} andu=fT1(v){\displaystyle \mathbf {u} =f_{\mathbf {T} ^{-1}}(\mathbf {v} )}.

The normalized linear transform can now be used, for example, to give a closed-form density for a more flexible distribution on the hypersphere, that is generalized from theVon Mises-Fisher. LetxVMF(μ,κ){\displaystyle \mathbf {x} \sim {\text{VMF}}({\boldsymbol {\mu }},\kappa )} andv=fT(x){\displaystyle \mathbf {v} =f_{\mathbf {T} }(\mathbf {x} )}; the resulting density is:

p(vμ,κ,T)=p~VMF(fT1(v)μ,κ)R(v,TT){\displaystyle p(\mathbf {v} \mid {\boldsymbol {\mu }},\kappa ,\mathbf {T} )={\frac {{\tilde {p}}_{\text{VMF}}{\bigl (}\mathbf {f} _{T^{-1}}(\mathbf {v} )\mid {\boldsymbol {\mu }},\kappa {\bigr )}}{R(\mathbf {v} ,\mathbf {T} \mathbf {T} ')}}}

See also

[edit]

References

[edit]
  1. ^Wang & Gelfand 2013.
  2. ^Pukkila & Rao 1988.
  3. ^abHernandez-Stumpfhauser, Breidt & van der Woerd 2017, p. 115.
  4. ^abPukkila & Rao 1988, p. 381.
  5. ^Hernandez-Stumpfhauser, Breidt & van der Woerd 2017, p. 117.
  6. ^abSorrenson et al. 2024, Appendix A.
  7. ^Hernandez-Stumpfhauser, Breidt & van der Woerd 2017, Supplementary material, p. 1.
  8. ^Hernandez-Stumpfhauser, Breidt & van der Woerd 2017, p. 123.
  9. ^abTyler 1987.

Sources

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Projected_normal_distribution&oldid=1317446628#Angular_Central_Gaussian_Distribution"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp