Natural number
300 (three hundred ) is thenatural number following299 and preceding301 .
300 is acomposite number and the 24thtriangular number .[ 1] It is also a second hexagonal number.[ 2]
Integers from 301 to 399 [ edit ] 316 = 22 × 79, acentered triangular number [ 3] and acentered heptagonal number .[ 4]
317 is the smallest natural number that does not have its own Wikipedia article, a fact that has itself been noted as making the number notable, creating a situation similar to theinteresting number paradox .
317 is a prime number,Eisenstein prime with no imaginary part, Chen prime,[ 5] one of the rare primes to be both right and left-truncatable,[ 6] and a strictly non-palindromic number.
317 is the exponent (and number of ones) in the fourth base-10repunit prime .[ 7]
319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109),Smith number ,[ 8] cannot be represented as the sum of fewer than 19 fourth powers,happy number in base 10[ 9]
320 = 26 × 5 = (25 ) × (2 × 5). 320 is aLeyland number ,[ 10] andmaximum determinant of a 10 by 10 matrix of zeros and ones.
321 = 3 × 107, aDelannoy number [ 11]
322 = 2 × 7 × 23. 322 is asphenic ,[ 12] nontotient,untouchable ,[ 13] and aLucas number .[ 14] It is also the first unprimeable number to end in 2.
324 = 22 × 34 = 182 . 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,[ 15] and an untouchable number.[ 13]
326 = 2 × 163. 326 is a nontotient, noncototient,[ 16] and an untouchable number.[ 13] 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number[ 17]
327 = 3 × 109. 327 is aperfect totient number ,[ 18] number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing[ 19]
328 = 23 × 41. 328 is arefactorable number ,[ 20] and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).
329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and ahighly cototient number .[ 21]
330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67),pentatope number (and hence abinomial coefficient ( 11 4 ) {\displaystyle {\tbinom {11}{4}}} ), apentagonal number ,[ 22] divisible by the number of primes below it, and asparsely totient number .[ 23]
331 is a prime number, super-prime,cuban prime ,[ 24] alucky prime ,[ 25] sum of five consecutive primes (59 + 61 + 67 + 71 + 73),centered pentagonal number ,[ 26] centered hexagonal number ,[ 27] andMertens function returns 0.[ 28]
332 = 22 × 83, Mertens function returns 0.[ 28]
333 = 32 × 37, Mertens function returns 0;[ 28] repdigit ; 2333 is the smallestpower of two greater than agoogol .
334 = 2 × 167, nontotient.[ 29]
335 = 5 × 67. 335 is divisible by the number of primes below it, number ofLyndon words of length 12.
336 = 24 × 3 × 7, untouchable number,[ 13] number of partitions of 41 into prime parts,[ 30] largely composite number .[ 31]
337,prime number ,emirp ,permutable prime with 373 and 733, Chen prime,[ 5] star number
338 = 2 × 132 , nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.[ 32]
339 = 3 × 113,Ulam number [ 33]
340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of4 (41 + 42 + 43 + 44 ), divisible by the number of primes below it, nontotient, noncototient.[ 16] Number ofregions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares (sequenceA331452 in theOEIS ) and (sequenceA255011 in theOEIS ).
342 = 2 × 32 × 19, pronic number,[ 34] Untouchable number.[ 13]
343 = 73 , the first niceFriedman number that is composite since 343 = (3 + 4)3 . It is the only known example of x2 +x+1 = y3 , in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3 .
344 = 23 × 43,octahedral number ,[ 35] noncototient,[ 16] totient sum of the first 33 integers, refactorable number.[ 20]
345 = 3 × 5 × 23, sphenic number,[ 12] idoneal number
346 = 2 × 173, Smith number,[ 8] noncototient.[ 16]
347 is a prime number,emirp ,safe prime ,[ 36] Eisenstein prime with no imaginary part,Chen prime ,[ 5] Friedman prime since 347 = 73 + 4, twin prime with 349, and a strictly non-palindromic number.
348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97),refactorable number .[ 20]
349, prime number, twin prime, lucky prime, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.[ 37]
350 = 2 × 52 × 7 ={ 7 4 } {\displaystyle \left\{{7 \atop 4}\right\}} , primitive semiperfect number,[ 38] divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.
351 = 33 × 13, 26thtriangular number ,[ 39] sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member ofPadovan sequence [ 40] and number of compositions of 15 into distinct parts.[ 41]
The international calling code forPortugal 352 = 25 × 11, the number ofn-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number[ 17]
354 = 2 × 3 × 59 = 14 + 24 + 34 + 44 ,[ 42] [ 43] sphenic number,[ 12] nontotient, alsoSMTP code meaning start of mail input. It is also sum ofabsolute value of thecoefficients ofConway's polynomial .
The international calling code forIceland 355 = 5 × 71,Smith number ,[ 8] Mertens function returns 0,[ 28] divisible by the number of primes below it.[ 44] Thecototient of 355 is 75,[ 45] where 75 is the product of its digits (3 x 5 x 5 = 75).
The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known asMilü and provides an extremely accurate approximation for pi, being accurate to seven digits.
356 = 22 × 89, Mertens function returns 0.[ 28]
357 = 3 × 7 × 17,sphenic number .[ 12]
358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,[ 28] number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.[ 46]
The international calling code forFinland 361 = 192 . 361 is a centered triangular number,[ 3] centered octagonal number ,centered decagonal number ,[ 47] member of theMian–Chowla sequence ;[ 48] also the number of positions on a standard 19 x 19Go board.
362 = 2 × 181 = σ2 (19): sum of squares of divisors of 19,[ 49] Mertens function returns 0,[ 28] nontotient, noncototient.[ 16]
364 = 22 × 7 × 13,tetrahedral number ,[ 50] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[ 28] nontotient .It is arepdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zerotetrahedral number .[ 50]
366 = 2 × 3 × 61,sphenic number ,[ 12] Mertens function returns 0,[ 28] noncototient,[ 16] number of complete partitions of 20,[ 51] 26-gonal and 123-gonal. Also the number of days in aleap year .
367 is a prime number, a lucky prime,[ 25] Perrin number ,[ 52] happy number ,prime index prime and a strictly non-palindromic number.
368 = 24 × 23. It is also aLeyland number .[ 10]
370 = 2 × 5 × 37, sphenic number,[ 12] sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted,Base 10 Armstrong number since 33 + 73 + 03 = 370.
371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor,[ 53] the next such composite number is 2935561623745,Armstrong number since 33 + 73 + 13 = 371.
372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61),noncototient ,[ 16] untouchable number ,[ 13] --> refactorable number.[ 20]
373, prime number,balanced prime ,[ 54] one of the rare primes to be both right and left-truncatable (two-sided prime ),[ 6] sum of five consecutive primes (67 + 71 + 73 + 79 + 83), sexy prime with 367 and 379,permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114 .
374 = 2 × 11 × 17,sphenic number ,[ 12] nontotient, 3744 + 1 is prime.[ 55]
375 = 3 × 53 , number of regions in regular 11-gon with all diagonals drawn.[ 56]
376 = 23 × 47,pentagonal number ,[ 22] 1-automorphic number ,[ 57] nontotient, refactorable number.[ 20]
377 = 13 × 29,Fibonacci number , acentered octahedral number ,[ 58] a Lucas andFibonacci pseudoprime , the sum of the squares of the first six primes.
378 = 2 × 33 × 7, 27thtriangular number ,[ 59] cake number ,[ 60] hexagonal number,[ 61] Smith number.[ 8]
379 is a prime number, Chen prime,[ 5] lazy caterer number[ 17] and a happy number in base 10. It is the sum of the first 15 odd primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.
380 = 22 × 5 × 19, pronic number,[ 34] number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.[ 62]
381 = 3 × 127, palindromic in base 2 and base 8.
381 is the sum of the first 16prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).
382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.[ 8]
383, prime number, safe prime,[ 36] Woodall prime ,[ 63] Thabit number , Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.[ 64] 4383 - 3383 is prime .
385 = 5 × 7 × 11,sphenic number ,[ 12] square pyramidal number ,[ 65] the number ofinteger partitions of 18.
385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12
386 = 2 × 193, nontotient, noncototient,[ 16] centered heptagonal number,[ 4] number of surface points on a cube with edge-length 9.[ 66]
387 = 32 × 43, number of graphical partitions of 22.[ 67]
388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,[ 68] number of uniform rooted trees with 10 nodes.[ 69]
389, prime number,emirp , Eisenstein prime with no imaginary part, Chen prime,[ 5] highly cototient number,[ 21] strictly non-palindromic number. Smallest conductor of a rank 2Elliptic curve .
390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,
∑ n = 0 10 390 n {\displaystyle \sum _{n=0}^{10}{390}^{n}} is prime[ 70] 391 = 17 × 23, Smith number,[ 8] centered pentagonal number .[ 26]
392 = 23 × 72 ,Achilles number .
393 = 3 × 131,Blum integer , Mertens function returns 0.[ 28]
394 = 2 × 197 = S5 aSchröder number ,[ 71] nontotient, noncototient.[ 16]
395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.[ 72]
396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,[ 20] Harshad number,digit-reassembly number .
397, prime number, cuban prime,[ 24] centered hexagonal number.[ 27]
398 = 2 × 199, nontotient.
∑ n = 0 10 398 n {\displaystyle \sum _{n=0}^{10}{398}^{n}} is prime[ 70] 399 = 3 × 7 × 19, sphenic number,[ 12] smallestLucas–Carmichael number , and aLeyland number of the second kind [ 73] (4 5 − 5 4 {\displaystyle 4^{5}-5^{4}} ). 399! + 1 is prime.
^ "A000217 - OEIS" .oeis.org . Retrieved2024-11-28 .^ Sloane, N. J. A. (ed.)."Sequence A014105 (second hexagonal number)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A005448 (Centered triangular numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A069099 (Centered heptagonal numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b c d e Sloane, N. J. A. (ed.)."Sequence A109611 (Chen primes)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A020994 (Primes that are both left-truncatable and right-truncatable)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Guy, Richard;Unsolved Problems in Number Theory , p. 7ISBN 1475717385 ^a b c d e f Sloane, N. J. A. (ed.)."Sequence A006753 (Smith numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A007770 (Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A076980 (Leyland numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A001850 (Central Delannoy numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b c d e f g h i Sloane, N. J. A. (ed.)."Sequence A007304 (Sphenic numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b c d e f Sloane, N. J. A. (ed.)."Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A000032 (Lucas numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A000290 (The squares: a(n) = n^2)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b c d e f g h i Sloane, N. J. A. (ed.)."Sequence A005278 (Noncototients)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b c Sloane, N. J. A. (ed.)."Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A082897 (Perfect totient numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b c d e f Sloane, N. J. A. (ed.)."Sequence A033950 (Refactorable numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A100827 (Highly cototient numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A000326 (Pentagonal numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A036913 (Sparsely totient numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A031157 (Numbers that are both lucky and prime)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A005891 (Centered pentagonal numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A003215 (Hex numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b c d e f g h i j Sloane, N. J. A. (ed.)."Sequence A028442 (Numbers n such that Mertens' function is zero)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A003052 (Self numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A000607 (Number of partitions of n into prime parts)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A067128 (Ramanujan's largely composite numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A002858 (Ulam numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1))" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A005900 (Octahedral numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A005385 (Safe primes)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A059802 (Numbers k such that 5^k - 4^k is prime)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A006036 (Primitive pseudoperfect numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ "A000217 - OEIS" .oeis.org . Retrieved2024-11-28 .^ Sloane, N. J. A. (ed.)."Sequence A000931 (Padovan sequence)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A000538 (Sum of fourth powers: 0^4 + 1^4 + ... + n^4)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A031971 (a(n) = Sum_{k=1..n} k^n)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ "A057809 - OEIS" .oeis.org . Retrieved2024-11-19 .^ "A051953 - OEIS" .oeis.org . Retrieved2024-11-19 .^ Sloane, N. J. A. (ed.)."Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A062786 (Centered 10-gonal numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A005282 (Mian-Chowla sequence)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A001157 (a(n) = sigma_2(n): sum of squares of divisors of n)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A000292 (Tetrahedral numbers (or triangular pyramidal))" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A126796 (Number of complete partitions of n)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A001608 (Perrin sequence)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A055233 (Composite numbers equal to the sum of the primes from their smallest prime factor to their largest prime factor)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A006562 (Balanced primes)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A000068 (Numbers k such that k^4 + 1 is prime)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A003226 (Automorphic numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ "A000217 - OEIS" .oeis.org . Retrieved2024-11-28 .^ "A000217 - OEIS" .oeis.org . Retrieved2024-11-28 .^ Sloane, N. J. A. (ed.)."Sequence A000384 (Hexagonal numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A306302 (Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A050918 (Woodall primes)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A072385 (Primes which can be represented as the sum of a prime and its reverse)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A000330 (Square pyramidal numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A005897 (a(n) = 6*n^2 + 2 for n > 0, a(0)=1)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A000569 (Number of graphical partitions of 2n)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A084192 (Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1))" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A317712 (Number of uniform rooted trees with n nodes)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b Sloane, N. J. A. (ed.)."Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A006318 (Large Schröder numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A045575 (Leyland numbers of the second kind)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.
100,000 1,000,000 10,000,000 100,000,000 1,000,000,000 10,000,000,000 100,000,000,000 1,000,000,000,000