Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

208 (number)

From Wikipedia, the free encyclopedia
Natural number
← 207208 209 →
Cardinaltwo hundred eight
Ordinal208th
(two hundred eighth)
Factorization24 × 13
Divisors1, 2, 4, 8, 13, 16, 26, 52, 104, 208
Greek numeralΣΗ´
Roman numeralCCVIII,ccviii
Binary110100002
Ternary212013
Senary5446
Octal3208
Duodecimal15412
HexadecimalD016

208 (two hundred [and] eight) is thenatural number following207 and preceding209.

208 is apractical number,[1]atetranacci number,[2][3] a rhombic matchstick number,[4] ahappy number,[5] and a member ofAronson's sequence.[6]There are exactly 208 five-beadnecklaces drawn from a set of beads with four colors,[7]and 208 generalized weak orders on three labeled points.[8][9]

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A005153 (Practical numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^Sloane, N. J. A. (ed.)."Sequence A000078 (Tetranacci numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^Waddill, Marcellus E. (1992),"The Tetranacci sequence and generalizations"(PDF),The Fibonacci Quarterly,30 (1):9–20,doi:10.1080/00150517.1992.12429379,MR 1146535.
  4. ^Sloane, N. J. A. (ed.)."Sequence A045944 (Rhombic matchstick numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^Sloane, N. J. A. (ed.)."Sequence A007770 (happy numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^Sloane, N. J. A. (ed.)."Sequence A005224 (T is the first, fourth, eleventh, ... letter in this sentence, not counting spaces or commas (Aronson's sequence))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^Sloane, N. J. A. (ed.)."Sequence A001868 (Number of n-bead necklaces with 4 colors)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^Sloane, N. J. A. (ed.)."Sequence A004121 (Generalized weak orders on n points)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^Wagner, Carl G. (1982), "Enumeration of generalized weak orders",Archiv der Mathematik,39 (2):147–152,doi:10.1007/BF01899195,MR 0675654,S2CID 8263031.
  •  0 
  •  1 
  •  2 
  •  3 
  •  4 
  •  5 
  •  6 
  •  7 
  •  8 
  •  9 
Stub icon

This article about anumber is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=208_(number)&oldid=1317389054"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp