Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

210 (number)

From Wikipedia, the free encyclopedia
Natural number
← 209210 211 →
Cardinaltwo hundred ten
Ordinal210th
(two hundred tenth)
Factorization2 × 3 × 5 × 7
Divisors1,2,3,5,6,7,10,14,15,21,30,35,42,70,105, 210
Greek numeralΣΙ´
Roman numeralCCX,ccx
Binary110100102
Ternary212103
Senary5506
Octal3228
Duodecimal15612
HexadecimalD216

210 (two hundred [and] ten) is thenatural number following209 and preceding211.

Mathematics

[edit]

210 is anabundant number,[1] and Harshad number. It is the product of the first fourprime numbers (2,3,5, and7), and thus aprimorial,[2] where it is the least common multiple of these four prime numbers. 210 is the first primorial number greater than 2 which is notadjacent to 2 primes (211 is prime, but 209 is not).

It is the sum of eight consecutive prime numbers, between13 and the thirteenth prime number:13 + 17 + 19 + 23 + 29 + 31 + 37 +41 = 210.[3]

It is the 20thtriangular number (following190 and preceding231),[4] apentagonal number (following176 and preceding247),[5] and the second smallest to be both triangular and pentagonal (the first is 1; the third is 40755).[3]

It is also anidoneal number, apentatope number, apronic number, and anuntouchable number. 210 is also the third71-gonal number, preceding418.[3]

210 is indexn = 7 in the number of ways to pair up{1, ..., 2n} so that the sum of each pair isprime; i.e., in{1, ..., 14}.[6][7]

It is the largest numbern where the number of distinct representations ofn as thesum of two primes is at most the number of primes in the interval[n/2,n − 2].[8]

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A005101 (Abundant numbers (sum of divisors of m exceeds 2m).)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2024-02-10.
  2. ^Sloane, N. J. A. (ed.)."Sequence A002110 (Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2024-02-10.
  3. ^abcWells, D. (1987).The Penguin Dictionary of Curious and Interesting Numbers (p. 143). London: Penguin Group.
  4. ^"A000217 - OEIS".oeis.org. Retrieved2024-11-28.
  5. ^Sloane, N. J. A. (ed.)."Sequence A000326 (pentagonal number)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^Sloane, N. J. A. (ed.)."Sequence A000341 (Number of ways to pair up {1..2n} so sum of each pair is prime.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2024-02-10.
  7. ^Greenfield, Lawrence E.; Greenfield, Stephen J. (1998)."Some Problems of Combinatorial Number Theory Related to Bertrand's Postulate".Journal of Integer Sequences.1. Waterloo, ON:David R. Cheriton School of Computer Science: Article 98.1.2.MR 1677070.S2CID 230430995.Zbl 1010.11007.
  8. ^Deshouillers, Jean-Marc;Granville, Andrew; Narkiewicz, Władysław;Pomerance, Carl (1993)."An upper bound in Goldbach's problem".Mathematics of Computation.61 (203):209–213.Bibcode:1993MaCom..61..209D.doi:10.1090/S0025-5718-1993-1202609-9.
  •  0 
  •  1 
  •  2 
  •  3 
  •  4 
  •  5 
  •  6 
  •  7 
  •  8 
  •  9 
Retrieved from "https://en.wikipedia.org/w/index.php?title=210_(number)&oldid=1290063992"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp