Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

3,4,5-Trimethoxyamphetamine

From Wikipedia, the free encyclopedia

Pharmaceutical compound
TMA
Clinical data
Other namesTrimethoxyamphetamine; TMA; TMA-1; 3,4,5-TMA; α-Methylmescaline; alpha-Methylmescaline; AMM; Mescalamphetamine; 3,4,5-Trimethoxy-α-methylphenethylamine; EA‐1319; EA1319; 3C-Mescaline; 3C-M
Routes of
administration
Oral[1][2]
Drug classSerotonergic psychedelic;Hallucinogen;Serotonin5-HT2A receptoragonist
ATC code
  • None
Legal status
Legal status
Pharmacokinetic data
Duration of action6–8 hours[1][2]
Identifiers
  • 1-(3,4,5-trimethoxyphenyl)propan-2-amine
CAS Number
PubChemCID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard(EPA)
Chemical and physical data
FormulaC12H19NO3
Molar mass225.288 g·mol−1
3D model (JSmol)
  • CC(CC1=CC(=C(C(=C1)OC)OC)OC)N
  • InChI=1S/C12H19NO3/c1-8(13)5-9-6-10(14-2)12(16-4)11(7-9)15-3/h6-8H,5,13H2,1-4H3
  • Key:WGTASENVNYJZBK-UHFFFAOYSA-N

3,4,5-Trimethoxyamphetamine (TMA,TMA-1, or3,4,5-TMA), also known asα-methylmescaline (3C-mescaline or3C-M) ormescalamphetamine, is apsychedelic drug of thephenethylamine andamphetamine families.[1][2] It is one of thetrimethoxyamphetamine (TMA) series ofpositional isomers.[1][2] The drug is notable in being the amphetamine (i.e., α-methylated)analogue ofmescaline (3,4,5-trimethoxyphenethylamine).[1][2]

Use and effects

[edit]

TMA is aserotonergic psychedelic and produceshallucinogenic effects.[1][2] It is said to be active at doses of 100 to 250 mg and to have aduration of 6 to 8 hours.[1][4][5] For comparison,mescaline is typically used at doses of 200 to 500 mg and is said to have a duration of 10 to 12 hours or longer.[6] TMA's positional isomer2,4,5-trimethoxyamphetamine (2,4,5-TMA or TMA-2) is much morepotent than TMA, with a dose of 20 to 40 mg and a duration of 8 to 12 hours.[7]

Interactions

[edit]
See also:Psychedelic drug § Interactions, andTrip killer § Serotonergic psychedelic antidotes

Pharmacology

[edit]

Pharmacodynamics

[edit]
TMA activities
TargetAffinity (Ki, nM)
5-HT1A1,678–>5,600
5-HT1B2,855
5-HT1D3,035
5-HT1E3,369
5-HT1FND
5-HT2A>10,000 (Ki)
41.3–1,700 (EC50Tooltip half-maximal effective concentration)
40–96% (EmaxTooltip maximal efficacy)
5-HT2B477 (Ki)
>10,000 (EC50)
5-HT2C4,600–>10,000 (Ki)
47.4 (EC50)
92% (
Emax)
5-HT3>10,000
5-HT4ND
5-HT5A>10,000
5-HT6>10,000
5-HT7749
α1A,α1B>10,000
α1DND
α2A2,071–4,030
α2B>10,000
α2C5,014
β1,β2>10,000
D1D5>10,000
H1H4>10,000
M1,M3,M4ND
M2,M5>10,000
nACh260–>10,000
TAAR11,800 (Ki) (mouse)
3,200 (Ki) (rat)
>10,000 (EC50) (human)
I1>10,000
σ1537
σ2537
SERTTooltip Serotonin transporter>10,000 (Ki)
>100,000 (IC50Tooltip half-maximal inhibitory concentration)
16,000 (EC50) (rat)
NETTooltip Norepinephrine transporter>10,000 (Ki)
>100,000 (IC50)
>100,000 (
EC50) (rat)
DATTooltip Dopamine transporter>10,000 (Ki)
>100,000 (IC50)
>100,000 (
EC50) (rat)
MAO-ATooltip Monoamine oxidase A>200,000 (IC50)
MAO-BTooltip Monoamine oxidase B>200,000 (IC50)
Notes: The smaller the value, the more avidly the drug binds to the site. All proteins are human unless otherwise specified.Refs:[8][9][10][11][12][13][14][15]

TMA is a low-potencyserotonin5-HT2A receptorpartial agonist, with anaffinity (Ki) of >12,000 nM, anEC50Tooltip half-maximal effective concentration of 1,700 nM, and anEmaxTooltip maximal efficacy of 40%.[11] Conversely, it was inactive at the serotonin5-HT1A,5-HT2B and5-HT2C receptors and at several other receptors, at least at the assessed concentrations (up to 10,000 nM).[11] It showed affinity for the mouse and rattrace amine-associated receptor 1 (TAAR1) (Ki = 1,800 nM and 3,200 nM, respectively), whereas it was inactive at the human TAAR1 (EC50 > 10,000 nM).[11]

TMA is also a very low-potencyserotonin releasing agent (SRA), with anEC50 value of 16,000 nM.[12] In contrast, it is inactive as areleasing agent andreuptake inhibitor ofdopamine andnorepinephrine (EC50 > 100,000 nM).[12] Despite its apparent SRA activityin vitro, TMA did not increase brain serotonin or dopamine levels in rodentsin vivo.[15] TMA is similarly inactive as amonoamine oxidase inhibitor (MAOI), including of bothmonoamine oxidase A (MAO-A) andmonoamine oxidase B (MAO-B) (IC50Tooltip half-maximal inhibitory concentration > 200,000 nM).[14][15]

The low potency of TMA as a serotonin 5-HT2A receptor agonist is analogous to the case of mescaline, which is a well-known and widely used psychedelic but is likewise a very low-potency agonist of this receptor, showing an affinity (Ki) of 9,400 nM, anEC50 of 10,000 nM, and anEmax of 56% in the same study.[11] For comparison,DOM has shown an affinity (Ki) of 88 nM and anEC50 of 4 to 24 nM.[16]

History

[edit]

TMA was firstsynthesized byGordon Alles around 1937.[17][18] He assessed it in bothanimal studies andself-experiments and documented its effects, but these were not reported until 1959.[17][18] The drug was first described in thescientific literature in 1947 and its psychedelic effects were first described in 1955.[19][20][21][22] TMA was studied atEdgewood Arsenal under the code name EA‐1319 in 1953 and 1954.[17] The drug was further characterized byAlexander Shulgin and described in his bookPiHKAL.[1][2]

Society and culture

[edit]

Legal status

[edit]

TMA is aSchedule Icontrolled substance in theUnited States.[2][3]

See also

[edit]

References

[edit]
  1. ^abcdefghShulgin AT, Shulgin A (1991)."#157 TMA 3,4,5-TRIMETHOXYAMPHETAMINE".PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press.ISBN 978-0-9630096-0-9.OCLC 25627628.
  2. ^abcdefghiShulgin A, Manning T, Daley PF (2011)."#117. TMA". The Shulgin Index, Volume One: Psychedelic Phenethylamines and Related Compounds. Vol. 1. Berkeley: Transform Press.ISBN 978-0-9630096-3-0.
  3. ^ab"Controlled Substances"(PDF).www.deadiversion.usdoj.gov.
  4. ^Halberstadt AL, Luethi D, Hoener MC, Trachsel D, Brandt SD, Liechti ME (January 2023)."Use of the head-twitch response to investigate the structure-activity relationships of 4-thio-substituted 2,5-dimethoxyphenylalkylamines".Psychopharmacology.240 (1):115–126.doi:10.1007/s00213-022-06279-2.PMC 9816194.PMID 36477925.For example, 3,4,5-trimethoxyamphetamine (TMA) is active at a dose range of 100–250 mg, whereas its 2,4,5-regioisomer (2,4,5-trimethoxyamphetamine, TMA-2) is active at 20–40 mg (Shulgin and Shulgin 1991).
  5. ^Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD (May 2020)."Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species".Neuropharmacology.167 107933.doi:10.1016/j.neuropharm.2019.107933.PMC 9191653.PMID 31917152.Table 4 Human potency data for selected hallucinogens. [...]
  6. ^Vamvakopoulou IA, Narine KA, Campbell I, Dyck JR, Nutt DJ (January 2023)."Mescaline: The forgotten psychedelic".Neuropharmacology.222 109294.doi:10.1016/j.neuropharm.2022.109294.PMID 36252614.
  7. ^Shulgin AT, Shulgin A (1991)."#158 TMA-2 2,4,5-TRIMETHOXYAMPHETAMINE".PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press.ISBN 978-0-9630096-0-9.OCLC 25627628.
  8. ^"PDSP Database".UNC (in Zulu). Retrieved15 March 2025.
  9. ^Liu T."BDBM50005256 (+/-)1-Methyl-2-(3,4,5-trimethoxy-phenyl)-ethylamine::1-Methyl-2-(3,4,5-trimethoxy-phenyl)-ethylamine::CHEMBL30336::TMA".BindingDB. Retrieved14 March 2025.
  10. ^Ray TS (February 2010)."Psychedelics and the human receptorome".PLOS ONE.5 (2) e9019.Bibcode:2010PLoSO...5.9019R.doi:10.1371/journal.pone.0009019.PMC 2814854.PMID 20126400.
  11. ^abcdeKolaczynska KE, Luethi D, Trachsel D, Hoener MC, Liechti ME (2021)."Receptor Interaction Profiles of 4-Alkoxy-3,5-Dimethoxy-Phenethylamines (Mescaline Derivatives) and Related Amphetamines".Frontiers in Pharmacology.12 794254.doi:10.3389/fphar.2021.794254.PMC 8865417.PMID 35222010.
  12. ^abcNagai F, Nonaka R, Satoh Hisashi Kamimura K (March 2007). "The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain".European Journal of Pharmacology.559 (2–3):132–137.doi:10.1016/j.ejphar.2006.11.075.PMID 17223101.
  13. ^Whiteaker P, Sharples CG, Wonnacott S (May 1998). "Agonist-induced up-regulation of alpha4beta2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition".Molecular Pharmacology.53 (5):950–962.doi:10.1016/S0026-895X(24)13263-4.PMID 9584223.
  14. ^abReyes-Parada M, Iturriaga-Vasquez P, Cassels BK (2019)."Amphetamine Derivatives as Monoamine Oxidase Inhibitors".Frontiers in Pharmacology.10 1590.doi:10.3389/fphar.2019.01590.PMC 6989591.PMID 32038257.
  15. ^abcMatsumoto T, Maeno Y, Kato H, Seko-Nakamura Y, Monma-Ohtaki J, Ishiba A, et al. (August 2014). "5-hydroxytryptamine- and dopamine-releasing effects of ring-substituted amphetamines on rat brain: a comparative study using in vivo microdialysis".European Neuropsychopharmacology.24 (8):1362–1370.doi:10.1016/j.euroneuro.2014.04.009.PMID 24862256.
  16. ^Luethi D, Rudin D, Hoener MC, Liechti ME (2022)."Monoamine Receptor and Transporter Interaction Profiles of 4-Alkyl-Substituted 2,5-Dimethoxyamphetamines".The FASEB Journal.36 (S1) fasebj.2022.36.S1.R2691.doi:10.1096/fasebj.2022.36.S1.R2691.ISSN 0892-6638.
  17. ^abcPassie T, Benzenhöfer U (January 2018). "MDA, MDMA, and other "mescaline-like" substances in the US military's search for a truth drug (1940s to 1960s)".Drug Testing and Analysis.10 (1):72–80.doi:10.1002/dta.2292.PMID 28851034.
  18. ^abAlles GA (1959)."Some Relations Between Chemical Structure and Physiological Action of Mescaline and Related Compounds / Structure and Action of Phenethylamines". In Abramson HA (ed.).Neuropharmacology: Transactions of the Fourth Conference, September 25, 26, and 27, 1957, Princeton, N. J. New York: Josiah Macy Foundation. pp. 181–268.OCLC 9802642. Archived fromthe original on 21 March 2025.
  19. ^Peretz DI, Smythies JR, Gibson WC (April 1955). "A new hallucinogen: 3,4,5-trimethoxyphenyl-beta-aminopropane with notes on the stroboscopic phenomenon".The Journal of Mental Science.101 (423):317–329.doi:10.1192/bjp.101.423.317.PMID 13243046.
  20. ^Shulgin AT, Bunnell S, Sargent T (1961). "The Psychotomimetic Properties of 3,4,5-Trimethoxyamphetamine".Nature.189 (4769):1011–1012.Bibcode:1961Natur.189.1011S.doi:10.1038/1891011a0.ISSN 0028-0836.
  21. ^Hey P (1947)."The synthesis of a new homologue of mescaline".Quarterly Journal of Pharmacy and Pharmacology.20 (2):129–134.PMID 20260568. Archived fromthe original on 19 July 2019.
  22. ^Shulgin AT (1978)."Psychotomimetic Drugs: Structure-Activity Relationships". In Iversen LL, Iversen SD, Snyder SH (eds.).Stimulants. Boston, MA: Springer US. pp. 243–333.doi:10.1007/978-1-4757-0510-2_6.ISBN 978-1-4757-0512-6.

External links

[edit]
Tryptamines
No ring subs.
4-Hydroxytryptamines
5-Hydroxytryptamines
5-Methoxytryptamines
Other ring subs.
α-Alkyltryptamines
Others
Cyclized
Bioisosteres
Phenethylamines
Scalines
2C-x
3C-x
DOx
4C-x
Ψ-PEA
MDxx
FLY
25x-NB (NBOMes)
Others
Cyclized
Lysergamides
  • Bioisosteres:JRT
Others
Natural sources
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
DRAsTooltip Dopamine releasing agents
NRAsTooltip Norepinephrine releasing agents
SRAsTooltip Serotonin releasing agents
Others
Phenethylamines
Amphetamines
Phentermines
Cathinones
Phenylisobutylamines
(and further-extended)
Catecholamines
(and close relatives)
Cyclized
phenethylamines
Phenylalkylpyrrolidines
2-Benzylpiperidines
(phenidates)
Phenylmorpholines
(phenmetrazines)
Phenyloxazolamines
(aminorexes)
Isoquinolines and
tetrahydroisoquinolines
2-Aminoindanes
2-Aminotetralins
Others / unsorted
Related compounds
Stimulants
Depressants
Hallucinogens
Entactogens
Psychiatric drugs
Others
Retrieved from "https://en.wikipedia.org/w/index.php?title=3,4,5-Trimethoxyamphetamine&oldid=1323693978"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp