Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2000 (number)

From Wikipedia, the free encyclopedia
(Redirected from2459 (number))
"2,000" redirects here. For other uses, see2000 (disambiguation).
See also:millennium,2000, andY2K
Natural number
← 19992000 2001 →
Cardinaltwo thousand
Ordinal2000th
(two thousandth)
Factorization24 × 53
Greek numeral,Β´
Roman numeralMM,mm
Unicode symbol(s)MM, mm
Binary111110100002
Ternary22020023
Senary131326
Octal37208
Duodecimal11A812
Hexadecimal7D016
ArmenianՍ
Egyptian hieroglyph𓆽
Look uptwo thousand in Wiktionary, the free dictionary.

2000 (two thousand) is anatural number following 1999 and preceding 2001.

It is:

Selected numbers in the range 2001–2999

[edit]

2001 to 2099

[edit]

2100 to 2199

[edit]

2200 to 2299

[edit]

2300 to 2399

[edit]

2400 to 2499

[edit]

2500 to 2599

[edit]
  • 2500 = 502,palindromic in base 7 (102017)
  • 2501 – Mertens function zero
  • 2502 – Mertens function zero
  • 2503 – Friedman prime
  • 2510 – member of the Mian–Chowla sequence[23]
  • 2513 – member of thePadovan sequence[96]
  • 2517 – Mertens function zero
  • 2519 – the smallest number congruent to 1 (mod 2), 2 (mod 3), 3 (mod 4), ..., 9 (mod 10)
  • 2520superior highly composite number; smallest number divisible by numbers1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 12;colossally abundant number;Harshad number in several bases. It is also the highest number with more divisors than any number less than double itself (sequenceA072938 in theOEIS). Not only it is the 7th (and last) number with more divisors than any number double itself but is also the 7th number that is highly composite and the lowest common multiple of a consecutive set of integers from 1 (sequenceA095921 in theOEIS) which is a property the previous number with this pattern of divisors does not have (360). That is, although 360 and 2520 both have more divisors than any number twice themselves, 2520 is the lowest number divisible by both 1 to 9 and 1 to 10, whereas 360 is not the lowest number divisible by 1 to 6 (which60 is) and is not divisible by 1 to 7 (which420 is). It is also the 6th and largest highly composite number that is a divisor of every higher highly composite number (sequenceA106037 in theOEIS).
  • 2521star prime, centered square number[68]
  • 2522 – Mertens function zero
  • 2523 – Mertens function zero
  • 2524 – Mertens function zero
  • 2525 – Mertens function zero
  • 2530 – Mertens function zero, Leyland number[72]
  • 2533 – Mertens function zero
  • 2537 – Mertens function zero
  • 2538 – Mertens function zero
  • 2543Sophie Germain prime, sexy prime with 2549
  • 2548 = 143 - 142
  • 2549Sophie Germain prime,super-prime, sexy prime with 2543
  • 2550 – pronic number[54]
  • 2552 – sum of the totient function for the first 91 integers
  • 2556 – triangular number
  • 2567 – Mertens function zero
  • 2568 – Mertens function zero, number of digits in thedecimal expansion of 1000!, or theproduct of allnatural numbers from 1 to 1000
  • 2570 – Mertens function zero
  • 2579safe prime[22]
  • 2580Keith number,[82] forms a column on a telephone orPIN pad
  • 2584Fibonacci number,[97] sum of the first 37 primes
  • 25923-smooth number (25×34)
  • 2596 – sum of the totient function for the first 92 integers

2600 to 2699

[edit]

2700 to 2799

[edit]

2800 to 2899

[edit]

2900 to 2999

[edit]

Prime numbers

[edit]

There are 127prime numbers between 2000 and 3000:[111][112]

2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A052486 (Achilles numbers - powerful but imperfect: if n = Product(p_i^e_i) then all e_i > 1 (i.e., powerful), but the highest common factor of the e_i is 1, i.e., not a perfect power)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^Sloane, N. J. A. (ed.)."Sequence A006933 ('Eban' numbers (the letter 'e' is banned!))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^Sloane, N. J. A. (ed.)."Sequence A008537 (Numbers that do not contain the letter 'n'))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^Sloane, N. J. A. (ed.)."Sequence A007304 (Sphenic numbers: products of 3 distinct primes))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^Sloane, N. J. A. (ed.)."Sequence A022264 (n×(7×n - 1)/2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^Sloane, N. J. A. (ed.)."Sequence A085945 (Number of subsets of {1,2,...,n} with relatively prime elements)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^Sloane, N. J. A. (ed.)."Sequence A064539 (Numbers n such that 2^n + n^2 is prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^Sloane, N. J. A. (ed.)."Sequence A001496 (Number of 4 × 4 matrices with nonnegative integer entries and row and column sums equal to n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^Sloane, N. J. A. (ed.)."Sequence A000740 (Number of 2n-bead balanced binary necklaces of fundamental period 2n, equivalent to reversed complement)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^Sloane, N. J. A. (ed.)."Sequence A056721 (Numbers n such that 8×10^n-1 is prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^Sloane, N. J. A. (ed.)."Sequence A001770 (Numbers k such that 5×2^k - 1 is prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^abSloane, N. J. A. (ed.)."Sequence A006972 (Lucas-Carmichael numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^Sloane, N. J. A. (ed.)."Sequence A194472 (Erdős-Nicolas numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^"Can you solve it? 2019 in numbers".the Guardian. 2018-12-31. Retrieved2021-09-19.
  15. ^Sloane, N. J. A. (ed.)."Sequence A294685 (non-isomorphic colorings of a toroidal n × k grid using exactly three colors under translational symmetry)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^Sloane, N. J. A. (ed.)."Sequence A141769 (Beginning of a run of 4 consecutive Niven (or Harshad) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^Sloane, N. J. A. (ed.)."Sequence A063416 (Multiples of 7 whose sum of digits is equal to 7)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^abcdSloane, N. J. A. (ed.)."Sequence A000292 (Tetrahedral numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^abcdSloane, N. J. A. (ed.)."Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^Sloane, N. J. A. (ed.)."Sequence A038547 (Least number with exactly n odd divisors.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^Sloane, N. J. A. (ed.)."Sequence A144959 (A134955(n) - A134955(n-1). Number of hyperforests spanning n unlabeled nodes without isolated vertices.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^abcdefghijkSloane, N. J. A. (ed.)."Sequence A005385 (Safe primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^abcdefSloane, N. J. A. (ed.)."Sequence A005282 (Mian-Chowla sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^abcdefgSloane, N. J. A. (ed.)."Sequence A005891 (Centered pentagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^Sloane, N. J. A. (ed.)."Sequence A051841 (Number of binary Lyndon words with an even number of 1's)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^Sloane, N. J. A. (ed.)."Sequence A000107 (Number of rooted trees with n nodes and a single labeled node; pointed rooted trees; vertebrates)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^Sloane, N. J. A. (ed.)."Sequence A137917 (number of unlabeled graphs on n nodes whose components are unicyclic graphs)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  28. ^Sloane, N. J. A. (ed.)."Sequence A007408 (Wolstenholme numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. ^Sloane, N. J. A. (ed.)."Sequence A000295 (Eulerian numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  30. ^Sloane, N. J. A. (ed.)."Sequence A000325 (2^n - n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  31. ^Sloane, N. J. A. (ed.)."Sequence A002854 (Number of unlabeled Euler graphs with n nodes; number of unlabeled two-graphs with n nodes; number of unlabeled switching classes of graphs with n nodes; number of switching classes of unlabeled signed complete graphs on n nodes; number of Seidel matrices of order n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  32. ^Sloane, N. J. A. (ed.)."Sequence A027480 (n*(n+1)*(n+2)/2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  33. ^Sloane, N. J. A. (ed.)."Sequence A005703 (Number of n-node connected graphs with at most one cycle)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^Sloane, N. J. A. (ed.)."Sequence A385344 (Numbers where all the digits of all the prime factors are smaller than 3)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^Sloane, N. J. A. (ed.)."Sequence A067538 (Number of partitions of n in which the number of parts divides n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  36. ^Sloane, N. J. A. (ed.)."Sequence A001158 (sigma_3(n): sum of cubes of divisors of n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^Sloane, N. J. A. (ed.)."Sequence A000112 (Number of partially ordered sets (posets) with n unlabeled elements)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  38. ^Sloane, N. J. A. (ed.)."Sequence A000918 (2^n - 2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  39. ^abSloane, N. J. A. (ed.)."Sequence A050217 (Super-Poulet numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  40. ^Sloane, N. J. A. (ed.)."Sequence A003261 (Woodall numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  41. ^abcdeSloane, N. J. A. (ed.)."Sequence A001107 (10-gonal (or decagonal) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  42. ^abSloane, N. J. A. (ed.)."Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  43. ^Sloane, N. J. A. (ed.)."Sequence A018900 (Sums of two distinct powers of 2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^Sloane, N. J. A. (ed.)."Sequence A003350 (Numbers that are the sum of 5 positive 5th powers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  45. ^Sloane, N. J. A. (ed.)."Sequence A002618 (n*phi(n))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  46. ^Sloane, N. J. A. (ed.)."Sequence A001047 (3^n - 2^n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  47. ^Sloane, N. J. A. (ed.)."Sequence A066571 (Number of sets of positive integers with arithmetic mean n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  48. ^Sloane, N. J. A. (ed.)."Sequence A097646 (Numbers n such that n equals phi(phi(n) + sigma(n)))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  49. ^Sloane, N. J. A. (ed.)."Sequence A054735 (Sums of twin prime pairs)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  50. ^Sloane, N. J. A. (ed.)."Sequence A090022 (Number of distinct lines through the origin in the n-dimensional lattice of side length 6)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  51. ^Sloane, N. J. A. (ed.)."Sequence A011971 (Aitken's array)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  52. ^Sloane, N. J. A. (ed.)."Sequence A325858 (Number of Golomb partitions of n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  53. ^Sloane, N. J. A. (ed.)."Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  54. ^abcdefghijSloane, N. J. A. (ed.)."Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  55. ^Sloane, N. J. A. (ed.)."Sequence A006384 (Number of sensed planar maps with n edges)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  56. ^Sloane, N. J. A. (ed.)."Sequence A014206 (n^2 + n + 2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  57. ^Sloane, N. J. A. (ed.)."Sequence A001469 (Genocchi numbers (of first kind); unsigned coefficients give expansion of x*tan(x/2))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  58. ^Sloane, N. J. A. (ed.)."Sequence A001181 (Number of Baxter permutations of length n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  59. ^Sloane, N. J. A. (ed.)."Sequence A053742 (Sum of odd numbers in range 10*n to 10*n+9)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  60. ^Sloane, N. J. A. (ed.)."Sequence A068932 (Number of disconnected regular graphs with n nodes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  61. ^Sloane, N. J. A. (ed.)."Sequence A307454 (a(n) is the number of canonical polygons with 2n edges having 2-fold rotational symmetry)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  62. ^Sloane, N. J. A. (ed.)."Sequence A056309 (Number of reversible strings with n beads using exactly two different colors)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  63. ^Sloane, N. J. A. (ed.)."Sequence A005585 (5-dimensional pyramidal numbers: n*(n+1)*(n+2)*(n+3)*(2n+3)/5!)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  64. ^abcSloane, N. J. A. (ed.)."Sequence A100827 (Highly cototient numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  65. ^abcdSloane, N. J. A. (ed.)."Sequence A069099 (Centered heptagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  66. ^abcSloane, N. J. A. (ed.)."Sequence A000330 (Square pyramidal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  67. ^abcSloane, N. J. A. (ed.)."Sequence A080076 (Proth primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  68. ^abcdefgSloane, N. J. A. (ed.)."Sequence A001844 (Centered square numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  69. ^Sloane, N. J. A. (ed.)."Sequence A000957 (Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n edges having root of even degree)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  70. ^abcdeSloane, N. J. A. (ed.)."Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  71. ^Sloane, N. J. A. (ed.)."Sequence A067128 (Ramanujan's largely composite numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  72. ^abSloane, N. J. A. (ed.)."Sequence A076980 (Leyland numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  73. ^Sloane, N. J. A. (ed.)."Sequence A002411 (Pentagonal pyramidal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  74. ^Sloane, N. J. A. (ed.)."Sequence A008918 (Numbers n such that 4*n = (n written backwards))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-14.
  75. ^Sloane, N. J. A. (ed.)."Sequence A001190 (Wedderburn-Etherington numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  76. ^Mackenzie, Dana (2018)."2184: An Absurd (and Adsurd) Tale".Integers.18.
  77. ^Sloane, N. J. A. (ed.)."Sequence A014575 (Vampire numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  78. ^abSloane, N. J. A. (ed.)."Sequence A082897 (Perfect totient numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  79. ^Sloane, N. J. A. (ed.)."Sequence A001006 (Motzkin numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  80. ^abSloane, N. J. A. (ed.)."Sequence A005231 (Odd abundant numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  81. ^Sloane, N. J. A. (ed.)."Sequence A005479 (Prime Lucas numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  82. ^abSloane, N. J. A. (ed.)."Sequence A007629 (Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  83. ^abSloane, N. J. A. (ed.)."Sequence A006886 (Kaprekar numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  84. ^abSloane, N. J. A. (ed.)."Sequence A005900 (Octahedral numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  85. ^abcSloane, N. J. A. (ed.)."Sequence A002407 (Cuban primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  86. ^abcdeSloane, N. J. A. (ed.)."Sequence A006562 (Balanced primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  87. ^Sloane, N. J. A. (ed.)."Sequence A002110 (Primorial numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  88. ^"The Small Groups library". Archived fromthe original on 2007-02-04. Retrieved2008-01-22..
  89. ^Sloane, N. J. A. (ed.)."Sequence A005898 (Centered cube numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  90. ^Sloane, N. J. A. (ed.)."Sequence A069151 (Concatenations of consecutive primes, starting with 2, that are also prime)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  91. ^Sloane, N. J. A. (ed.)."Sequence A002104 (Logarithmic numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  92. ^Sloane, N. J. A. (ed.)."Sequence A000129 (Pell numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  93. ^abSloane, N. J. A. (ed.)."Sequence A002997 (Carmichael numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  94. ^Sloane, N. J. A. (ed.)."Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  95. ^Sloane, N. J. A. (ed.)."Sequence A000219 (Number of planar partitions (or plane partitions) of n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  96. ^Sloane, N. J. A. (ed.)."Sequence A000931 (Padovan sequence)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  97. ^Sloane, N. J. A. (ed.)."Sequence A000045 (Fibonacci numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  98. ^"Odd numbers that are not of the form x^2+y^2+10*z^2.".The Online Encyclopedia of Integer Sequences. The OEIS Foundation, Inc. Retrieved13 November 2012.
  99. ^Ono, Ken (1997)."Ramanujan, taxicabs, birthdates, zipcodes and twists"(PDF).American Mathematical Monthly.104 (10):912–917.CiteSeerX 10.1.1.514.8070.doi:10.2307/2974471.JSTOR 2974471. Archived fromthe original(PDF) on 15 October 2015. Retrieved11 November 2012.
  100. ^Ono, Ken; K Soundararajan (1997)."Ramanujan's ternary quadratic forms"(PDF).Inventiones Mathematicae.130 (3):415–454.Bibcode:1997InMat.130..415O.CiteSeerX 10.1.1.585.8840.doi:10.1007/s002220050191.S2CID 122314044. Archived fromthe original(PDF) on 18 July 2019. Retrieved12 November 2012.
  101. ^Sloane, N. J. A. (ed.)."Sequence A000979 (Wagstaff primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  102. ^Sloane, N. J. A. (ed.)."Sequence A001792 (a(n) = (n+2)*2^(n-1))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  103. ^Sloane, N. J. A. (ed.)."Sequence A144974 (Centered heptagonal prime numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  104. ^Sloane, N. J. A. (ed.)."Sequence A000078 (Tetranacci numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  105. ^Pandharipande, Rahul (1998),"Rational curves on hypersurfaces (after A. Givental)",Astérisque, 1997/98 (252):307–340,arXiv:math/9806133,Bibcode:1998math......6133P,MR 1685628
  106. ^Sloane, N. J. A. (ed.)."Sequence A002559 (Markoff (or Markov) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  107. ^Sloane, N. J. A. (ed.)."Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  108. ^Sloane, N. J. A. (ed.)."Sequence A001599 (Harmonic or Ore numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  109. ^Sloane, N. J. A. (ed.)."Sequence A000014 (Number of series-reduced trees with n nodes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  110. ^Sloane, N. J. A. (ed.)."Sequence A195163 (1000-gonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-06-13.
  111. ^Sloane, N. J. A. (ed.)."Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  112. ^Stein, William A. (10 February 2017)."The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture".wstein.org. Retrieved6 February 2021.
0 to 199
200 to 399
400 to 999
1000s and 10,000s
1000s
10,000s
100,000s to 10,000,000,000,000s
Retrieved from "https://en.wikipedia.org/w/index.php?title=2000_(number)&oldid=1324023671#2400_to_2499"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp