Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

7-simplex

From Wikipedia, the free encyclopedia
Type of 7-polytope
Regular octaexon
(7-simplex)

Orthogonal projection
insidePetrie polygon
TypeRegular7-polytope
Familysimplex
Schläfli symbol{3,3,3,3,3,3}
Coxeter-Dynkin
diagram
6-faces86-simplex
5-faces285-simplex
4-faces565-cell
Cells70tetrahedron
Faces56triangle
Edges28
Vertices8
Vertex figure6-simplex
Petrie polygonoctagon
Coxeter groupA7 [3,3,3,3,3,3]
DualSelf-dual
Propertiesconvex

In7-dimensionalgeometry, a 7-simplex is a self-dualregular7-polytope. It has 8vertices, 28edges, 56 trianglefaces, 70 tetrahedralcells, 565-cell 5-faces, 285-simplex 6-faces, and 86-simplex 7-faces. Itsdihedral angle is cos−1(1/7), or approximately 81.79°.

Alternate names

[edit]

It can also be called anoctaexon, orocta-7-tope, as an 8-facetted polytope in 7-dimensions. Thenameoctaexon is derived fromocta for eightfacets inGreek and-ex for having six-dimensional facets, and-on. Jonathan Bowers gives an octaexon the acronymoca.[1]

As a configuration

[edit]

Thisconfiguration matrix represents the 7-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[2][3]

[872135352172286152015633565101054647046451010556336152015628272135352178]{\displaystyle {\begin{bmatrix}{\begin{matrix}8&7&21&35&35&21&7\\2&28&6&15&20&15&6\\3&3&56&5&10&10&5\\4&6&4&70&4&6&4\\5&10&10&5&56&3&3\\6&15&20&15&6&28&2\\7&21&35&35&21&7&8\end{matrix}}\end{bmatrix}}}

Symmetry

[edit]

7-simplex as a join of two orthogonal tetrahedra in a symmetric 2D orthographic project: 2⋅{3,3} or {3,3}∨{3,3}, 6 red edges, 6 blue edges, and 16 yellow cross edges.

7-simplex as a join of 4 orthogonal segments, projected into a 3D cube: 4⋅{ } = { }∨{ }∨{ }∨{ }. The 28 edges are shown as 12 yellow edges of the cube, 12 cube face diagonals in light green, and 4 full diagonals in red. This partition can be considered a tetradisphenoid, or a join of twodisphenoid.

There are many lower symmetry constructions of the 7-simplex.

Some are expressed as join partitions of two or more lower simplexes. The symmetry order of each join is the product of the symmetry order of the elements, and raised further if identical elements can be interchanged.

JoinSymbolSymmetryOrderExtendedf-vectors
(factorization)
Regular 7-simplex{3,3,3,3,3,3}[3,3,3,3,3,3]8! = 40320(1,8,28,56,70,56,28,8,1)
6-simplex-point join (pyramid){3,3,3,3,3}∨( )[3,3,3,3,3,1]7!×1! = 5040(1,7,21,35,35,21,7,1)*(1,1)
5-simplex-segment join{3,3,3,3}∨{ }[3,3,3,3,2,1]6!×2! = 1440(1,6,15,20,15,6,1)*(1,2,1)
5-cell-triangle join{3,3,3}∨{3}[3,3,3,2,3,1]5!×3! = 720(1,5,10,10,5,1)*(1,3,3,1)
triangle-triangle-segment join{3}∨{3}∨{ }[[3,2,3],2,1,1]((3!)2×2!)×2! = 144(1,3,3,1)2*(1,2,1)
Tetrahedron-tetrahedron join2⋅{3,3} = {3,3}∨{3,3}[[3,3,2,3,3],1](4!)2×2! = 1052(1,4,6,4,1)2
4 segment join4⋅{ } = { }∨{ }∨{ }∨{ }[4[2,2,2],1,1,1](2!)4×4! = 384(1,2,1)4
8 point join8⋅( )[8[1,1,1,1,1,1]](1!)8×8! = 40320(1,1)8

Coordinates

[edit]

TheCartesian coordinates of the vertices of an origin-centered regular octaexon having edge length 2 are:

(1/28, 1/21, 1/15, 1/10, 1/6, 1/3, ±1){\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ {\sqrt {1/3}},\ \pm 1\right)}
(1/28, 1/21, 1/15, 1/10, 1/6, 21/3, 0){\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ -2{\sqrt {1/3}},\ 0\right)}
(1/28, 1/21, 1/15, 1/10, 3/2, 0, 0){\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ -{\sqrt {3/2}},\ 0,\ 0\right)}
(1/28, 1/21, 1/15, 22/5, 0, 0, 0){\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ -2{\sqrt {2/5}},\ 0,\ 0,\ 0\right)}
(1/28, 1/21, 5/3, 0, 0, 0, 0){\displaystyle \left({\sqrt {1/28}},\ {\sqrt {1/21}},\ -{\sqrt {5/3}},\ 0,\ 0,\ 0,\ 0\right)}
(1/28, 12/7, 0, 0, 0, 0, 0){\displaystyle \left({\sqrt {1/28}},\ -{\sqrt {12/7}},\ 0,\ 0,\ 0,\ 0,\ 0\right)}
(7/4, 0, 0, 0, 0, 0, 0){\displaystyle \left(-{\sqrt {7/4}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}

More simply, the vertices of the7-simplex can be positioned in 8-space as permutations of (0,0,0,0,0,0,0,1). This construction is based onfacets of the8-orthoplex.

Images

[edit]
7-Simplex in 3D

Ball and stick model intriakis tetrahedral envelope

7-Simplex as anAmplituhedron Surface

7-simplex to 3D with camera perspective showing hints of its 2D Petrie projection

Orthographic projections

[edit]
orthographic projections
AkCoxeter planeA7A6A5
Graph
Dihedral symmetry[8][7][6]
Ak Coxeter planeA4A3A2
Graph
Dihedral symmetry[5][4][3]

Related polytopes

[edit]

This polytope is a facet in the uniform tessellation331 withCoxeter-Dynkin diagram:

This polytope is one of 71uniform 7-polytopes with A7 symmetry.

A7 polytopes

t0

t1

t2

t3

t0,1

t0,2

t1,2

t0,3

t1,3

t2,3

t0,4

t1,4

t2,4

t0,5

t1,5

t0,6

t0,1,2

t0,1,3

t0,2,3

t1,2,3

t0,1,4

t0,2,4

t1,2,4

t0,3,4

t1,3,4

t2,3,4

t0,1,5

t0,2,5

t1,2,5

t0,3,5

t1,3,5

t0,4,5

t0,1,6

t0,2,6

t0,3,6

t0,1,2,3

t0,1,2,4

t0,1,3,4

t0,2,3,4

t1,2,3,4

t0,1,2,5

t0,1,3,5

t0,2,3,5

t1,2,3,5

t0,1,4,5

t0,2,4,5

t1,2,4,5

t0,3,4,5

t0,1,2,6

t0,1,3,6

t0,2,3,6

t0,1,4,6

t0,2,4,6

t0,1,5,6

t0,1,2,3,4

t0,1,2,3,5

t0,1,2,4,5

t0,1,3,4,5

t0,2,3,4,5

t1,2,3,4,5

t0,1,2,3,6

t0,1,2,4,6

t0,1,3,4,6

t0,2,3,4,6

t0,1,2,5,6

t0,1,3,5,6

t0,1,2,3,4,5

t0,1,2,3,4,6

t0,1,2,3,5,6

t0,1,2,4,5,6

t0,1,2,3,4,5,6

Notes

[edit]
  1. ^Klitzing, Richard."7D uniform polytopes (polyexa) x3o3o3o3o3o3o — oca".
  2. ^Coxeter, H.S.M. (1973). "§1.8 Configurations".Regular Polytopes (3rd ed.). Dover.ISBN 0-486-61480-8.
  3. ^Coxeter, H.S.M. (1991).Regular Complex Polytopes (2nd ed.). Cambridge University Press. p. 117.ISBN 9780521394901.

External links

[edit]
Fundamental convexregular anduniform polytopes in dimensions 2–10
FamilyAnBnI2(p) /DnE6 /E7 /E8 /F4 /G2Hn
Regular polygonTriangleSquarep-gonHexagonPentagon
Uniform polyhedronTetrahedronOctahedronCubeDemicubeDodecahedronIcosahedron
Uniform polychoronPentachoron16-cellTesseractDemitesseract24-cell120-cell600-cell
Uniform 5-polytope5-simplex5-orthoplex5-cube5-demicube
Uniform 6-polytope6-simplex6-orthoplex6-cube6-demicube122221
Uniform 7-polytope7-simplex7-orthoplex7-cube7-demicube132231321
Uniform 8-polytope8-simplex8-orthoplex8-cube8-demicube142241421
Uniform 9-polytope9-simplex9-orthoplex9-cube9-demicube
Uniform 10-polytope10-simplex10-orthoplex10-cube10-demicube
Uniformn-polytopen-simplexn-orthoplexn-cuben-demicube1k22k1k21n-pentagonal polytope
Topics:Polytope familiesRegular polytopeList of regular polytopes and compoundsPolytope operations
Retrieved from "https://en.wikipedia.org/w/index.php?title=7-simplex&oldid=1303638742"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp