Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2577 Litva

From Wikipedia, the free encyclopedia
Hungarian-type Mars-crosser and rare triple asteroid

2577 Litva
Litva and its outer moon imaged by theKeck II Telescope in June 2012
Discovery[1]
Discovered byN. Chernykh
Discovery siteCrimean Astrophysical Obs.
Discovery date12 March 1975
Designations
(2577) Litva
PronunciationRussian:[lʲɪtˈva]
Named after
Литва́ (Lithuania)[2]
1975 EE3 · 1934 VY
1954 JD · 1976 SA2
Mars-crosser[1] · Hungaria[3][4]
Orbital characteristics[1]
Epoch 4 September 2017 (JD 2458000.5)
Uncertainty parameter 0
Observation arc82.59 yr (30,166 days)
Aphelion2.1670AU
Perihelion1.6420 AU
1.9045 AU
Eccentricity0.1379
2.63yr (960 days)
116.54°
0° 22m 30s / day
Inclination22.908°
182.60°
284.04°
Knownsatellites2[a][b]
Physical characteristics
Dimensions4.23 km(derived)[4]
2.81±0.06h[5]
2.81258±0.00002 h[6]
2.81288±0.00005 h[7]
2.8141±0.0006 h[8]
2.82±0.01 h[9]
5.618±0.006 h(dated)[10]
0.172±0.077[11]
0.40(assumed)[4]
Tholen = EU[1] · Sl[12] · Q[13] · EU[4]
B–V = 0.787[1]
U–B = 0.340[1]
12.81±0.43[13] · 13.18[1] · 13.48±0.09[4][10][14]

2577 Litva (provisional designation1975 EE3) is a Hungarian-typeMars-crosser and raretriple asteroid[b] from the inner regions of theasteroid belt, approximately 4 kilometers in diameter.

History

[edit]

Litva was discovered on 12 March 1975 by Soviet–Ukrainian astronomerNikolai Chernykh at theCrimean Astrophysical Observatory in Nauchnyj, on the Crimean peninsula.[3] It was named for the formerLithuanian Soviet Socialist Republic, which is now the nation ofLithuania.[2]

Litva was named after the Russian name for the Baltic stateLithuania, former member of the Soviet Union and now an independent Republic.[2] The official naming citation was published by theMinor Planet Center on 1 December 1982 (M.P.C. 7472).[15]

Orbit and classification

[edit]

Litva is a member of theHungaria family, which form theinnermost dense concentration of asteroids in the Solar System. It orbits the Sun at a distance of 1.6–2.2 AU once every 2 years and 8 months (960 days). Its orbit has aneccentricity of 0.14 and aninclination of 23° with respect to theecliptic.[1]

Physical characteristics

[edit]

In theTholen taxonomy, Litva is classified as an EU-type, a subtype of the brightE-type asteroids.[1] It has also been characterized as a Sl-type andQ-type asteroid by astronomers using theNew Technology Telescope at La Silla and byPanSTARRS' photometric survey, respectively.[12][13]

Rotation period

[edit]

The body has arotation period between 2.81288 and 2.82 hours,[5][6][7][8][9] superseding the original measurement that gave 5.618 hours.[10] Most recent photometric observation from 2014, gave a refined period of2.812186 hours, using a statisticalBayesian inference methodology.[16]

Satellite system

[edit]

In March 2009 theCentral Bureau for Astronomical Telegrams announced the discovery of amoon orbiting the asteroid.[a] The satellite measures about 1.4 kilometers in diameter and orbits Litva at distance of 21 kilometers, with an orbital period of 1 day, 11 hours, and 53 minutes. In 2012, a second satellite orbiting at a distance of 378 kilometers, with a diameter of 1.2 kilometers, was discovered, with a orbital period of 214 days. The discovery was announced in late 2013. This made Litva the 11th asteroid discovered to be in atriple system.[17][b]

SatelliteSemi-major axisOrbital periodSizeDiscovered
inner21 km36 hours1.4 km2009
S/2012 (2577) 1378 km214 days1.2 km2012

Notes

[edit]
  1. ^abCentral Bureau for Astronomical Telegrams (No. 3402), 11 March 2009 for (2577) LITVA:
    "Photometric observations obtained during Feb. 28 – Mar. 8 reveal that minor planet (2577) is a binary system with an orbital period of 35.78 +/- 0.05 hr. The primary shows a period of 2.8141 +/- 0.0006 hr, and it has a lightcurve amplitude of 0.24 mag. Mutual eclipse/occultation events indicate a secondary-to-primary mean-diameter ratio of 0.35 +/- 0.02. The periods and amplitudes were determined using a subset of data (Mar. 4-8). Data on Feb. 28 and Mar. 1 show no events and fit the same primary period, but the lightcurve has a slightly different shape; this may indicate that the primary lightcurve is evolving with changing viewing aspect, and so additional observations are warranted as the moon clears the area."
    Reported by B. D. Warner, Palmer Divide Observatory and Space Science Institute, Colorado Springs, CO, U.S.A.; P. Pravec, Ondrejov Observatory; A. W. Harris, Space Science Institute, La Canada, CA, U.S.A.; D. Higgins, Hunters Hill Observatory, Ngunnawal, ACT, Australia; C. Bembrick, Mt. Tarana Observatory, Bathurst, NSW, Australia; and J. Brinsfield, Via Capote Observatory, Thousand Oaks, CA, U.S.A.
  2. ^abcCentral Bureau for Astronomical Telegrams (No. 3765), 22 December 2013 for S/2012 (2577) 1:
    Reports the discovery, using the Keck II telescope (+ NIRC2 Laser-Guide-Star adaptive-optics system), of a second satellite of the Hungaria-type minor planet (2577) Litva. On 2012 June 22.3 UT, the satellite was found at p.a. 89 deg and separation 0".229 (projected separation 230 km). At that time, (2577) was 1.39 AU from the earth at magnitude V = 16.6. The satellite has been imaged in the K_p, H, and J bands. It was also detected on 2012 June 27, Aug. 11, and Aug. 16. Failure to detect it on 2012 July 15, despite excellent conditions, is now seen, in retrospect, to be due to being in conjunction with the primary. Follow-up observations were made at the Keck II telescope (+ LGS-AO) on 2013 Aug. 25 and 26 by Merline, Tamblyn, Conrad, and Tamblyn. Additional detections were made at the Large Binocular Telescope (adaptive secondary mirror and PISCES near-infrared camera at the "Right Front Bent" Gregorian focus) by Veillet and Arcidiacono on 2013 Oct. 12 and at the Keck II telescope (+ LGS-AO) by Grundy and Porter on 2013 Oct. 25, giving a total baseline of 490 days. The best-fit orbit analysis indicates that the third component has a semi-major axis of 378 km and an orbital period of 214 days. Despite the long baseline and the number of observational epochs, the phasing of the observations is such that a period of half this length cannot be ruled out. Either orbit would be among the longest periods known for main-belt binary/multiple systems and would also be the most loosely bound. It resembles other wide binary systems discovered by this same group (see:The Formation of the Wide Asynchronous Binary Asteroid Population). The third component is about 2.6 mag fainter than the combined brightness of the close inner pair. Using H magnitudes to scale the size of (2577) from other E-type objects of better-known size, the diameter of (2577) is estimated to be about 4 km, implying a size for the new satellite of 1.2 km. The first satellite of (2577) was discovered by Warner et al. (CBET 1715) in 2009, by lightcurve analysis, revealing eclipses/occultations by a close secondary, having an orbital period of 35.9 hr; their estimate of the size ratio was 0.35, meaning that the second component would be 1.4 km diameter, based on the 4-km assumption for (2577), above. This close inner pair is unresolvable in the imaging data reported above. Warner et al. (2009, Minor Planet Bull. 36, 165) suggested that a residual 5.7-hr lightcurve period may be due to rotation by a third body, an idea further bolstered by Pravec et al. (2012, Icarus 218, 125), who found that this period was still evident even when the secondary object was in eclipse. The observing program described here has given high priority to objects suspected of having satellites. To the authors' knowledge, S/2012 (2577) 1 is the only satellite to have been predicted prior to being found by targeted imaging."
    Reported by W. J. Merline, Southwest Research Institute (SwRI); P. M. Tamblyn, Binary Astronomy, LLC, Dillon, CO, U.S.A., and SwRI; B. D. Warner, Center for Solar System Studies, Landers, CA, USA; P. Pravec, Ondrejov Observatory; J. P. Tamblyn, Binary Astronomy, LLC, Dillon, CO, U.S.A.; C. Neyman, W. M. Keck Observatory; A. R. Conrad, Max Planck Institute for Astronomy; W. M. Owen, Jet Propulsion Laboratory; B. Carry, Institut de Mecanique Celeste et de Calcul des Ephemerides, Paris Observatory; J. D. Drummond, Starfire Optical Range, Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM, U.S.A.; C. R. Chapman and B. L. Enke, SwRI; W. M. Grundy, Lowell Observatory; C. Veillet, Large Binocular Telescope Observatory (LBTO); S. B. Porter, Lowell Observatory; C. Arcidiacono, Astronomical Observatory of Bologna, Istituto Nazionale di Astrofisica; J. C. Christou, LBTO; D. D. Durda, SwRI; A. W. Harris, "More Data!", La Canada, CA, USA; H. A. Weaver, Applied Physics Laboratory, Johns Hopkins University; C. Dumas, European Southern Observatory, Chile; D. Terrell, Sonoita Research Observatory and SwRI; and P. Maley, Houston, TX, USA

References

[edit]
  1. ^abcdefghi"JPL Small-Body Database Browser: 2577 Litva (1975 EE3)" (2017-06-06 last obs.).Jet Propulsion Laboratory. Retrieved14 June 2017.
  2. ^abcSchmadel, Lutz D. (2007). "(2577) Litva".Dictionary of Minor Planet Names – (2577) Litva.Springer Berlin Heidelberg. p. 210.doi:10.1007/978-3-540-29925-7_2578.ISBN 978-3-540-00238-3.
  3. ^ab"2577 Litva (1975 EE3)".Minor Planet Center. Retrieved6 December 2016.
  4. ^abcde"LCDB Data for (2577) Litva". Asteroid Lightcurve Database (LCDB). Retrieved6 December 2016.
  5. ^abBehrend, Raoul."Asteroids and comets rotation curves – (2577) Litva".Geneva Observatory. Retrieved6 December 2016.
  6. ^abWarner, Brian D.; Pravec, Petr; Harris, Alan W.; Higgins, David; Bembrick, Colin; Brinsfield, James W.; et al. (October 2009)."2577 Litva: A Hungaria Binary".The Minor Planet Bulletin.36 (4):165–166.Bibcode:2009MPBu...36..165W.ISSN 1052-8091. Retrieved6 December 2016.
  7. ^abWarner, Brian D. (January 2011)."A Quartet of Known and Suspected Hungaria Binary Asteroids".The Minor Planet Bulletin.38 (1):33–36.Bibcode:2011MPBu...38...33W.ISSN 1052-8091. Retrieved6 December 2016.
  8. ^abWarner, B. D.; Pravec, P.; Harris, A. W.; Higgins, D.; Bembrick, C.; Brinsfield, J. (March 2009)."(2577) Litva".Central Bureau Electronic Telegrams.1715 (1715): 1.Bibcode:2009CBET.1715....1W. Retrieved6 December 2016.
  9. ^abStephens, Robert D. (December 2004)."Photometry of 1196 Sheba, 1341 Edmee, 1656 Suomi, 2577 Litva, and 2612 Kathryn".The Minor Planet Bulletin.31 (4):95–97.Bibcode:2004MPBu...31...95S.ISSN 1052-8091. Retrieved6 December 2016.
  10. ^abcWisniewski, W. Z.; Michalowski, T. M.; Harris, A. W.; McMillan, R. S. (March 1995)."Photoelectric Observations of 125 Asteroids".Abstracts of the Lunar and Planetary Science Conference.26: 1511.Bibcode:1995LPI....26.1511W. Retrieved6 December 2016.
  11. ^Gil-Hutton, R.; Lazzaro, D.; Benavidez, P. (June 2007)."Polarimetric observations of Hungaria asteroids".Astronomy and Astrophysics.468 (3):1109–1114.Bibcode:2007A&A...468.1109G.doi:10.1051/0004-6361:20077178.hdl:11336/213855.
  12. ^abSanchez, Juan A.; Michelsen, René; Reddy, Vishnu; Nathues, Andreas (July 2013)."Surface composition and taxonomic classification of a group of near-Earth and Mars-crossing asteroids".Icarus.225 (1):131–140.arXiv:1302.4449.Bibcode:2013Icar..225..131S.CiteSeerX 10.1.1.743.8700.doi:10.1016/j.icarus.2013.02.036. Retrieved14 June 2017.
  13. ^abcVeres, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; et al. (November 2015)."Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results".Icarus.261:34–47.arXiv:1506.00762.Bibcode:2015Icar..261...34V.doi:10.1016/j.icarus.2015.08.007. Retrieved6 December 2016.
  14. ^Pravec, Petr; Harris, Alan W.; Kusnirák, Peter; Galád, Adrián; Hornoch, Kamil (September 2012)."Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations".Icarus.221 (1):365–387.Bibcode:2012Icar..221..365P.doi:10.1016/j.icarus.2012.07.026. Retrieved6 December 2016.
  15. ^"MPC/MPO/MPS Archive".Minor Planet Center. Retrieved6 December 2016.
  16. ^Lust, Nathaniel B.; Britt, Daniel (November 2014)."Observations of Asteroid 2577 Litva with Analysis of Physical Properties Through Bayesian Interence Based Modeling".American Astronomical Society.46: 503.06.Bibcode:2014DPS....4650306L. Retrieved25 November 2015.
  17. ^Johnston, Robert."(2577) Litva, second component, and S/2012 (2577) 1".johnstonsarchive.net. Retrieved28 May 2015.

External links

[edit]
Minor planets
Asteroid
Distant minor planet
Comets
Other
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=2577_Litva&oldid=1323175633"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp