Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

300 (number)

From Wikipedia, the free encyclopedia
(Redirected from332 (number))
Natural number
← 299300 301 →
Cardinalthree hundred
Ordinal300th
(three hundredth)
Factorization22 × 3 × 52
Greek numeralΤ´
Roman numeralCCC,ccc
Binary1001011002
Ternary1020103
Senary12206
Octal4548
Duodecimal21012
Hexadecimal12C16
Hebrewש
ArmenianՅ
Babylonian cuneiform𒐙
Egyptian hieroglyph𓍤

300 (three hundred) is thenatural number following299 and preceding301.

In mathematics

[edit]

300 is acomposite number and the 24thtriangular number.[1] It is also a second hexagonal number.[2]

Integers from 301 to 399

[edit]

300s

[edit]

301

[edit]
Main article:301 (number)

302

[edit]
Main article:302 (number)

303

[edit]
Main article:303 (number)

304

[edit]
Main article:304 (number)

305

[edit]
Main article:305 (number)

306

[edit]
Main article:306 (number)

307

[edit]
Main article:307 (number)

308

[edit]
Main article:308 (number)

309

[edit]
Main article:309 (number)

310s

[edit]

310

[edit]
Main article:310 (number)

311

[edit]
Main article:311 (number)

312

[edit]
Main article:312 (number)

313

[edit]
Main article:313 (number)

314

[edit]
Main article:314 (number)

315

[edit]
Main article:315 (number)

316

[edit]
Main article:316 (number)

316 = 22 × 79, acentered triangular number[3] and acentered heptagonal number.[4]

317

[edit]

317 is the smallest natural number that does not have its own Wikipedia article, a fact that has itself been noted as making the number notable, creating a situation similar to theinteresting number paradox.

317 is a prime number,Eisenstein prime with no imaginary part, Chen prime,[5] one of the rare primes to be both right and left-truncatable,[6] and a strictly non-palindromic number.

317 is the exponent (and number of ones) in the fourth base-10repunit prime.[7]

318

[edit]
Main article:318 (number)

319

[edit]

319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109),Smith number,[8] cannot be represented as the sum of fewer than 19 fourth powers,happy number in base 10[9]

320s

[edit]

320

[edit]

320 = 26 × 5 = (25) × (2 × 5). 320 is aLeyland number,[10] andmaximum determinant of a 10 by 10 matrix of zeros and ones.

321

[edit]

321 = 3 × 107, aDelannoy number[11]

322

[edit]

322 = 2 × 7 × 23. 322 is asphenic,[12] nontotient,untouchable,[13] and aLucas number.[14] It is also the first unprimeable number to end in 2.

323

[edit]
Main article:323 (number)

324

[edit]

324 = 22 × 34 = 182. 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,[15] and an untouchable number.[13]

325

[edit]
Main article:325 (number)

326

[edit]

326 = 2 × 163. 326 is a nontotient, noncototient,[16] and an untouchable number.[13] 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number[17]

327

[edit]

327 = 3 × 109. 327 is aperfect totient number,[18] number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing[19]

328

[edit]

328 = 23 × 41. 328 is arefactorable number,[20] and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).

329

[edit]

329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and ahighly cototient number.[21]

330s

[edit]

330

[edit]

330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67),pentatope number (and hence abinomial coefficient(114){\displaystyle {\tbinom {11}{4}}}), apentagonal number,[22] divisible by the number of primes below it, and asparsely totient number.[23]

331

[edit]

331 is a prime number, super-prime,cuban prime,[24] alucky prime,[25] sum of five consecutive primes (59 + 61 + 67 + 71 + 73),centered pentagonal number,[26]centered hexagonal number,[27] andMertens function returns 0.[28]

332

[edit]

332 = 22 × 83, Mertens function returns 0.[28]

333

[edit]

333 = 32 × 37, Mertens function returns 0;[28]repdigit; 2333 is the smallestpower of two greater than agoogol.

334

[edit]

334 = 2 × 167, nontotient.[29]

335

[edit]

335 = 5 × 67. 335 is divisible by the number of primes below it, number ofLyndon words of length 12.

336

[edit]

336 = 24 × 3 × 7, untouchable number,[13] number of partitions of 41 into prime parts,[30]largely composite number.[31]

337

[edit]

337,prime number,emirp,permutable prime with 373 and 733, Chen prime,[5]star number

338

[edit]

338 = 2 × 132, nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.[32]

339

[edit]

339 = 3 × 113,Ulam number[33]

340s

[edit]

340

[edit]

340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of4 (41 + 42 + 43 + 44), divisible by the number of primes below it, nontotient, noncototient.[16] Number ofregions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares (sequenceA331452 in theOEIS) and (sequenceA255011 in theOEIS).

341

[edit]
Main article:341 (number)

342

[edit]

342 = 2 × 32 × 19, pronic number,[34] Untouchable number.[13]

343

[edit]

343 = 73, the first niceFriedman number that is composite since 343 = (3 + 4)3. It is the only known example of x2+x+1 = y3, in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3.

344

[edit]

344 = 23 × 43,octahedral number,[35] noncototient,[16] totient sum of the first 33 integers, refactorable number.[20]

345

[edit]

345 = 3 × 5 × 23, sphenic number,[12]idoneal number

346

[edit]

346 = 2 × 173, Smith number,[8] noncototient.[16]

347

[edit]

347 is a prime number,emirp,safe prime,[36]Eisenstein prime with no imaginary part,Chen prime,[5] Friedman prime since 347 = 73 + 4, twin prime with 349, and a strictly non-palindromic number.

348

[edit]

348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97),refactorable number.[20]

349

[edit]

349, prime number, twin prime, lucky prime, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.[37]

350s

[edit]

350

[edit]

350 = 2 × 52 × 7 ={74}{\displaystyle \left\{{7 \atop 4}\right\}}, primitive semiperfect number,[38] divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.

351

[edit]

351 = 33 × 13, 26thtriangular number,[39] sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member ofPadovan sequence[40] and number of compositions of 15 into distinct parts.[41]

  • The international calling code forPortugal

352

[edit]

352 = 25 × 11, the number ofn-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number[17]

353

[edit]
Main article:353 (number)

354

[edit]

354 = 2 × 3 × 59 = 14 + 24 + 34 + 44,[42][43] sphenic number,[12] nontotient, alsoSMTP code meaning start of mail input. It is also sum ofabsolute value of thecoefficients ofConway's polynomial.

  • The international calling code forIceland

355

[edit]

355 = 5 × 71,Smith number,[8]Mertens function returns 0,[28] divisible by the number of primes below it.[44] Thecototient of 355 is 75,[45] where 75 is the product of its digits (3 x 5 x 5 = 75).

The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known asMilü and provides an extremely accurate approximation for pi, being accurate to seven digits.

356

[edit]

356 = 22 × 89, Mertens function returns 0.[28]

357

[edit]

357 = 3 × 7 × 17,sphenic number.[12]

358

[edit]

358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,[28] number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.[46]

  • The international calling code forFinland

359

[edit]
Main article:359 (number)

360s

[edit]

360

[edit]
Main article:360 (number)

361

[edit]

361 = 192. 361 is a centered triangular number,[3]centered octagonal number,centered decagonal number,[47] member of theMian–Chowla sequence;[48] also the number of positions on a standard 19 x 19Go board.

362

[edit]

362 = 2 × 181 = σ2(19): sum of squares of divisors of 19,[49] Mertens function returns 0,[28] nontotient, noncototient.[16]

363

[edit]
Main article:363 (number)

364

[edit]

364 = 22 × 7 × 13,tetrahedral number,[50] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[28]nontotient.It is arepdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zerotetrahedral number.[50]

365

[edit]
Main article:365 (number)

366

[edit]

366 = 2 × 3 × 61,sphenic number,[12] Mertens function returns 0,[28] noncototient,[16] number of complete partitions of 20,[51] 26-gonal and 123-gonal. Also the number of days in aleap year.

367

[edit]

367 is a prime number, a lucky prime,[25]Perrin number,[52]happy number,prime index prime and a strictly non-palindromic number.

368

[edit]

368 = 24 × 23. It is also aLeyland number.[10]

369

[edit]
Main article:369 (number)

370s

[edit]

370

[edit]

370 = 2 × 5 × 37, sphenic number,[12] sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted,Base 10Armstrong number since 33 + 73 + 03 = 370.

371

[edit]

371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor,[53] the next such composite number is 2935561623745,Armstrong number since 33 + 73 + 13 = 371.

372

[edit]

372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61),noncototient,[16]untouchable number,[13] --> refactorable number.[20]

373

[edit]

373, prime number,balanced prime,[54] one of the rare primes to be both right and left-truncatable (two-sided prime),[6] sum of five consecutive primes (67 + 71 + 73 + 79 + 83), sexy prime with 367 and 379,permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114.

374

[edit]

374 = 2 × 11 × 17,sphenic number,[12] nontotient, 3744 + 1 is prime.[55]

375

[edit]

375 = 3 × 53, number of regions in regular 11-gon with all diagonals drawn.[56]

376

[edit]

376 = 23 × 47,pentagonal number,[22] 1-automorphic number,[57] nontotient, refactorable number.[20]

377

[edit]

377 = 13 × 29,Fibonacci number, acentered octahedral number,[58] a Lucas andFibonacci pseudoprime, the sum of the squares of the first six primes.

378

[edit]

378 = 2 × 33 × 7, 27thtriangular number,[59]cake number,[60] hexagonal number,[61] Smith number.[8]

379

[edit]

379 is a prime number, Chen prime,[5] lazy caterer number[17] and a happy number in base 10. It is the sum of the first 15 odd primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.

380s

[edit]

380

[edit]

380 = 22 × 5 × 19, pronic number,[34] number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.[62]

381

[edit]

381 = 3 × 127, palindromic in base 2 and base 8.

381 is the sum of the first 16prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).

382

[edit]

382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.[8]

383

[edit]

383, prime number, safe prime,[36]Woodall prime,[63]Thabit number, Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.[64]4383 - 3383 is prime.

384

[edit]
Main article:384 (number)

385

[edit]

385 = 5 × 7 × 11,sphenic number,[12]square pyramidal number,[65] the number ofinteger partitions of 18.

385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12

386

[edit]

386 = 2 × 193, nontotient, noncototient,[16] centered heptagonal number,[4] number of surface points on a cube with edge-length 9.[66]

387

[edit]

387 = 32 × 43, number of graphical partitions of 22.[67]

388

[edit]

388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,[68] number of uniform rooted trees with 10 nodes.[69]

389

[edit]

389, prime number,emirp, Eisenstein prime with no imaginary part, Chen prime,[5] highly cototient number,[21] strictly non-palindromic number. Smallest conductor of a rank 2Elliptic curve.

390s

[edit]

390

[edit]

390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,

n=010390n{\displaystyle \sum _{n=0}^{10}{390}^{n}} is prime[70]

391

[edit]

391 = 17 × 23, Smith number,[8]centered pentagonal number.[26]

392

[edit]

392 = 23 × 72,Achilles number.

393

[edit]

393 = 3 × 131,Blum integer, Mertens function returns 0.[28]

394

[edit]

394 = 2 × 197 = S5 aSchröder number,[71] nontotient, noncototient.[16]

395

[edit]

395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.[72]

396

[edit]

396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,[20] Harshad number,digit-reassembly number.

397

[edit]

397, prime number, cuban prime,[24] centered hexagonal number.[27]

398

[edit]

398 = 2 × 199, nontotient.

n=010398n{\displaystyle \sum _{n=0}^{10}{398}^{n}} is prime[70]

399

[edit]

399 = 3 × 7 × 19, sphenic number,[12] smallestLucas–Carmichael number, and aLeyland number of the second kind[73](4554{\displaystyle 4^{5}-5^{4}}). 399! + 1 is prime.

