| Regular octaexon (7-simplex) | |
|---|---|
Orthogonal projection insidePetrie polygon | |
| Type | Regular7-polytope |
| Family | simplex |
| Schläfli symbol | {3,3,3,3,3,3} |
| Coxeter-Dynkin diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| 6-faces | 86-simplex |
| 5-faces | 285-simplex |
| 4-faces | 565-cell |
| Cells | 70tetrahedron |
| Faces | 56triangle |
| Edges | 28 |
| Vertices | 8 |
| Vertex figure | 6-simplex |
| Petrie polygon | octagon |
| Coxeter group | A7 [3,3,3,3,3,3] |
| Dual | Self-dual |
| Properties | convex |
In7-dimensionalgeometry, a 7-simplex is a self-dualregular7-polytope. It has 8vertices, 28edges, 56 trianglefaces, 70 tetrahedralcells, 565-cell 5-faces, 285-simplex 6-faces, and 86-simplex 7-faces. Itsdihedral angle is cos−1(1/7), or approximately 81.79°.
It can also be called anoctaexon, orocta-7-tope, as an 8-facetted polytope in 7-dimensions. Thenameoctaexon is derived fromocta for eightfacets inGreek and-ex for having six-dimensional facets, and-on. Jonathan Bowers gives an octaexon the acronymoca.[1]
Thisconfiguration matrix represents the 7-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[2][3]
7-simplex as a join of two orthogonal tetrahedra in a symmetric 2D orthographic project: 2⋅{3,3} or {3,3}∨{3,3}, 6 red edges, 6 blue edges, and 16 yellow cross edges. | 7-simplex as a join of 4 orthogonal segments, projected into a 3D cube: 4⋅{ } = { }∨{ }∨{ }∨{ }. The 28 edges are shown as 12 yellow edges of the cube, 12 cube face diagonals in light green, and 4 full diagonals in red. This partition can be considered a tetradisphenoid, or a join of twodisphenoid. |
There are many lower symmetry constructions of the 7-simplex.
Some are expressed as join partitions of two or more lower simplexes. The symmetry order of each join is the product of the symmetry order of the elements, and raised further if identical elements can be interchanged.
| Join | Symbol | Symmetry | Order | Extendedf-vectors (factorization) |
|---|---|---|---|---|
| Regular 7-simplex | {3,3,3,3,3,3} | [3,3,3,3,3,3] | 8! = 40320 | (1,8,28,56,70,56,28,8,1) |
| 6-simplex-point join (pyramid) | {3,3,3,3,3}∨( ) | [3,3,3,3,3,1] | 7!×1! = 5040 | (1,7,21,35,35,21,7,1)*(1,1) |
| 5-simplex-segment join | {3,3,3,3}∨{ } | [3,3,3,3,2,1] | 6!×2! = 1440 | (1,6,15,20,15,6,1)*(1,2,1) |
| 5-cell-triangle join | {3,3,3}∨{3} | [3,3,3,2,3,1] | 5!×3! = 720 | (1,5,10,10,5,1)*(1,3,3,1) |
| triangle-triangle-segment join | {3}∨{3}∨{ } | [[3,2,3],2,1,1] | ((3!)2×2!)×2! = 144 | (1,3,3,1)2*(1,2,1) |
| Tetrahedron-tetrahedron join | 2⋅{3,3} = {3,3}∨{3,3} | [[3,3,2,3,3],1] | (4!)2×2! = 1052 | (1,4,6,4,1)2 |
| 4 segment join | 4⋅{ } = { }∨{ }∨{ }∨{ } | [4[2,2,2],1,1,1] | (2!)4×4! = 384 | (1,2,1)4 |
| 8 point join | 8⋅( ) | [8[1,1,1,1,1,1]] | (1!)8×8! = 40320 | (1,1)8 |
TheCartesian coordinates of the vertices of an origin-centered regular octaexon having edge length 2 are:
More simply, the vertices of the7-simplex can be positioned in 8-space as permutations of (0,0,0,0,0,0,0,1). This construction is based onfacets of the8-orthoplex.
| 7-Simplex in 3D | ||||||
Ball and stick model intriakis tetrahedral envelope | 7-Simplex as anAmplituhedron Surface | 7-simplex to 3D with camera perspective showing hints of its 2D Petrie projection | ||||
| AkCoxeter plane | A7 | A6 | A5 |
|---|---|---|---|
| Graph | |||
| Dihedral symmetry | [8] | [7] | [6] |
| Ak Coxeter plane | A4 | A3 | A2 |
| Graph | |||
| Dihedral symmetry | [5] | [4] | [3] |
This polytope is a facet in the uniform tessellation331 withCoxeter-Dynkin diagram:













This polytope is one of 71uniform 7-polytopes with A7 symmetry.