References

[edit]
  1. ^"A000217 - OEIS".oeis.org. Retrieved2024-11-28.
  2. ^Sloane, N. J. A. (ed.)."Sequence A014105 (second hexagonal number)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^abSloane, N. J. A. (ed.)."Sequence A005448 (Centered triangular numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^abSloane, N. J. A. (ed.)."Sequence A069099 (Centered heptagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^abcdeSloane, N. J. A. (ed.)."Sequence A109611 (Chen primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^abSloane, N. J. A. (ed.)."Sequence A020994 (Primes that are both left-truncatable and right-truncatable)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^Guy, Richard;Unsolved Problems in Number Theory, p. 7ISBN 1475717385
  8. ^abcdefSloane, N. J. A. (ed.)."Sequence A006753 (Smith numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^Sloane, N. J. A. (ed.)."Sequence A007770 (Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^abSloane, N. J. A. (ed.)."Sequence A076980 (Leyland numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^Sloane, N. J. A. (ed.)."Sequence A001850 (Central Delannoy numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^abcdefghiSloane, N. J. A. (ed.)."Sequence A007304 (Sphenic numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^abcdefSloane, N. J. A. (ed.)."Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^Sloane, N. J. A. (ed.)."Sequence A000032 (Lucas numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^Sloane, N. J. A. (ed.)."Sequence A000290 (The squares: a(n) = n^2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^abcdefghiSloane, N. J. A. (ed.)."Sequence A005278 (Noncototients)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^abcSloane, N. J. A. (ed.)."Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^Sloane, N. J. A. (ed.)."Sequence A082897 (Perfect totient numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^Sloane, N. J. A. (ed.)."Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^abcdefSloane, N. J. A. (ed.)."Sequence A033950 (Refactorable numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^abSloane, N. J. A. (ed.)."Sequence A100827 (Highly cototient numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^abSloane, N. J. A. (ed.)."Sequence A000326 (Pentagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^Sloane, N. J. A. (ed.)."Sequence A036913 (Sparsely totient numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^abSloane, N. J. A. (ed.)."Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^abSloane, N. J. A. (ed.)."Sequence A031157 (Numbers that are both lucky and prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^abSloane, N. J. A. (ed.)."Sequence A005891 (Centered pentagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^abSloane, N. J. A. (ed.)."Sequence A003215 (Hex numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  28. ^abcdefghijSloane, N. J. A. (ed.)."Sequence A028442 (Numbers n such that Mertens' function is zero)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. ^Sloane, N. J. A. (ed.)."Sequence A003052 (Self numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  30. ^Sloane, N. J. A. (ed.)."Sequence A000607 (Number of partitions of n into prime parts)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  31. ^Sloane, N. J. A. (ed.)."Sequence A067128 (Ramanujan's largely composite numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  32. ^Sloane, N. J. A. (ed.)."Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  33. ^Sloane, N. J. A. (ed.)."Sequence A002858 (Ulam numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^abSloane, N. J. A. (ed.)."Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^Sloane, N. J. A. (ed.)."Sequence A005900 (Octahedral numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  36. ^abSloane, N. J. A. (ed.)."Sequence A005385 (Safe primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^Sloane, N. J. A. (ed.)."Sequence A059802 (Numbers k such that 5^k - 4^k is prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  38. ^Sloane, N. J. A. (ed.)."Sequence A006036 (Primitive pseudoperfect numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  39. ^"A000217 - OEIS".oeis.org. Retrieved2024-11-28.
  40. ^Sloane, N. J. A. (ed.)."Sequence A000931 (Padovan sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  41. ^Sloane, N. J. A. (ed.)."Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  42. ^Sloane, N. J. A. (ed.)."Sequence A000538 (Sum of fourth powers: 0^4 + 1^4 + ... + n^4)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  43. ^Sloane, N. J. A. (ed.)."Sequence A031971 (a(n) = Sum_{k=1..n} k^n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^"A057809 - OEIS".oeis.org. Retrieved2024-11-19.
  45. ^"A051953 - OEIS".oeis.org. Retrieved2024-11-19.
  46. ^Sloane, N. J. A. (ed.)."Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  47. ^Sloane, N. J. A. (ed.)."Sequence A062786 (Centered 10-gonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  48. ^Sloane, N. J. A. (ed.)."Sequence A005282 (Mian-Chowla sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  49. ^Sloane, N. J. A. (ed.)."Sequence A001157 (a(n) = sigma_2(n): sum of squares of divisors of n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  50. ^abSloane, N. J. A. (ed.)."Sequence A000292 (Tetrahedral numbers (or triangular pyramidal))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  51. ^Sloane, N. J. A. (ed.)."Sequence A126796 (Number of complete partitions of n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  52. ^Sloane, N. J. A. (ed.)."Sequence A001608 (Perrin sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  53. ^Sloane, N. J. A. (ed.)."Sequence A055233 (Composite numbers equal to the sum of the primes from their smallest prime factor to their largest prime factor)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  54. ^Sloane, N. J. A. (ed.)."Sequence A006562 (Balanced primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  55. ^Sloane, N. J. A. (ed.)."Sequence A000068 (Numbers k such that k^4 + 1 is prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  56. ^Sloane, N. J. A. (ed.)."Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  57. ^Sloane, N. J. A. (ed.)."Sequence A003226 (Automorphic numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  58. ^Sloane, N. J. A. (ed.)."Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  59. ^"A000217 - OEIS".oeis.org. Retrieved2024-11-28.
  60. ^"A000217 - OEIS".oeis.org. Retrieved2024-11-28.
  61. ^Sloane, N. J. A. (ed.)."Sequence A000384 (Hexagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  62. ^Sloane, N. J. A. (ed.)."Sequence A306302 (Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  63. ^Sloane, N. J. A. (ed.)."Sequence A050918 (Woodall primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  64. ^Sloane, N. J. A. (ed.)."Sequence A072385 (Primes which can be represented as the sum of a prime and its reverse)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  65. ^Sloane, N. J. A. (ed.)."Sequence A000330 (Square pyramidal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  66. ^Sloane, N. J. A. (ed.)."Sequence A005897 (a(n) = 6*n^2 + 2 for n > 0, a(0)=1)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  67. ^Sloane, N. J. A. (ed.)."Sequence A000569 (Number of graphical partitions of 2n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  68. ^Sloane, N. J. A. (ed.)."Sequence A084192 (Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  69. ^Sloane, N. J. A. (ed.)."Sequence A317712 (Number of uniform rooted trees with n nodes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  70. ^abSloane, N. J. A. (ed.)."Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  71. ^Sloane, N. J. A. (ed.)."Sequence A006318 (Large Schröder numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  72. ^Sloane, N. J. A. (ed.)."Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  73. ^Sloane, N. J. A. (ed.)."Sequence A045575 (Leyland numbers of the second kind)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  •  0 
  •  1 
  •  2 
  •  3 
  •  4 
  •  5 
  •  6 
  •  7 
  •  8 
  •  9 
Retrieved from "https://en.wikipedia.org/w/index.php?title=300_(number)&oldid=1318530254#332"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp