Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2018 in paleontology

From Wikipedia, the free encyclopedia

Overview of the events of 2018 in paleontology
List of years in paleontology
(table)
In arthropod paleontology
2015
2016
2017
2018
2019
2020
2021
In paleoichthyology
2015
2016
2017
2018
2019
2020
2021
In reptile paleontology
2015
2016
2017
2018
2019
2020
2021
In archosaur paleontology
2015
2016
2017
2018
2019
2020
2021
In mammal paleontology
2015
2016
2017
2018
2019
2020
2021

Paleontology or palaeontology is the study ofprehistoriclife forms onEarth through the examination of plant and animalfossils.[1] This includes the study of body fossils,tracks (ichnites),burrows, cast-off parts, fossilisedfeces (coprolites),palynomorphs andchemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as ascience. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2018.

Extinct animals named in 2018

Flora

[edit]

Plants

[edit]
Main article:2018 in paleobotany

Fungi

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Chaenotheca succina[2]

Sp. nov

Valid

Rikkinen & Schmidtin Rikkinenet al.

Eocene (Priabonian)

Baltic amber

Russia
(Kaliningrad Oblast)

Afungus, a species ofChaenotheca.

Notothyrites (?) leptostrobi[3]

Sp. nov

Valid

Frolovin Frolov & Mashchuk

Early andMiddle Jurassic

Prisayanskaya Formation

Russia

A member of the familyMicrothyriaceae.

Palaeomycus[4]

Gen. et sp. nov

Valid

Poinar

Late Cretaceous (Cenomanian)

Burmese amber

Myanmar

Afungus described on the basis ofpycnidia. Genus includes new speciesP. epallelus. Announced in 2018; the final version of the article naming it was published in 2020.

Paleoambrosia[5]

Gen. et sp. nov

Valid

Poinar & Vega

Late Cretaceous (Cenomanian)

Burmese amber

Myanmar

Anambrosia fungus associated with the beetlePalaeotylus femoralis.
Genus includes new speciesP. entomophila.

Perexiflasca[6]

Gen. et sp. nov

Valid

Krings, Harper & Taylor

Devonian (Pragian)

Rhynie chert

United Kingdom

A small,chytrid-like organism. Genus includes new speciesP. tayloriana.

Phyllopsora magna[7]

Sp. nov

Valid

Kaasalainen, Rikkinen & Schmidtin Kaasalainenet al.

Miocene

Dominican amber

Dominican Republic

Alichenizedfungus, a species ofPhyllopsora.

Retesporangicus[8]

Gen. et sp. nov

Valid

Strullu-Derrienin Strullu-Derrienet al.

EarlyDevonian

Rhynie chert

United Kingdom

Afungus belonging to the groupBlastocladiomycota, of uncertain phylogenetic placement within the latter group. Genus includes new speciesR. lyonii.

Vizellopsidites[9]

Gen. et sp. nov

Valid

Khan, Bera & Bera

LatePliocene to earlyPleistocene

Kimin Formation

India

A fossil fungus found on the surface of fossilized leaf fragments. Genus includes new speciesV. siwalika.

Windipila pumila[10]

Sp. nov

Valid

Krings & Harper

EarlyDevonian

Rhynie chert

United Kingdom

A fungal reproductive unit.

Cnidarians

[edit]

Research

[edit]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotes

Acropora incogtita[14]

Sp. nov

Valid

Berezovsky & Satanovska

Eocene

Ukraine

Astony coral, a species ofAcropora.

Actinoseris riyadhensis[15]

Sp. nov

Valid

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

Saudi Arabia

A solitarycoral. Announced in 2018; the final version of the article naming it was published in 2020.

Antheria fedorowskii[16]

Sp. nov

Valid

Wang, Gorgij & Yao

LateCarboniferous

Iran

Arugosecoral.

Antheria robusta[16]

Sp. nov

Valid

Wang, Gorgij & Yao

LateCarboniferous

Iran

Arugosecoral.

Asteroseris arabica[15]

Sp. nov

Valid

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

Saudi Arabia

A solitarycoral. Announced in 2018; the final version of the article naming it was published in 2020.

Astraraeatrochus[17]

Gen. et sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria

Astony coral belonging to the superfamilyHaplaraeoidea and the familyAstraraeidae. The type species isA. bachi.

Astreoidogyra[18]

Gen. et sp. nov

Valid

Ricci, Lathuilière & Rusciadelli

Late Jurassic

Italy

A member of the familyRhipidogyridae. The type species isA. giadae.

Aulocystis wendti[19]

Sp. nov

Valid

Król, Zapalski & Berkowski

Devonian (Emsian)

Amerboh Group

Morocco

Atabulate coral belonging to the familyAulocystidae.

Bainbridgia bipartita[19]

Sp. nov

Valid

Król, Zapalski & Berkowski

Devonian (Emsian)

Kess-Kess Formation

Morocco

Atabulate coral belonging to the familyPyrgiidae.

Battersbyia coactilis[20]

Sp. nov

Valid

McLean

Devonian

Canada

A rugose coral.

Battersbyia sentosa[20]

Sp. nov

Valid

McLean

Devonian

Canada

A rugose coral.

Cambrorhytium gracilis[21]

Sp. nov

Valid

Changet al.

EarlyCambrian

China

Caryophyllia (Caryophyllia) imamurai[22]

Sp. nov

Valid

Niko

Miocene

Bihoku Group

Japan

A species ofCaryophyllia.

Catenipora jingyangensis[23]

Sp. nov

Valid

Liang, Elias & Lee

Ordovician (Katian)

Beiguoshan Formation

China

Atabulatecoral.

Catenipora tiewadianensis[23]

Sp. nov

Valid

Liang, Elias & Lee

Ordovician (Katian)

Beiguoshan Formation

China

Atabulatecoral.

Catenipora tongchuanensis[23]

Sp. nov

Valid

Liang, Elias & Lee

Ordovician (Sandbian)

Jinghe Formation

China

Atabulatecoral.

Clausastrea eliasovae[18]

Sp. nov

Valid

Ricci, Lathuilière & Rusciadelli

Late Jurassic

Italy

A member of the familyMontlivaltiidae.

Crinopora ireneae[17]

Sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria

Astony coral belonging to the superfamilyHeterocoenioidea and the familyCarolastraeidae.

Crinopora thomasi[17]

Sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria

Astony coral belonging to the superfamilyHeterocoenioidea and the familyCarolastraeidae.

Cunnolites (Plesiocunnolites) riyadhensis[15]

Sp. nov

Valid

Gameil, El-Sorogy & Al-Kahtany

Late Cretaceous (Campanian)

Aruma Formation

Saudi Arabia

A solitarycoral. Announced in 2018; the final version of the article naming it was published in 2020.

Deltocyathoides bihokuensis[22]

Sp. nov

Valid

Niko

Miocene

Bihoku Group

Japan

Astony coral.

Fuchungopora huilongensis[24]

Sp. nov

Valid

Lianget al.

Devonian (Famennian)

Etoucun Formation

China

A syringoporoidtabulate coral.

Geroastrea[17]

Gen. et sp. et comb. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria
France
Iran

Astony coral belonging to the superfamilyCyclolitoidea and the familySynastraeidae. The type species isG. alexi; genus also includesG. audiensis (Reig Oriol, 1992),G. haueri (Reuss, 1854) andG. parvistella (Oppenheim, 1930).

Gosaviaraea aimeae[17]

Sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria

Astony coral.

Kozaniastrea[25]

Gen. et sp. nov

Valid

Löser, Steuber & Löser

Late Cretaceous (Cenomanian)

Greece

Astony coral belonging to the superfamilyFelixaraeoidea and the familyLamellofungiidae. The type species isK. pachysepta.

Lithophyllon comptus[26]

Sp. nov

Valid

Berezovsky & Satanovska

Eocene

Ukraine

Astony coral, a species ofLithophyllon.

Lonsdaleia carnica[27]

Sp. nov

Valid

Rodríguez, Schönlaub & Kabon

Carboniferous (Mississippian)

Kirchbach Formation

Austria

Arugosecoral belonging to the familyAxophyllidae.

Lyrielasma landryense[20]

Sp. nov

Valid

McLean

Devonian

Canada

A rugose coral.

Nefocoenia seewaldi[17]

Sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria

Astony coral belonging to the superfamilyPhyllosmilioidea and the familyPhyllosmiliidae.

Nefocoenia werneri[17]

Sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria

Astony coral belonging to the superfamilyPhyllosmilioidea and the familyPhyllosmiliidae.

Neopilophyllia[28]

Gen. et comb. nov

Valid

Wangin Wanget al.

Silurian (Telychian)

Ningqiang Formation

China

Arugosecoral belonging to the new familyAmplexoididae. The type species is"Ningqiangophyllum" crassothecatum Cao (1975); genus also includes"Ningqiangophyllum" tenuiseptatum irregulare Cao (1975) (raised to the rank of a separate speciesNeopilophyllia irregularis),"Ningqiangophyllum" ephippium Cao (1975) and"Pilophyllia" alternata Chenin Wanget al. (1986).

Oculina complanatis[29]

Sp. nov

Valid

Berezovsky & Satanovska

Eocene

Ukraine

Astony coral, a species ofOculina.

Opolestraea[30]

Gen. et comb. nov

Valid

Morycowa

Middle Triassic (Anisian)

Karchowice Beds

Poland

Astony coral belonging to the familyEckastraeidae. The type species is"Coelocoenia" exporrecta Weissermel (1925).

Pachyheterocoenia[17]

Gen. et sp. et comb. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria
Spain

Astony coral belonging to the superfamilyHeterocoenioidea and the familyHeterocoeniidae. The type species isP. leipnerae; genus also includesP. grandis (Reuss, 1854) andP. fuchsi (Felix, 1903).

Pachyphylliopsis[17]

Gen. et sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria
Iran
United Arab Emirates

Astony coral belonging to the superfamilyPhyllosmilioidea and the familyPhyllosmiliidae. The type species isP. magnum.

Paractinacis[17]

Gen. et sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria
Germany
Spain

Astony coral belonging to the superfamilyCyclolitoidea and the familyNegoporitidae. The type species isP. uliae; genus might also includeP. ? elegans (Reuss, 1854).

Plesiolites[25]

Gen. et sp. nov

Valid

Löser, Steuber & Löser

Late Cretaceous (Cenomanian)

Greece

Astony coral belonging to the superfamilyMisistelloidea. The type species isP. winnii.

Proplesiastraea rivkae[17]

Sp. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria

Astony coral belonging to the superfamilyCladocoroidea and the familyColumastraeidae.

Psydracophyllum hinnuleum[20]

Sp. nov

Valid

McLean

Devonian

Canada

A rugose coral.

Striatopora marsupia[19]

Sp. nov

Valid

Król, Zapalski & Berkowski

Devonian (Emsian)

Amerboh Group

Morocco

Atabulate coral belonging to the familyPachyporidae.

Styloheterocoenia[25]

Gen. et 2 sp. nov

Valid

Löser, Steuber & Löser

Late Cretaceous (Cenomanian)

Greece

Astony coral belonging to the superfamilyHeterocoenioidea and the familyHeterocoeniidae. The type species isS. hellenensis; genus also includesS. brunni.

Stylophora kibiensis[31]

Sp. nov

Valid

Niko, Suzuki & Taguchi

Miocene

Katsuta Group

Japan

A species ofStylophora.

Sutherlandia jamalensis[32]

Sp. nov

Valid

Nikoet al.

Early Permian

Jamal Formation

Iran

Atabulate coral belonging to the orderFavositida and the familyFavositidae.

Synhydnophora[17]

Gen. et sp. et comb. nov

Valid

Löser & Heinrich

Late Cretaceous

Austria

Astony coral belonging to the superfamilyCyclolitoidea and the familySynastraeidae. The type species isS. wagreichi; genus also includesand S. multilamellosa (Reuss, 1854).

Wendticyathus[33]

Gen. et sp. nov

Valid

Berkowski

Devonian (Emsian)

Morocco

Arugosecoral. Genus includes new speciesW. nudus.

Xystriphylloides distinctus[34]

Sp. nov

Valid

Yu

EarlyDevonian

China

Arugosecoral.

Xystriphyllum helenense[20]

Sp. nov

Valid

McLean

Devonian

Canada

A rugose coral.

Arthropods

[edit]
Main articles:2018 in arthropod paleontology and2018 in insect paleontology

Bryozoans

[edit]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType

locality

CountryNotes

Acanthodesia variegata[35]

Sp. nov

Valid

Di Martino & Taylor

Holocene

Indonesia

Abryozoan belonging to the groupCheilostomata and the familyMembraniporidae.

Calyptotheca sidneyi[35]

Sp. nov

Valid

Di Martino & Taylor

Holocene

Indonesia

Abryozoan belonging to the groupCheilostomata and the familyBitectiporidae.

Characodoma wesselinghi[35]

Sp. nov

Valid

Di Martino & Taylor

Holocene

Indonesia

Abryozoan belonging to the groupCheilostomata and the familyCleidochasmatidae.

Cystomeson[36]

Gen. nov

Valid

Ernst, Krainer and Lucas

Mississippian

Lake Valley Formation

United States

Acystoporatebryozoan of the familyFistuliporidae.

Pleurocodonellina javanensis[35]

Sp. nov

Valid

Di Martino & Taylor

EarlyPleistocene

Pucangan Formation

Indonesia

Abryozoan belonging to the groupCheilostomata and the familySmittinidae.

Turbicellepora yasuharai[35]

Sp. nov

Valid

Di Martino & Taylor

Holocene

Indonesia

Abryozoan belonging to the groupCheilostomata and the familyCelleporidae.

Brachiopods

[edit]

Research

[edit]
  • Studies on theontogenetic development of earlyacrotretoidbrachiopods based on well preserved specimens of the earliest Cambrian speciesEohadrotreta zhenbaensis andEohadrotreta? zhujiahensis from the Shuijingtuo Formation (China) are published by Zhanget al. (2018).[37][38]
  • A study on the extinction and origination of members of the orderStrophomenida during theLate Ordovician mass extinction is published by Sclafaniet al. (2018).[39]
  • A study on the body size of several brachiopod assemblages recorded into the extinction interval prior to theToarcian turnover, collected from representative localities around the Iberian Massif (Spain andPortugal), is published by García Joral, Baeza-Carratalá & Goy (2018).[40]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotes

Acrotreta calabozoi[41]

Sp. nov

Valid

Lavié

Ordovician (Sandbian)

Las Plantas Formation

Argentina

Adygella socotrana[42]

Sp. nov

Valid

Gaetaniin Gaetaniet al.

Middle Triassic

Yemen

A member ofTerebratulida belonging to the familyDielasmatidae.

Ahtiella famatiniana[43]

Sp. nov

Valid

Benedetto

Ordovician

Argentina

Ahtiella tunaensis[43]

Sp. nov

Valid

Benedetto

Ordovician

Argentina

Ala alatiformis[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the family Choristitidae.

Alebusirhynchia vorosi[45]

Sp. nov

Valid

Baeza-Carratalá, Dulai & Sandoval

Early Jurassic

Spain

A member ofRhynchonellida.

Alekseevathyris[46]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Givetian)

Coronados Volcanics

United States
(Alaska)

A member ofTerebratulida belonging to the familyStringocephalidae. The type species isA. coronadosensis.

Altaethyrella tarimensis[47]

Sp. nov

Valid

Sproat & Zhan

Ordovician (lateKatian)

Hadabulaktag Formation

China

Ambocoelia yidadeensis[48]

Sp. nov

Valid

Zhang & Ma

Devonian (Frasnian)

Yidade Formation

China

Arpaspirifer[49][50]

Gen. et comb. nov

Valid

Gretchishnikovain Alekseevaet al.

Devonian (Famennian)

Armenia
Azerbaijan

A member of the familyCyrtosririferidae. The type species is"Spirifer" latus Abrahamian (1974).

Aulacella finitima[49][50]

Sp. nov

Valid

Alekseeva & Gretchishnikovain Alekseevaet al.

Devonian (EifelianGivetian)

Azerbaijan

Betaneospirifer stepanovi[51][52]

Sp. nov

Valid

Poletaev

Carboniferous

Russia
(Bashkortostan)

A member of the familyTrigonotretidae.

Biernatium sucoi[53]

Sp. nov

Valid

García-Alcalde

Devonian (Givetian)

Portilla Formation

Spain

A member ofOrthida belonging to the familyMystrophoridae.

Broggeria omaguaca[54]

Sp. nov

Valid

Benedetto, Lavie & Muñoz

Ordovician (Tremadocian)

Argentina

Buxtonia sulcata[55]

Sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Productoidea and the family Buxtoniidae.

Callaiapsida divitiae[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Rhynchonellida belonging to the family Stenoscismatidae.

Calliprotonia kerrae[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the familyEchinoconchidae.

Calliprotonia umbonalis[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Echinoconchidae.

Chelononia minimauris[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Strophomenata belonging to the superfamilyOrthotetoidea and the familySchuchertellidae.

Churkinella[46]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Givetian)

Coronados Volcanics

United States
(Alaska)

A member ofTerebratulida belonging to the familyStringocephalidae. The type species isC. craigensis.

Cingulodermis pustulatus[56]

Sp. nov

Valid

Mergl

Devonian (Emsian)

Morocco

Commarginalia norrisi[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Proboscidelloidea and the family Paucispinauriidae.

Composita largitas[57]

Sp. nov

Valid

Waterhouse

Carboniferous

Wahoo Formation

Canada
(Yukon)

Coronadothyris[46]

Gen. et sp. nov

Valid

Baranov & Blodgett

Devonian (Givetian)

Coronados Volcanics

United States
(Alaska)

A member ofTerebratulida belonging to the familyStringocephalidae. The type species isC. mica.

Costisorthis lisae[53]

Sp. nov

Valid

García-Alcalde

Devonian (Givetian)

Candás Formation

Spain

A member ofOrthida belonging to the familyDalmanellidae.

Cyrtiorina houi[58]

Sp. nov

Valid

Zong & Ma

Devonian (Famennian)

Hongguleleng Formation

China

A brachiopod belonging to the groupSpiriferida.

Cyrtospirifer dansikensis[49][50]

Sp. nov

Valid

Afanasjevain Alekseevaet al.

Devonian (Famennian)

Azerbaijan

Dalejina aulacelliformis[56]

Sp. nov

Valid

Mergl

Devonian (Emsian)

Morocco

Datnella[59]

Gen. et comb. nov

Valid

Baranov

EarlyDevonian

Russia

A member ofAtrypida. The type species isD. datnensis (Baranov, 1995).

Deltachania elongata[55]

Sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member of Athyrida belonging to the superfamily Athyroidea.

Desquamatia globosa jozefkae[60]

Subsp. nov

Valid

Balińskiin Skompskiet al.

Devonian (GivetianFrasnian boundary)

Szydłówek Beds

Poland

A member ofAtrypida belonging to the familyAtrypidae.

Diazoma ghyumuschlugensis[49][50]

Sp. nov

Valid

Olenevain Alekseevaet al.

Devonian (Frasnian)

Azerbaijan

Dichospirifer felixi[49][50]

Sp. nov

Valid

Gretchishnikovain Alekseevaet al.

Devonian (Famennian)

Azerbaijan

Dutroproductus[44]

Gen. et sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Productoidea and the family Retariidae. The type species isD. dutroi.

Echinalosia minuta[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Strophalosioidea and the family Dasyalosiidae.

Echinaria circularis[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Echinoconchidae.

Eopholidostrophia (Megapholidostrophia) gigas[61]

Sp. nov

Valid

Strusz & Percival

Silurian (Wenlock)

Australia

Eressella[62]

Gen. et comb. nov

Valid

Halamski & Baliński

MiddleDevonian

Germany
Morocco
Poland

A member ofRhynchonellida belonging to the familyUncinulidae. The type species is"Rhynchonella" coronata Kayser (1871).

Eridmatina[44]

Gen. et comb. nov

Valid

Waterhouse

Carboniferous and Permian

Gaptank Formation

Canada
(Yukon)
United States

A member of Spiriferida belonging to the family Spiriferellidae. The type species is"Eridmatus" marathonensis Cooper & Grant (1976); genus also includes"Eridmatus" petita Waterhouse & Waddington (1982)

Ettrainia[44]

Gen. et sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Choristitoidea and the family Palaeochoristitidae. The type species isE. costellata.

Flexaria echinata[63]

Sp. nov

Valid

Waterhouse

Carboniferous

Hart River Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Productoidea and the family Buxtoniidae.

Forticosta[44]

Gen. et sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Spiriferoidea and the family Neospiriferidae. The type species isF. transversa.

Gemmulicosta undulata[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Productoidea and the family Buxtoniidae.

Gypidulina grandis[49][50]

Sp. nov

Valid

Alekseeva & Gretchishnikovain Alekseevaet al.

Devonian (EifelianGivetian)

Azerbaijan

Harkeria elongata[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Yakovleviidae.

Harkeria sulcoprofundus[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Yakovleviidae.

Hartea[63]

Gen. et sp. nov

Junior homonym

Waterhouse

Carboniferous

Hart River Formation

Canada
(Yukon)

A member of Spiriferida belonging to the family Ambocoeliidae. The type species isH. venustus. The generic name is preoccupied byHartea Wright (1865).

Heella[44]

Gen. et comb. nov

Valid

Waterhouse

Permian

China

A member of Spiriferida belonging to the family Ambocoeliidae. The type species is"Attenuatella" mengi He, Shi, Feng & Peng (2007)

Heteralosia scotti[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Strophalosioidea and the family Strophalosiidae.

Hustedia quadrifidus[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member ofRhynchonellata belonging to the groupRetziida and the family Retziidae.

Hustedia trifida[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Rhynchonellata belonging to the group Retziida and the family Retziidae.

Isorthis (Arcualla) delegatensis[61]

Sp. nov

Valid

Strusz & Percival

Silurian (Wenlock)

Australia

Jagtithyris[64]

Gen. et comb. nov

Valid

Simon & Mottequin

Late Cretaceous (Maastrichtian)

Netherlands

A relative ofLeptothyrellopsis, assigned to the new familyJagtithyrididae. Genus includes"Terebratella (Morrisia?)" suessi Bosquet (1859).

Junglelomia simplex[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Choristitoidea and the family Palaeochoristitidae.

Juxathyris subcircularis[65]

Sp. nov

Valid

Wuet al.

Permian (Changhsingian)

Changxing Formation

China

A member ofAthyridida.

Komiella bitteri[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of the family Rugosochonetidae.

Krotovia norfordi[44]

Sp. nov

Valid

Waterhouse

Carboniferous and Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Echinoconchidae.

Kukulkanus[66]

Gen. et sp. nov

Valid

Torres-Martínez, Sour-Tovar & Barragán

Permian (ArtinskianKungurian)

Paso Hondo Formation

Mexico

A brachiopod belonging to the groupProductida and the familyProductidae. The type species isK. spinosus.

"Kutorginella" primigenius[63]

Sp. nov

Valid

Waterhouse

Carboniferous

Hart River Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Productoidea and the family Retariidae.

Latisulcus[44]

Gen. et comb. nov

Valid

Waterhouse

Permian

Bone Spring Formation

United States
(Texas)

A member ofRhynchonellata belonging to the groupRetziida and the family Retziidae. The type species is"Hustedia" hessensis King (1931)

Leiochonetes onimarensis[67]

Sp. nov

Valid

Tazawa

Carboniferous (Mississippian)

Hikoroichi Formation

Japan

A member of the familyRugosochonetidae belonging to the subfamilySvalbardiinae.

Leptaena (Leptaena) australis[61]

Sp. nov

Valid

Strusz & Percival

Silurian (Wenlock)

Australia

Leurosina katasumiensis[68]

Sp. nov

Valid

Afanasjeva, Jun-Ichi & Yukio

Permian (Kungurian)

Nabeyama Formation

Japan

A member ofChonetida belonging to the familyRugosochonetidae.

Levipustula canadensis[55]

Sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member ofStrophalosiidina belonging to the superfamily Scacchinelloidea and the family Levipustulidae.

Martinezchaconia[69]

Gen. et sp. nov

Valid

Torres-Martínez & Sour-Tovar

Carboniferous (Bashkirian-Moscovian)

Ixtaltepec Formation

Mexico

A member ofProductida belonging to the familyLinoproductidae. The type species isM. luisae.

Meristorygma donakovae[51][52]

Sp. nov

Valid

Poletaev

Carboniferous

Kizil Formation

Russia

A member of the familyBrachythyrididae.

Mirandifera[44]

Gen. et comb. nov

Valid

Waterhouse

Permian

Cathedral Mountain Formation

Canada
(Yukon)
United States
(Texas)

A member of Spiriferida belonging to the family Martiniidae. The type species is"Martinia" miranda Cooper & Grant (1976); genus also includes"Martinia" wolfcampensis King (1931)

Misunithyris[70]

Gen. et sp. nov

Valid

Baeza-Carratalá, Pérez-Valera & Pérez-Valera

Middle Triassic (Ladinian)

Siles Formation

Spain

A brachiopod belonging to the groupTerebratellidina and to the superfamilyZeillerioidea. The type species isM. goyi.

Morinorhynchus tucksoni[61]

Sp. nov

Valid

Strusz & Percival

Silurian (Wenlock)

Australia

Muirwoodiciana[55]

Gen. et sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member of Productida belonging to the family Yakovleviidae. The type species isM. inexpectans.

Musalitinispira[59]

Gen. et sp. nov

Valid

Baranov

EarlyDevonian

Russia

A member ofAtrypida. The type species isM. dogdensis.

Mysteronia[55]

Gen. et sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member of Rhynchonellida belonging to the superfamily Rhynchoporoidea and the family Rhynchoporidae. The type species isM. mysticus.

Nahoniella decorus[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferinida belonging to the group Syringothyridina and the family Licharewiidae.

Nassichukia[44]

Gen. et sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Productoidea and the family Buxtoniidae. The type species isN. nodosa.

Nazeriproductus lazarevi[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Productoidea and the family Retariidae.

Neochonetes (Huangichonetes) matsukawensis[71]

Sp. nov

Valid

Tazawa & Araki

Permian (Wordian)

Kamiyasse Formation

Japan

A member of the familyRugosochonetidae.

Newberria alaskensis[46]

Sp. nov

Valid

Baranov & Blodgett

Devonian (Givetian)

Coronados Volcanics

United States
(Alaska)

A member ofTerebratulida belonging to the familyStringocephalidae.

Nucleospira quidongensis[61]

Sp. nov

Valid

Strusz & Percival

Silurian (Wenlock)

Australia

Ogilviecoelia initiatus[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the family Ambocoeliidae.

Ogilviecoelia shii[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the family Ambocoeliidae.

Opsiconidion bouceki[72]

Sp. nov

Valid

Mergl, Frýda & Kubajko

Silurian (Ludfordian)

Kopanina Formation

Czech Republic

A member ofAcrotretoidea belonging to the familyBiernatidae.

Opsiconidion parephemerus[72]

Sp. nov

Valid

Mergl, Frýda & Kubajko

Silurian (Ludfordian)

Kopanina Formation

Czech Republic

A member ofAcrotretoidea belonging to the familyBiernatidae.

Orthotetes dorsosulcata[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Strophomenata belonging to the superfamilyOrthotetoidea and the familyOrthotetidae.

Papulifera[55]

Gen. et sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member of Spiriferida belonging to the family Martiniidae. The type species isP. plana.

Paucispinifera abramovi[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Paucispiniferidae.

Paucispinifera carboniferica[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Paucispiniferidae.

Paucispinifera sulcata[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Paucispiniferidae.

Pinguispirifer kesskess[56]

Sp. nov

Valid

Mergl

Devonian (Emsian)

Morocco

Piridiorhynchus jafariani[73]

Sp. nov

Valid

Baranovet al.

Devonian (Famennian)

Khoshyeilagh Formation

Iran

A member ofRhynchonellida belonging to the familyTrigonirhynchiidae.

Plicatospiriferella undulata[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the family Spiriferellidae.

Poletaevia[44]

Gen. et comb. nov

Valid

Waterhouse

Carboniferous

Hare Fiord Formation

Canada
(Nunavut)

A member of Productida belonging to the superfamily Paucispiniferoidea and the family Anidanthidae. The type species is"Liraria" paucispina Carter & Poletaev (1998)

Pripyatispirifer caucasius[49][50]

Sp. nov

Valid

Afanasjevain Alekseevaet al.

Devonian (Frasnian)

Azerbaijan

Protoanidanthus monstratus[57]

Sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Paucispiniferoidea and the family Anidanthidae.

Protoanidanthus nichollsi[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Paucispiniferoidea and the family Anidanthidae.

Pumilusia[44]

Gen. et comb. nov

Valid

Waterhouse

Carboniferous

La Prasada Formation

United States
(New Mexico)

A member of Productida belonging to the superfamily Linoproductoidea and the family Ovatiidae. The type species is"Linoproductus" pumilus Sutherland & Harlow (1973)

Punctospirifer iwatensis[67]

Sp. nov

Valid

Tazawa

Carboniferous (Mississippian)

Hikoroichi Formation

Japan

A member ofSpiriferinida belonging to the familyPunctospiriferidae.

Resserella dagnensis[49][50]

Sp. nov

Valid

Alekseeva & Gretchishnikovain Alekseevaet al.

Devonian (EmsianEifelian)

Azerbaijan

Reticulariopsis rotunda[49][50]

Sp. nov

Valid

Olenevain Alekseevaet al.

Devonian (Givetian)

Azerbaijan

Rhipidomella arpensis[49][50]

Sp. nov

Valid

Alekseeva & Gretchishnikovain Alekseevaet al.

Devonian (Givetian)

Azerbaijan

Rhipidomella borealis[57]

Sp. nov

Valid

Waterhouse

Carboniferous

Wahoo Formation

Canada
(Yukon)

A member of Orthida belonging to the family Rhipidomellidae.

Rhynchopora grigorievae[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Rhynchonellida belonging to the superfamily Rhynchoporoidea and the family Rhynchoporidae.

Rhynchoporusia[63]

Gen. et sp. nov

Valid

Waterhouse

Carboniferous

Hart River Formation

Canada
(Yukon)

A member of Rhynchonellida belonging to the superfamily Rhynchoporoidea and the family Rhynchoporidae. The type species isR. multiplicata.

Rorespirifer prodigium[57]

Sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Ingelarelloidea and the family Rorespiriferidae.

Rugaria arcula[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of the familyRugosochonetidae.

Rugivestigia[44]

Gen. et sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Paucispiniferidae. The type species isR. commarginalis.

Rugosochonetes multistriatus[49][50]

Sp. nov

Valid

Afanasjevain Alekseevaet al.

Carboniferous (Tournaisian)

Azerbaijan

Saltospirifer gibberosus[55]

Sp. nov

Valid

Waterhouse

Carboniferous

Blackie Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Spiriferoidea and the family Spiriferidae.

Sangredonia alaminata[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Horridoniidae.

Sarytchevinella praecursor[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamilyLinoproductoidea and the family Striatiferidae.

Schizambon langei[74]

Sp. nov

Valid

Freeman, Miller & Dattilo

Cambrian–Ordovician boundary

United States
(Texas)

Alinguliform brachiopod.

Schizophoria lata[49][50]

Sp. nov

Valid

Alekseeva & Gretchishnikovain Alekseevaet al.

Devonian (EmsianEifelian)

Azerbaijan

Schizophoria schnuri altera[49][50]

Subsp. nov

Valid

Alekseeva & Gretchishnikovain Alekseevaet al.

Devonian (Givetian)

Azerbaijan

Septatrypa tumulorum[75]

Sp. nov

Valid

Baliński & Halamski

Devonian (Emsian)

Morocco

Septospirifer hughi[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Spiriferoidea and the family Neospiriferidae.

Sieberella parva[49][50]

Sp. nov

Valid

Alekseeva & Gretchishnikovain Alekseevaet al.

Devonian (EmsianEifelian)

Azerbaijan

Sphenospira dansikensis[49][50]

Sp. nov

Valid

Gretchishnikovain Alekseevaet al.

Devonian (Famennian)

Azerbaijan

Spinatrypina (Spinatrypina) krivensis[59]

Sp. nov

Valid

Baranov

EarlyDevonian

Russia

A member ofAtrypida.

Spinocyrtia irinae[49][50]

Sp. nov

Valid

Afanasjevain Alekseevaet al.

Devonian (Eifelian andGivetian)

Azerbaijan

Spirelytha biakovi[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Elitoidea and the family Toryniferidae.

Spiriferinaella simplicata[44]

Sp. nov

Valid

Waterhouse

Carboniferous and Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Paeckelmanelloidea and the family Pterospiriferidae.

Stataria[44]

Gen. et comb. nov

Valid

Waterhouse

Permian

Cathedral Mountain Formation

United States
(Texas)

A member of Rhynchonellata belonging to the group Retziida and the family Retziidae. The type species is"Hustedia" stataria Cooper & Grant (1976)

Stenorhynchia ulrici[75]

Sp. nov

Valid

Halamski & Baliński

Devonian (Emsian)

Morocco

Tegulispirifer? placitus[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferida belonging to the superfamily Spiriferoidea and the family Spiriferidae.

Tethysiella impudens[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Paucispiniferidae.

Thomasaria caucasica[49][50]

Sp. nov

Valid

Olenevain Alekseevaet al.

Devonian (Eifelian)

Azerbaijan

Trigonatrypa drotae[56]

Sp. nov

Valid

Mergl

Devonian (Emsian)

Morocco

Tuberculatella bunnakia[44]

Nom. nov

Valid

Waterhouse

Carboniferous

Thailand

A member of Productida belonging to the family Avoniidae; a replacement name forTuberculatella tuberculata Waterhouse (1982).

Tubersulculus ovalis[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the family Echinoconchidae.

Tumarinia solominae[44]

Sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Spiriferinida belonging to the group Syringothyridina and the family Licharewiidae.

Undispirifer dansikensis[49][50]

Sp. nov

Valid

Olenevain Alekseevaet al.

Devonian (Eifelian)

Azerbaijan

Unispirifer arpensis[49][50]

Sp. nov

Valid

Afanasjevain Alekseevaet al.

Carboniferous (Tournaisian)

Azerbaijan

Villaconcha planiconcha[44]

Sp. nov

Valid

Waterhouse

Permian

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Echinoconchoidea and the family Waagenoconchidae.

Yanzaria[44]

Gen. et comb. et sp. nov

Valid

Waterhouse

Carboniferous and Permian

Fenestella Shales

Canada
(Yukon)
India

A member of Rhynchonellida belonging to the family Tetracameridae. The type species is"Camarophoria" dowhatensis Diener (1915); genus also includes new speciesY. solitarius.

Yukonalosia[44]

Gen. et sp. nov

Valid

Waterhouse

Carboniferous

Jungle Creek Formation

Canada
(Yukon)

A member of Productida belonging to the superfamily Strophalosioidea and the family Dasyalosiidae. The type species isY. arctica.

Zaigunrostrum nakhichevanense[76]

Sp. nov

Valid

Pakhnevich

Devonian (Famennian)

Azerbaijan

Abrachiopod belonging to the groupRhynchonellida and the familyTrigonirhynchiidae.

Zezinia[76]

Gen. et sp. nov

Valid

Pakhnevich

Devonian (Frasnian)

Azerbaijan

Abrachiopod belonging to the groupRhynchonellida and the familyUncinulidae. The type species isZ. multicostata.

Molluscs

[edit]
Main article:2018 in paleomalacology

Echinoderms

[edit]
Main article:2018 in echinoderm paleontology

Conodonts

[edit]

Research

[edit]
  • A study testing the proposed models of growth of conodont elements is published by Shirleyet al. (2018).[77]
  • A study on thehistological sections ofOrdovician andPermian conodont dental elements from theBell Canyon Formation (Texas,United States),Harding Sandstone (Colorado, United States),Ali Bashi Formation (Iran) and Canadian Arctic, examining those fossils for the presence and distribution of soft tissue biomarkers, is published by Terrill, Henderson & Anderson (2018).[78]
  • A study evaluating theδ18O variation within a species-rich conodont assemblage from the Ordovician (Floian) Factory Cove Member of theShallow Bay Formation,Cow Head Group (western Newfoundland,Canada), as well as assessing the implications of these data for determining the paleothermometry of ancient oceans and conodont ecologic models, is published by Wheeleyet al. (2018).[79][80][81]
  • A study on the body size and diversity ofCarnian conodonts from South China and their implications for inferring the biotic and environmental changes during theCarnian Pluvial Event is published by Zhanget al. (2018).[82]
  • A study assessing the similarity of late Paleozoic to Triassic conodont faunas known from theCache Creek terrane (Canada) is published by Golding (2018).[83]
  • Reconstruction of the multi-element apparatus of theMiddle Triassic conodont fromBritish Columbia (Canada) belonging to theNeogondolella regalis group within the genusNeogondolella is presented by Golding (2018).[84]
  • Reconstruction of the number and arrangement of elements in the apparatus ofHindeodus parvus published by Zhanget al. (2017)[85] is criticized by Agematsu, Golding & Orchard (2018);[86] Purnellet al. (2018) defend their original conclusions.[87]
  • A cluster oficriodontid conodonts belonging to the speciesCaudicriodus woschmidti, providing new information on the apparatus structure of icriodontid conodonts, is described from the Lower Devonian sediments in southernBurgenland (Austria) by Suttner, Kido & Briguglio (2018).[88]
  • A study on the species belonging to the genusNeognathodus, evaluating whether previously defined morphotype groups are reliably distinct from one another, is published by Zimmerman, Johnson & Polly (2018).[89]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotes

Ancyrogondolella diakowi[90]

Sp. nov

Valid

Orchard

Late Triassic (Norian)

Pardonet Formation

Canada
(British Columbia)

A member of the familyGondolellidae.

Ancyrogondolella equalis[90]

Sp. nov

Valid

Orchard

Late Triassic (Norian)

Pardonet Formation

Canada
(British Columbia)

A member of the family Gondolellidae.

Ancyrogondolella inequalis[90]

Sp. nov

Valid

Orchard

Late Triassic (Norian)

Pardonet Formation

Canada
(British Columbia)

A member of the family Gondolellidae.

Ancyrogondolella? praespiculata[90]

Sp. nov

Valid

Orchard

Late Triassic (Norian)

Pardonet Formation

Canada
(British Columbia)

A member of the family Gondolellidae.

Ancyrogondolella transformis[90]

Sp. nov

Valid

Orchard

Late Triassic (Norian)

Pardonet Formation

Canada
(British Columbia)

A member of the family Gondolellidae.

Baltoniodus cooperi[91]

Sp. nov

Valid

Carlorosi, Sarmiento & Heredia

Ordovician (Dapingian)

Santa Gertrudis Formation

Argentina

Declinognathodus intermedius[92]

Sp. nov

Valid

Hu, Qi & Nemyrovska

Carboniferous

China

Declinognathodus tuberculosus[92]

Sp. nov

Valid

Hu, Qi & Nemyrovska

Carboniferous

China

Gedikella[93]

Gen. et sp. nov

Valid

Kılıç, Plasencia & Önder

Middle Triassic (Anisian)

Turkey

A member of the familyGondolellidae. The type species isG. quadrata.

Gnathodus mirousei[94]

Sp. nov

Valid

Sanz-López & Blanco-Ferrera

Carboniferous (Mississippian)

Alba Formation
Aspe-Brousset Formation
Black Rock Limestone

Belgium
China
Ireland
Italy
Spain
United KingdomUnited States
(Illinois)

Idiognathodus abdivitus[95]

Sp. nov

Valid

Hogancamp & Barrick

Carboniferous

Atrasado Formation
Eudora Shale

United States
(New Mexico)

Originally described as a species ofIdiognathodus, but subsequently transferred to the genusHeckelina.[96]

Idiognathodus centralis[95]

Sp. nov

Valid

Hogancamp & Barrick

Carboniferous

Atrasado Formation
Eudora Shale

United States
(New Mexico)

Idiognathodus sweeti[95]

Sp. nov

Valid

Hogancamp & Barrick

Carboniferous

Atrasado Formation
Eudora Shale

United States
(New Mexico)

Idiognathoides chaagulootus[97]

Sp. nov

Valid

Frederick & Barrick

Carboniferous (earlyPennsylvanian)

Ladrones Limestone

United States
(Alaska)

Kamuellerella rectangularis[93]

Sp. nov

Valid

Kılıç, Plasencia & Önder

Middle Triassic (Anisian)

Turkey

A member of the familyGondolellidae.

Ketinella goermueshi[93]

Sp. nov

Valid

Kılıç, Plasencia & Önder

Middle Triassic (Anisian)

Turkey

A member of the familyGondolellidae.

Magnigondolella[98]

Gen. et 5 sp. et comb. nov

Valid

Golding & Orchard

Middle Triassic (Anisian)

Favret Formation
Toad Formation

Canada
(British Columbia)
China
United States
(Nevada)

A member of the familyGondolellidae. The type species isM. salomae;
genus also includes new speciesM. alexanderi,M. cyri,M. julii andM. nebuchadnezzari,
as well as"Neogondolella" regale Mosher (1970) and"Neogondolella" dilacerata Golding & Orchard (2016).

Mesogondolella hendersoni[99]

Sp. nov

Valid

Yuan, Zhang & Shen

Permian (Changhsingian)

Selong Group

China

Mockina? spinosa[90]

Sp. nov

Valid

Orchard

Late Triassic (Norian)

Pardonet Formation

Canada
(British Columbia)

A member of the familyGondolellidae.

Neopolygnathus fibula[100]

Sp. nov

Valid

Hartenfels & Becker

Devonian (Famennian)

Morocco

Neospathodus arcus[101]

Sp. nov

Valid

Maekawain Maekawa, Komatsu & Koike

Early Triassic

Taho Formation

Japan

Novispathodus shirokawai[101]

Sp. nov

Valid

Maekawain Maekawa, Komatsu & Koike

Early Triassic

Taho Formation

Japan

Novispathodus tahoensis[101]

Sp. nov

Valid

Maekawain Maekawa, Komatsu & Koike

Early Triassic

Taho Formation

Japan

'Ozarkodina'? chenae[102]

Sp. nov

Valid

Luet al.

Devonian (Emsian)

Ertang Formation

China

'Ozarkodina'? wuxuanensis[102]

Sp. nov

Valid

Luet al.

Devonian (Emsian)

Ertang Formation

China

Polygnathus linguiformis saharicus[103]

Subsp. nov

Valid

Narkiewicz & Königshof

Devonian (lateEifelian–middleGivetian)

Ispena Formation
Si Phai Formation

Morocco
Spain
Tajikistan
Turkey
Vietnam

Polygnathus linguiformis vietnamicus[103]

Subsp. nov

Valid

Narkiewicz & Königshof

Devonian (Givetian)

Plum Brook Shale
Si Phai Formation

Germany
Morocco
United States
(Ohio)
Vietnam

Polygnathus praeinversus[102]

Sp. nov

Valid

Luet al.

Devonian (Emsian)

Ertang Formation

China

Polygnathus rhenanus siphai[103]

Subsp. nov

Valid

Narkiewicz & Königshof

Devonian (Givetian)

Candás Formation
Si Phai Formation

China
Morocco
Spain
Vietnam

Polygnathus xylus bacbo[103]

Subsp. nov

Valid

Narkiewicz & Königshof

Devonian (Givetian)

Si Phai Formation

Vietnam

Pseudognathodus posadachaconae[104]

Sp. nov

Valid

Sanz-López, Blanco-Ferrera & Miller

Carboniferous (Mississippian)

Prestatyn Limestone

United Kingdom

A member of the familyGnathodontidae.

Pseudopolygnathus primus tafilensis[100]

Subsp. nov

Valid

Hartenfels & Becker

Devonian (Famennian)

Morocco

Pustulognathus[105]

Gen. et 2 sp. nov

Valid

Golding & Orchardin Golding

Permian (Guadalupian toLopingian)

Copley Limestone
Horsefeed Formation

Canada
(British Columbia)
China?

A member of the familySweetognathidae. The type species isP. monticola; genus also includesP. vigilans.

Quadralella (Quadralella) postica[106]

Sp. nov

Valid

Zhanget al.

Late Triassic (Carnian)

China

Quadralella robusta[106]

Sp. nov

Valid

Zhanget al.

Late Triassic (Carnian)

China

Quadralella wignalli[106]

Sp. nov

Valid

Zhanget al.

Late Triassic (Carnian)

China

Quadralella yongningensis[106]

Sp. nov

Valid

Zhanget al.

Late Triassic (Carnian)

China

Scandodus choii[107]

Sp. nov

Valid

Lee

Ordovician (Darriwilian)

South Korea

Sweetognathus duplex[108]

Sp. nov

Valid

Read & Nestell

Permian (Sakmarian)

Riepe Spring Limestone

United States
(Nevada)

Sweetognathus wardlawi[108]

Sp. nov

Valid

Read & Nestell

Permian (Sakmarian)

Riepe Spring Limestone

United States
(Nevada)

"Tortodus" sparlingi[109]

Sp. nov

Valid

Aboussalam & Beckerin Brettet al.

Devonian (Givetian)

Poland
Spain
United States
(Kentucky
Ohio)

Walliserognathus[110]

Gen. et comb. nov

Valid

Corradini & Corriga

Silurian (Ludlow)

Henryhouse Formation
Roberts Mountains Formation

Austria
China
Hungary
Italy
Spain
Sweden
United States
(Nevada
Oklahoma)

A member of the familySpathognathodontidae; a new genus forSpathognathodus inclinatus posthamatus Walliser (1964), raised to the rank of the speciesWalliserognathus posthamatus.

Fish

[edit]
Main article:2018 in paleoichthyology

Amphibians

[edit]
Main article:2018 in amphibian paleontology

Reptiles

[edit]
Main articles:2018 in reptile paleontology and2018 in archosaur paleontology

Synapsids

[edit]

Non-mammalian synapsids

[edit]

Research

[edit]
  • A description of the postcranial material referable to thecaseid speciesEnnatosaurus tecton is published by Romano, Brocklehurst & Fröbisch (2018).[111]
  • A study on the anatomy and phylogenetic relationships ofMilosaurus mccordi is published by Brocklehurst & Fröbisch (2018).[112]
  • A skull of a juvenile specimen ofAnteosaurus magnificus is described from thePermianAbrahamskraal Formation (South Africa) by Kruger, Rubidge & Abdala (2018).[113]
  • A study on the evolution of thetrigeminal nerve innervation inanomodonts is published by Benoitet al. (2018).[114]
  • A study on the stable oxygen and carbon isotope compositions ofdentineapatite in the teeth of twenty-eight specimens ofDiictodon feliceps, and on their implications for inferring the potential role of climate in driving the lateCapitanian mass extinction of terrestrial tetrapods, is published by Reyet al. (2018).[115]
  • Description of the anatomy of six new skulls of thedicynodontAbajudon kaayai from thePermian (Guadalupian) lower Madumabisa Mudstone Formation (Zambia) and a study on the phylogenetic relationships of the species is published by Olroyd, Sidor & Angielczyk (2018).[116]
  • A study on the anatomy of thebony labyrinth of the specimens of the dicynodont genusEndothiodon collected from thePermian K5 Formation (Mozambique), comparing it with the closely related genusNiassodon, is published by Araújoet al. (2018).[117]
  • A study on thetaphonomic history of a monotypic bonebed composed by several individuals attributable to the dicynodontDinodontosaurus collected in a classicMiddle Triassic locality inBrazil, and on its implications for inferring possible gregarious behaviour inDinodontosaurus, is published online by Ugaldeet al. (2018).[118]
  • Redescription of the dicynodont genusSangusaurus and a study on its feeding system and phylogenetic relationships is published by Angielczyk, Hancox & Nabavizadeh (2018).[119]
  • Partial hindlimb of a dicynodont nearing the size ofStahleckeria potens is described from the Triassic Lifua Member of the Manda Beds (Tanzania) by Kammerer, Angielczyk &Nesbitt (2018), representing the largest dicynodont postcranial element from the Manda Beds reported so far.[120]
  • Description of plant remains andpalynomorphs preserved in thecoprolites produced by large dicynodonts from theTriassicChañares Formation (Argentina), and a study on their implications for inferring the diet of dicynodonts, is published by Perez Loinazeet al. (2018).[121]
  • Tetrapod tracks, probably produced by dicynodonts, are described from the Upper TriassicVera Formation of theLos Menucos Group (Argentina) by Cittonet al. (2018).[122]
  • A study on the age of putativeRhaetian dicynodont fromLipie Śląskie (Poland) is published online by Racki &Lucas (2018), who consider it more likely that this dicynodont was ofNorian age.[123]
  • A study on the anatomy of the skull ofCynariops robustus is published by Bendelet al. (2018).[124]
  • A study on rates ofenamel development in a range of non-mammaliancynodont species, inferred from incremental markings, is published by O'Meara, Dirks & Martinelli (2018).[125]
  • Description of the morphology of the skull ofCynosaurus suppostus and a study on the phylogenetic relationships of the species is published by van den Brandt & Abdala (2018).[126]
  • Fossils ofCynognathus crateronotus are described for the first time from the Triassic Ntawere Formation (Zambia) and Manda Beds (Tanzania) by Wyndet al. (2018).[127]
  • A study on the postcranial anatomy of a specimen ofDiademodon tetragonus recovered from the UpperOmingonde Formation (Namibia) is published by Gaetano, Mocke & Abdala (2018).[128]
  • Partial skull and postcranial skeleton of a member of the speciesCricodon metabolus is described from theTriassic Ntawere Formation (Zambia) by Sidor & Hopson (2018), who also study the phylogenetic relationships of members of the familyTrirachodontidae.[129]
  • A study on the musculature, posture and range of motion of the forelimb ofMassetognathus pascuali is published by Lai, Biewener & Pierce (2018).[130]
  • New specimen ofTrucidocynodon riograndensis, almost 20% larger than theholotype specimen, is described from theCarnian of Candelária Sequence (southernBrazil) by Stefanelloet al. (2018).[131]
  • Rightdentary with teeth ofProzostrodon brasiliensis is described from theLate Triassic ofBrazil by Pachecoet al. (2018), representing the second known specimen of this species.[132]
  • Description of the anatomy of the postcranial skeleton ofProzostrodon brasiliensis is published by Guignard, Martinelli & Soares (2018).[133]
  • A study on the limb bonehistology and life histories ofProzostrodon brasiliensis,Irajatherium hernandezi,Brasilodon quadrangularis andBrasilitherium riograndensis is published by Botha-Brink, Bento Soares & Martinelli (2018).[134]
  • A study on the origin and relationships of ictidosauriancynodonts, i.e.tritheledontids andtherioherpetids, is published byBonaparte & Crompton (2018).[135]
  • A large (comprising at least 38 individuals) clutch of well-preservedperinates ofKayentatherium wellesi, found with a presumed maternal skeleton, is described from theLower Jurassic sediments of theKayenta Formation (found on lands of theNavajo Nation) by Hoffman & Rowe (2018);[136] in light of this finding, a new interpretation of earlier records of associations between adult and juvenile cynodonts is proposed by Benoit (2019).[137]
  • Cynodont teeth (representing abrasilodontid and aRiograndia-like form) found in theTriassic locality inBrazil which also yielded the fossils ofSacisaurus agudoensis are described by Marsolaet al. (2018).[138]
  • A study on the evolution of the mammalian jaw is published by Lautenschlageret al. (2018), who find no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont–mammaliaform transition.[139]
  • Tetrapod burrows, likely produced by smalleucynodonts, are described from theTriassicChañares Formation (Argentina) by Fiorelliet al. (2018).[140]
  • A study on the morphological diversity of vertebral regions in non-mammalian synapsids, and on its implication for elucidating the evolution of anatomically distinct regions of the mammalian spines, is published by Joneset al. (2018).[141]
  • A study on teethontogeny in wide range of extinct synapsid lineages is published by LeBlancet al. (2018), who interpret their findings as indicating that the ligamentous tooth attachment system is not unique tocrown mammals within Synapsida.[142]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Ascendonanus[143]

Gen. et sp. nov

Valid

Spindleret al.

Permian (Sakmarian-Artinskian transition)

Chemnitz petrified forest
(Leukersdorf Formation)

Germany

A member of the familyVaranopidae. Genus includes new speciesA. nestleri.

Gordodon[144]

Gen. et sp. nov

Valid

Lucas, Rinehart & Celeskey

EarlyPermian (early Wolfcampian)

Bursum Formation

United States
(New Mexico)

A member of the familyEdaphosauridae. The type species isG. kraineri.

Gorynychus[145]

Gen. et sp. nov

Valid

Kammerer & Masyutin

Permian

Kotelnich red beds

Russia
(Kirov Oblast)

Atherocephalian. The type species isG. masyutinae.

Leucocephalus[146]

Gen. et sp. nov

Valid

Dayet al.

Permian (earlyWuchiapingian)

Tropidostoma Assemblage Zone of the Main Karoo Basin

South Africa

Abiarmosuchian belonging to the familyBurnetiidae. The type species isL. wewersi.

Lisowicia[147]

Gen. et sp. nov

Sulej & Niedźwiedzki

Late Triassic (lateNorian-earliestRhaetian)

Poland

A giganticdicynodont reaching an estimated body mass of 9 tons. The type species isL. bojani. Announced in 2018; the final version of the article naming it was published in 2019.

Microvaranops[143]

Gen. et sp. nov

Valid

Spindleret al.

Permian (Guadalupian)

Abrahamskraal Formation

South Africa

A member of the familyVaranopidae. Genus includes new speciesM. parentis.

Nochnitsa[148]

Gen. et sp. nov

Valid

Kammerer & Masyutin

Permian

Kotelnich red beds

Russia
(Kirov Oblast)

Agorgonopsian. The type species isN. geminidens.

Pentasaurus[149]

Gen. et sp. nov

Valid

Kammerer

Late Triassic

Elliot Formation

South Africa

Adicynodont belonging to the familyStahleckeriidae. The type species isP. goggai.

Polonodon[150]

Gen. et sp. nov

Valid

Sulejet al.

Late Triassic (Carnian)

Poland

A non-mammaliaformeucynodont. Genus includes new speciesP. woznikiensis. Announced in 2018; the final version of the article naming it was published in 2020.

Siriusgnathus[151]

Gen. et sp. nov

Valid

Pavanattoet al.

Late Triassic (Carnian orNorian[152])

Santa Maria Supersequence

Brazil

Atraversodontidcynodont. Genus includes new speciesS. niemeyerorum.

Mammals

[edit]
Main article:2018 in mammal paleontology

Other animals

[edit]

Research

[edit]
  • A review and synthesis of studies on the timing and environmental context of landmark events in early animal evolution is published by Sperling & Stockey (2018).[153]
  • A study on the phylogenetic relationships of therangeomorphs, dickinsoniomorphs anderniettomorphs as indicated by what is known of theontogeny of the rangeomorphCharnia masoni, dickinsoniomorphDickinsonia costata and erniettomorphPteridinium simplex is published by Dunn, Liu & Donoghue (2018), who consider at least the rangeomorphs and dickinsoniomorphs to bemetazoans.[154]
  • A study on the phylogenetic relationships of the rangeomorphs is published by Dececchiet al. (2018).[155]
  • A study on the size distribution andmorphological features of a population of juvenile specimens ofDickinsonia costata from the Crisp Gorge fossil locality in theFlinders Ranges (Australia) is published by Reid, García-Bellido & Gehling (2018).[156]
  • A study on the phylogenetic relationships ofDickinsonia based on data fromlipidbiomarkers extracted from organically preserved Ediacaran macrofossils is published by Bobrovskiyet al. (2018), who interpret their findings as indicating thatDickinsonia was an animal.[157]
  • A study on the anatomy and phylogenetic relationships ofStromatoveris, based on data from new specimens from the Chengjiang Konservat-Lagerstätte (China), is published by Hoyal Cuthill & Han (2018), who interpretStromatoveris as a member of early animal groupPetalonamae that also includedArborea,Pambikalbae, rangeomorphs, dickinsoniomorphs and erniettomorphs.[158]
  • The first reliable occurrence of abundant penetrative trace fossils, providing trace fossil evidence forPrecambrianbilaterians with complex behavioural patterns, is reported from the latestEdiacaran of westernMongolia by Ojiet al. (2018).[159]
  • Trace fossils produced byEdiacaran animals which burrowed within sediment are described from the shallow-marine deposits of theUrusis Formation (Nama Group,Namibia) by Buatoiset al. (2018), who name a newichnotaxonParapsammichnites pretzeliformis.[160]
  • New trace fossils from the Ediacaran Shibantan Member of the upperDengying Formation (China), including burrows and possible trackways which were probably made by millimeter-sized animals withbilateral appendages, are described by Chenet al. (2018).[161]
  • An aggregation of members of the genusParvancorina, providing evidence of two size-clusters and bimodal orientation in this taxon, is described from theEdiacara Conservation Park (Australia) by Couttset al. (2018).[162]
  • New, three-dimensional specimens ofCharniodiscus arboreus (Arborea arborea), allowing for a detailed reinterpretation of its functional morphology and taxonomy, are described from the Ediacara Member, Rawnsley Quartzite ofSouth Australia by Laflamme, Gehling & Droser (2018).[163]
  • 3D reconstructions ofCloudina aggregates are presented by Mehra & Maloof (2018).[164]
  • A study onNamacalathus andCloudina skeletons from the Ediacaran Omkyk Member of theNama Group (Namibia) is published by Prusset al. (2018), who interpret their findings as indicating that both organisms originally producedaragonitic skeletons, which later underwentdiagenetic conversion tocalcite.[165]
  • A study on the substrate growth dynamics, mode of biomineralization and possible affinities ofNamapoikia rietoogensis is published by Wood & Penny (2018).[166]
  • A review of evidence for existence of swimming animals during theNeoproterozoic is published by Gold (2018).[167]
  • A study on the age of theCambrianChengjiang biota (China) is published by Yanget al. (2018).[168]
  • Description ofcoprolites from theCambrian (Drumian)Rockslide Formation (Mackenzie Mountains,Canada) produced by an unknown predator, and a study on their implications for reconstructing the Cambrian food web, is published by Kimmig & Pratt (2018).[169]
  • A study on the nature and biological affinity of the Cambrian taxonArchaeooides is published by Yinet al. (2018), who interpret the fossils ofArchaeooides as embryonic remains of animals.[170]
  • Zumbergeet al. (2018) report a new fossilsteranebiomarker, possessing a rarehydrocarbon skeleton that is uniquely found within extantdemosponge taxa, from lateNeoproterozoicCambrian sedimentary rocks and oils, and interpret this finding as indicating that demosponges, and hence multicellular animals, were prominent in some late Neoproterozoic marine environments at least extending back to theCryogenian period.[171]
  • Diverse, abundant sponge fossils from the Ordovician–Silurian boundary interval are reported from seven localities in South China by Bottinget al. (2018), who produce a model for the distribution and preservation of the sponge fauna.[172]
  • A study on the phylogenetic relationships of extant and fossildemosponges is published by Schusteret al. (2018).[173]
  • An assemblage of animal fossils, including the oldest knownpterobranchs, preserved in the form ofsmall carbonaceous fossils is described from the CambrianBuen Formation (Greenland) by Slateret al. (2018).[174]
  • Description of new morphological features of the CambrianmobergellanDiscinella micans is published by Skovsted & Topper (2018).[175]
  • A study on the interrelationships between theeldonioidPararotadiscus guizhouensis and associated fossil taxa from theKaili Biota is published by Zhaoet al. (2018).[176]
  • A study on the slab with a dense aggregation of members of the speciesBanffia constricta recovered from the CambrianBurgess Shale (Canada) and its implications for life habits of the animal is published by Chambers & Brandt (2018).[177]
  • A study on the morphology and phylogenetic affinities ofYuyuanozoon magnificissimi, based on new specimens, is published by Liet al. (2018).[178]
  • A study on the fossil record of earlyPaleozoicgraptoloids and on the factors influencing rates of diversification within this group is published by Footeet al. (2018).[179]
  • A study on the impact of the long-period astronomical cycles (Milankovitch "grand cycles") associated with Earth'sorbital eccentricity and obliquity on the variance in species turnover probability (extinction probability plusspeciation probability) in Early Paleozoic graptoloids is published by Cramptonet al. (2018).[180]
  • A redescription of the speciesMalongitubus kuangshanensis from the CambrianChengjiang Lagerstätte (China) is published by Huet al. (2018), who interpret this taxon as apterobranch.[181]
  • A study on the morphology of thepalaeoscolecid wormPalaeoscolex from the LowerOrdovicianFezouata Lagerstätte (Morocco), using computed microtomography and providing new information on the internal anatomy of this animal, is published by Kouraisset al. (2018).[182]
  • The first occurrence of thetommotiid speciesPaterimitra pyramidalis from theXinji Formation (China) is reported by Panet al. (2018).[183]
  • A study on the temporal distribution oflophotrochozoan skeletal species from the upperEdiacaran to the basalMiaolingian of theSiberian Platform, and on its implications for understanding the evolutionary dynamics of theCambrian explosion, is published by Zhuravlev & Wood (2018).[184]
  • Eggs ofascaridoidnematodes found incrocodyliformcoprolites are described from theUpper CretaceousBauru Group (Brazil) by Cardiaet al. (2018).[185]
  • A study reinterpreting the putative CambrianlobopodianMureropodia apae as a partial isolated appendage of a member of the genusCaryosyntrips, published by Pates & Daley (2017)[186] is criticized by Gámez Vintaned & Zhuravlev (2018);[187] Pates, Daley & Ortega-Hernández (2018) defend their original conclusions.[188]
  • A study on the early evolution ofstem andcrown-arthropods as indicated byEdiacaran andCambrian body and trace fossils is published by Daleyet al. (2018).[189]
  • A study on the evolution ofecdysozoan vision, focusing on the evolution of arthropod multi-opsin vision, as indicated by molecular data and data from fossil record, is published by Fleminget al. (2018).[190]
  • A juvenile specimen ofLyrarapax unguispinus, providing new information on the frontal appendages and feeding mode in this taxon, is described from theCambrianChiungchussu Formation (China) by Liuet al. (2018).[191]
  • A study evaluating likely swimming efficiency and maneuverability ofAnomalocaris canadensis is published by Sheppard, Rival &Caron (2018).[192]
  • Cambrian animalPahvantia hastata from theWheeler Shale (Utah,United States), originally classified as a possible arthropod,[193] is reinterpreted as a suspension-feeding radiodont by Lerosey-Aubril & Pates (2018).[194]
  • The presence ofmetameric midgutdiverticulae is reported for the first time in thestem-arthropodFuxianhuia protensa by Ortega-Hernándezet al. (2018), who interpret their finding as indicative of a predatory or scavenging ecology of fuxianhuiids.[195]
  • Liuet al. (2018) reinterpret putative remains of the nervous and cardiovascular systems in numerous articulated individuals ofFuxianhuia protensa as more likely to be microbial biofilms that developed following decomposition of the intestine, muscle and other connective tissues.[196]
  • A study on the post-embryonic development ofFuxianhuia protensa is published by Fuet al. (2018).[197]
  • Redescription of the fuxianhuiidLiangwangshania biloba is published by Chenet al. (2018).[198]
  • New specimens of the stem-arthropod speciesKerygmachela kierkegaardi, providing new information on the anatomy of this species and on the ancestral condition of thepanarthropod brain, are described from theCambrian Stage 3 of theBuen Formation (Sirius Passet,Greenland) by Parket al. (2018).[199]
  • Fossils of spindle- or conotubular-shaped animals of uncertain phylogenetic placement are described from theOrdovicianMartinsburg Formation (Pennsylvania,United States) by Meyeret al. (2018).[200]
  • Evidence ofmacrofauna living at depths of up to 8 metres below the seabed is reported from thePermian Fort Brown Formation (Karoo Basin,South Africa) by Cobainet al. (2018).[201]
  • A study on the morphology of thehyolithidParamicrocornus zhenbaensis from the lowerCambrian Shuijingtuo Formation (China) is published by Zhang, Skovsted & Zhang (2018), who report that this species lackedhelens, and also report the oldest known hyolith muscle scars preserved on theopercula of this species.[202]
  • A study on the feeding strategies and locomotion of Cambrian hyolithids, based on specimens preserved incoprolites from theChengjiang biota and associated with aTuzoia carcass from theBalang Fauna (China), is published by Sunet al. (2018).[203]
  • Digestive tract of a specimen of the hyolith speciesCircotheca johnstrupi from the CambrianLæså Formation (Bornholm,Denmark) is described by Berg-Madsen, Valent & Ebbestad (2018).[204]
  • The oldeststromatoporoidbryozoan reefs reported so far are described from the middleOrdovicianDuwibong Formation (South Korea) by Honget al. (2018).[205]
  • Small bioconstructions formed solely bymicroconchidtube worms, representing the stratigraphically oldest exclusively metazoan bioconstructions from the earliestTriassic (mid-Induan) strata inEast Greenland, are reported by Zatońet al. (2018).[206]
  • The oldest known evidence oftrematode parasitism ofbivalves in the form of igloo-shaped traces found on shells of the freshwater bivalveSphaerium is reported from theUpper CretaceousJudith River Formation (Montana,United States) by Rogerset al. (2018).[207]
  • A study on the predatory drill holes inLate Cretaceous andPaleogenemolluscan andserpulid worm prey fromSeymour Island (Antarctica) and their implications for inferring the effects of theCretaceous–Paleogene extinction event on predator-prey dynamics at this site is published by Harper, Crame & Sogot (2018).[208]
  • A study on burrows from Lower–Middle Triassic successions in South China assigned to theichnotaxonRhizocorallium, and on their implications for inferring the course of biotic recovery following thePermian–Triassic extinction event, is published by Fenget al. (2018).[209]
  • A study evaluating how different species of fossil and extant free-living cupuladriidbryozoans responded to the environmental changes in the Southwest Caribbean over the last 6 million years is published by O'Deaet al. (2018).[210]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Acanthodesia variegata[35]

Sp. nov

Valid

Di Martino & Taylor

Holocene

Indonesia

Abryozoan belonging to the groupCheilostomata and the familyMembraniporidae.

Acoscinopleura albaruthenica[211]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (lateCampanian)

Belarus

Abryozoan belonging to the groupFlustrina and the familyCoscinopleuridae.

Acoscinopleura crassa[211]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (Maastrichtian)

Germany

Abryozoan belonging to the groupFlustrina and the familyCoscinopleuridae.

Acoscinopleura dualis[211]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (Maastrichtian)

Germany

Abryozoan belonging to the groupFlustrina and the familyCoscinopleuridae.

Acoscinopleura occulta[211]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (Maastrichtian)

Germany

Abryozoan belonging to the groupFlustrina and the familyCoscinopleuridae.

'Aechmella' viskovae[212]

Sp. nov

Valid

Koromyslova, Baraboshkin & Martha

Late Cretaceous

Kazakhstan

Abryozoan.

Aechmellina[213]

Gen. et comb. nov

Valid

Taylor, Martha & Gordon

Cretaceous (Cenomanian) toPaleocene (Danian).

Denmark
France
Germany
United Kingdom
United States

Abryozoan belonging to the groupFlustrina and the familyOnychocellidae. The type species is"Aechmella" falcifera Voigt (1949); genus also includes"Homalostega" anglica Brydone (1909),"Aechmella" bassleri Voigt (1924),"Homalostega" biconvexa Brydone (1909),"Cellepora" hippocrepis Goldfuss (1826),"Aechmella" indefessa Taylor & McKinney (2006),"Aechmella" latistoma Berthelsen (1962),"Aechmella" linearis Voigt (1924),"Aechmella" parvilabris Voigt (1924),"Aechmella" pindborgi Berthelsen (1962),"Semieschara" proteus Brydone (1912),"Monoporella" seriata Levinsen (1925),"Aechmella" stenostoma Voigt (1930),"Reptescharinella" transversa d'Orbigny (1852) and"Aechmella" ventricosa Voigt (1924).

Alacaris[214]

Gen. et sp. nov

Valid

Yanget al.

Cambrian Stage 3

Hongjingshao Formation

China

Astem-arthropod related toChengjiangocaris. The type species isA. mirabilis.

Allonnia nuda[215]

Sp. nov

Valid

Conget al.

Cambrian Stage 3

Chengjiang Lagerstätte

China

Achancelloriid.

Allonnia tenuis[216]

Sp. nov

Valid

Zhao, Li & Selden

EarlyCambrian

China

Achancelloriid.

Arnaopora[217]

Gen. et sp. nov

Valid

Suárez Andrés & Wyse Jackson

Devonian

Moniello Formation

Spain

Abryozoan belonging to the groupFenestrata. Genus includes new speciesA. sotoi.

Aspidostoma armatum[218]

Sp. nov

Valid

Pérez, López-Gappa & Griffin

EarlyMiocene

Monte León Formation

Argentina

Acheilostomebryozoan belonging to the familyAspidostomatidae.

Aspidostoma roveretoi[218]

Sp. nov

Valid

Pérez, López-Gappa & Griffin

LateMiocene

Puerto Madryn Formation

Argentina

Acheilostomebryozoan belonging to the familyAspidostomatidae.

Aspidostoma tehuelche[218]

Sp. nov

Valid

Pérez, López-Gappa & Griffin

Early to middleMiocene

Chenque Formation

Argentina

Acheilostomebryozoan belonging to the familyAspidostomatidae.

Austroscolex sinensis[219]

Sp. nov

Valid

Liuet al.

Cambrian (Paibian)

China

Apalaeoscolecid.

Axilosoecia[220]

Gen. et 2 sp. nov

Valid

Taylor & Brezina

Paleocene (Danian) to earlyMiocene

Roca Formation

Argentina
New Zealand

Abryozoan belonging to the groupTubuliporina and the familyOncousoeciidae. The type species isA. giselae; genus also includesA. mediorubiensis.

Burocratina[221]

Gen. et sp. nov

Wachtler & Ghidoni

Early-Middle Triassic

Italy

Apolychaete. The type species isB. kraxentrougeri.

Catenagraptus[222]

Gen. et sp. nov

Valid

VandenBerg

Ordovician (lateFloian)

Australia

Agraptolite belonging to the groupSinograptina and the familySigmagraptidae. The type species isC. communalis.

Characodoma wesselinghi[35]

Sp. nov

Valid

Di Martino & Taylor

Holocene

Indonesia

Abryozoan belonging to the groupCheilostomata and the familyCleidochasmatidae.

Cheethamia aktolagayensis[212]

Sp. nov

Valid

Koromyslova, Baraboshkin & Martha

Late Cretaceous

Kazakhstan

Abryozoan.

Codositubulus[223]

Gen. et sp. nov

Valid

Gámez Vintanedet al.

Cambrian

Spain

A tubicolous animal of uncertain phylogenetic placement. The type species isC. grioensis.

Colospongia lenis[224]

Sp. nov

Valid

Malysheva

LatePermian

Russia
(Primorsky Krai)

Asponge.

Cornulites gondwanensis[225]

Sp. nov

Valid

Gutiérrez-Marco &Vinn

Ordovician (Hirnantian)

Morocco

A member ofCornulitida.

Cupitheca convexa[226]

Sp. nov

Valid

Sunet al.

Cambrian

Manto Formation

China

A member ofHyolitha.

Cystomeson[227]

Gen. et sp. nov

Valid

Ernst, Krainer &Lucas

Carboniferous (Mississippian)

Lake Valley Formation

United States
(New Mexico)

Abryozoan belonging to the groupCystoporata. Genus includes new speciesC. sierraensis.

Decoritheca? hageni[228]

Sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

Greenland

A member ofHyolitha.

Demirastrites campograptoides[229]

Sp. nov

Valid

Štorch & Melchin

Silurian (Aeronian)

Czech Republic

Agraptolite belonging to the familyMonograptidae.

Dictyocyathus aranosensis[230]

Sp. nov

Valid

Perejónet al.

EarlyCambrian

Namibia

A member ofArchaeocyatha.

Didymograptellus kremastus[231]

Sp. nov

Valid

Vandenberg

Ordovician (Floian)

Australia
New Zealand
Norway
United States

Agraptolite belonging to the groupDichograptina and the familyPterograptidae.

Erismacoscinus ganigobisensis[230]

Sp. nov

Valid

Perejónet al.

EarlyCambrian

Namibia

A member ofArchaeocyatha.

'Escharoides' charbonnieri[232]

Sp. nov

Valid

Di Martino, Martha & Taylor

Late Cretaceous (Maastrichtian)

Madagascar

Abryozoan.

Fehiborypora[232]

Gen. et comb. nov

Valid

Di Martino, Martha & Taylor

Late Cretaceous (Maastrichtian)

Madagascar

Abryozoan; a new genus for"Cribilina" labiatulaCanu (1922).

Gibbavasis[233]

Gen. et sp. nov

Vaziri, Majidifard & Laflamme

Ediacaran

Kushk Series

Iran

A vase-shaped organism of uncertain phylogenetic placement, possibly aporiferan-grade animal. The type species isG. kushkii.

Homoctenus katzerii[234]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (latePragian or lateEmsian)

Ponta Grossa Formation

Brazil

A member ofTentaculitoidea belonging to the orderHomoctenida and the familyHomoctenidae.

Kalaallitia[228]

Gen. et sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

Greenland

A member ofHyolitha. Genus includes new speciesK. myliuserichseni.

Kamilocella[213]

Gen. et comb. nov

Valid

Taylor, Martha & Gordon

Late Cretaceous (Cenomanian) toCampanian).

Czech Republic
France
Germany

Abryozoan belonging to the groupFlustrina and the familyOnychocellidae. The type species is"Eschara" latilabris Reuss (1872); genus also includes"Eschara" acis d'Orbigny (1851),"Onychocella" barbata Martha, Niebuhr & Scholz (2017),"Eschara" cenomana d'Orbigny (1851) and"Eschara" labiata Počta (1892).

Kenocharixa[235]

Gen. et sp. et comb. nov

Valid

Dick, Sakamoto & Komatsu

Cretaceous toEocene

Japan
New Zealand

Acheilostomebryozoan. Genus includes new speciesK. kashimaensis, as well as"Charixa goshouraensis Dick, Komatsu, Takashima & Ostrovsky (2013) and"Conopeum" stamenocelloides Gordon & Taylor (2015).

Khmeria minima[236]

Sp. nov

Valid

Wendt

Late Triassic (Carnian)

Italy

Anascidian belonging to the new orderKhmeriamorpha.

Khmeria stolonifera[236]

Sp. nov

Valid

Wendt

LatePermian, possibly alsoCarboniferous

Cambodia
Thailand
Vietnam

Anascidian belonging to the new orderKhmeriamorpha.

Kimberella persii[233]

Sp. nov

Vaziri, Majidifard & Laflamme

Ediacaran

Kushk Series

Iran

Astem-molluscbilaterian.

Kootenayscolex[237]

Gen. et sp. nov

Valid

Nanglu &Caron

Cambrian

Burgess Shale

Canada
(British Columbia)

Apolychaete. Genus includes new speciesK. barbarensis.

Laminacaris[238]

Gen. et sp. nov

Valid

Guoet al.

Cambrian Stage 3

China
United States?[239]

A member ofRadiodonta. Genus includes new speciesL. chimera.

Lenisambulatrix[240]

Gen. et sp. nov

Valid

Ou & Mayer

Cambrian Stage 3

Heilinpu Formation

China

Alobopodian. The type species isL. humboldti.

Lunulites marambionis[241]

Sp. nov

Valid

Haraet al.

Eocene

La Meseta Formation

Antarctica
(Seymour Island)

Abryozoan belonging to the groupCheilostomata and the familyLunulitidae.

Marginaria prolixa[235]

Sp. nov

Valid

Dick, Sakamoto & Komatsu

Late Cretaceous (Campanian)

Himenoura Group

Japan

Acheilostomebryozoan.

Matteolaspongia[242]

Gen. et sp. nov

Valid

Botting, Zhang & Muir

Ordovician (Hirnantian)

Wenchang Formation

China

Asponge, possibly astem-rossellid. The type species isM. hemiglobosa.

Melychocella biperforata[218]

Sp. nov

Valid

Pérez, López-Gappa & Griffin

EarlyMiocene

Chenque Formation
Monte León Formation

Argentina

Acheilostomebryozoan belonging to the familyAspidostomatidae.

Micrascidites gothicus[243]

Sp. nov

Valid

Sagular, Yümün & Meriç

Quaternary

Turkey

Adidemnidascidian.

Micropora nordenskjoeldi[241]

Sp. nov

Valid

Haraet al.

Eocene

La Meseta Formation

Antarctica
(Seymour Island)

Abryozoan belonging to the groupCheilostomata and the familyMicroporidae.

Minitaspongia[244]

Gen. et sp. nov

Valid

Carreraet al.

Carboniferous (Tournaisian)

Agua de Lucho Formation

Argentina

Ahexactinellidsponge belonging to the familyDictyospongiidae. The type species isM. parvis.

Monniotia minutula[243]

Sp. nov

Valid

Sagular, Yümün & Meriç

Quaternary

Turkey

Adidemnidascidian.

Nasaaraqia[228]

Gen. et sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

Greenland

A member ofHyolitha. Genus includes new speciesN. hyptiotheciformis.

Neotrematopora lyaoilensis[245]

Sp. nov

Valid

Tolokonnikova & Ponomarenko

Devonian (Frasnian)

Lyaiol Formation

Russia

Abryozoan.

Nevadotheca boerglumensis[228]

Sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

Greenland

A member ofHyolitha.

Nidelric gaoloufangensis[216]

Sp. nov

Valid

Zhao, Li & Selden

EarlyCambrian

China

An animal with single-element spines.

Nogrobs moroccensis[246]

Sp. nov

Valid

Schlöglet al.

Middle Jurassic (Bajocian)

Morocco

Aserpulidpolychaete.

Onuphionella corusca[247]

Sp. nov

Valid

Muiret al.

Ordovician (Sandbian)

First Bani Group

Morocco

Agglutinated tubes produced by unknown animal. Published online in 2018; the final version of the article naming it was published in 2022.

Otionellina antarctica[241]

Sp. nov

Valid

Haraet al.

Eocene

La Meseta Formation

Antarctica
(Seymour Island)

Abryozoan belonging to the groupCheilostomata and the familyOtionellidae.

Otionellina eocenica[241]

Sp. nov

Valid

Haraet al.

Eocene

La Meseta Formation

Antarctica
(Seymour Island)

Abryozoan belonging to the groupCheilostomata and the familyOtionellidae.

Pedunculotheca[248]

Gen. et sp. nov

Valid

Sun, Zhao & Zhuin Sunet al.

Cambrian Stage 3

Yu'anshan Formation

China

A member ofHyolitha belonging to the groupOrthothecida. Genus includes new speciesP. diania.

'Plagioecia' antanihodiensis[232]

Sp. nov

Valid

Di Martino, Martha & Taylor

Late Cretaceous (Maastrichtian)

Madagascar

Abryozoan.

Platychelyna secunda[249]

Sp. nov

Valid

López-Gappa, Pérez & Griffin

EarlyMiocene

Monte León Formation

Argentina

Abryozoan.

Pleurocodonellina javanensis[35]

Sp. nov

Valid

Di Martino & Taylor

EarlyPleistocene

Pucangan Formation

Indonesia

Abryozoan belonging to the groupCheilostomata and the familySmittinidae.

Protohertzina compressa[250]

Sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation
Voosi Formation

Estonia

A member of thetotal group ofChaetognatha.

Qinscolex[251]

Gen. et sp. nov

Valid

Liuet al.

Cambrian (Fortunian)

China

Acycloneuralian tentatively assigned tototal-groupScalidophora. Genus includes new speciesQ. spinosus.

Ramskoeldia[252]

Gen. et 2 sp. nov

Valid

Conget al.

Cambrian

Maotianshan Shales

China

A member ofRadiodonta related toAmplectobelua. Genus includes new speciesR. platyacantha andR. consimilis.

Reptomultisparsa stratosa[253]

Sp. nov

Valid

Viskova & Pakhnevich

Middle Jurassic (Callovian)

Russia

Abryozoan.

Rhagasostoma aralense[254]

Sp. nov

Valid

Koromyslovaet al.

Late Cretaceous (Campanian)

Uzbekistan

Abryozoan belonging to the groupFlustrina and the familyOnychocellidae.

Rhagasostoma brydonei[254]

Sp. nov

Valid

Koromyslovaet al.

Late Cretaceous (Turonian andConiacian)

United Kingdom

Abryozoan belonging to the groupFlustrina and the familyOnychocellidae.

Rhagasostoma operculatum[254]

Sp. nov

Valid

Koromyslovaet al.

Late Cretaceous (Campanian)

Turkmenistan

Abryozoan belonging to the groupFlustrina and the familyOnychocellidae.

Schistodictyon webbyi[255]

Sp. nov

Valid

Zhen

LateSilurian

Australia

Asponge belonging to the classStromatoporoidea, orderClathrodictyida and the familyAnostylostromatidae.

Seqineqia[256]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

Greenland

Asponge. The type species isS. bottingi.

"Serpula" calannai[257]

Sp. nov

Valid

Sanfilippoet al.

Permian

Italy.

Aserpulidpolychaete.

"Serpula" prisca[257]

Sp. nov

Valid

Sanfilippoet al.

Permian

Italy.

Aserpulidpolychaete.

Shaanxiscolex[258]

Gen. et sp. nov

Valid

Yanget al.

Cambrian Stage 4

China

Apalaeoscolecid. The type species isS. xixiangensis.

Shanscolex[251]

Gen. et sp. nov

Valid

Liuet al.

Cambrian (Fortunian)

China

Acycloneuralian tentatively assigned tototal-groupScalidophora. Genus includes new speciesS. decorus.

Sisamatispongia[256]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

Greenland

Asponge. The type species isS. erecta.

Sonarina[259]

Gen. et sp. nov

Valid

Taylor & Di Martino

Late Cretaceous (lateCampanian or earlyMaastrichtian)

Kallankurichchi Formation

India

Acheilostomebryozoan belonging to the familyOnychocellidae. Genus includes new speciesS. tamilensis.

Stanleycaris[188]

Gen. et sp. nov

Valid

Pates, Daley & Ortega-Hernández

Cambrian

Stephen Formation
Wheeler Formation

Canada
(British Columbia)
United States
(Utah)

A member ofRadiodonta belonging to the groupHurdiidae. The type species isS. hirpex. The original description of the taxon appeared in an online supplement to the article published by Caronet al. (2010),[260] making in invalid until it was validated by Pates, Daley & Ortega-Hernández (2018).[187][188]

Styliolina langenii[234]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (middle to lateEmsian)

Ponta Grossa Formation

Brazil

A member ofTentaculitoidea belonging to the orderDacryoconarida and the familyStyliolinidae.

Sullulika[228]

Gen. et sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

Greenland

Aselkirkiidstem-priapulid. Genus includes new speciesS. broenlundi.

Tallitaniqa[256]

Gen. et sp. nov

Valid

Peel

Cambrian (Guzhangian)

Holm Dal Formation

Greenland

Asponge. The type species isT. petalliformis.

Tarimspira artemi[261]

Sp. nov

Valid

Peel

Cambrian Stage 4

Henson Gletscher Formation

Greenland

An animal of uncertain phylogenetic placement described on the basis of fossilsclerites, possibly representing a stage inparaconodont evolution prior to the development of a basal cavity.

Tentaculites kozlowskii[234]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (latePragian or lateEmsian)

Ponta Grossa Formation

Brazil

A member ofTentaculitoidea belonging to the orderTentaculitida and the familyTentaculitidae.

Tentaculites paranaensis[234]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (latePragian or lateEmsian)

Ponta Grossa Formation

Brazil

A member ofTentaculitoidea belonging to the orderTentaculitida and the familyTentaculitidae.

Thanahita[262]

Gen. et sp. nov

Siveteret al.

Silurian (Wenlock)

Herefordshire Lagerstätte

United Kingdom.

A relative ofHallucigenia. The type species isT. distos.

Trapezovitus malinkyi[228]

Sp. nov

Valid

Peel & Willman

Cambrian Series 2

Buen Formation

Greenland

A member ofHyolitha.

Turbicellepora yasuharai[35]

Sp. nov

Valid

Di Martino & Taylor

Holocene

Indonesia

Abryozoan belonging to the groupCheilostomata and the familyCelleporidae.

Uniconus ciguelii[234]

Sp. nov

Valid

Comniskey & Ghilardi

Devonian (latePragian or lateEmsian)

Ponta Grossa Formation

Brazil

A member ofTentaculitoidea belonging to the orderTentaculitida and the familyUniconidae.

Zardinisoma[236]

Gen. et 5 sp. nov

Valid

Wendt

Permian (Wordian) toTriassic (Carnian)

San Cassiano Formation

Italy
Japan

Anascidian belonging to the new orderKhmeriamorpha. The type species isZ. cassianum; genus also includesZ. japonicum,Z. pauciplacophorum,Z. pyriforme andZ. polyplacophorum.

Zhijinites tumourifomis[263]

Sp. nov

Valid

Pan, Feng & Chang

Cambrian (Terreneuvian)

Yanjiahe Formation

China

Asmall shelly fossil.

Foraminifera

[edit]

Research

[edit]
  • A study on the effects of differentialocean acidification at the Cretaceous-Paleocene transition on theplanktonicforaminiferal assemblages from theFarafra Oasis (Egypt) is published by Orabiet al. (2018).[264]
  • A wide variety of morphological abnormalities inplanktic foraminiferaltests from the earliestDanian, mainly fromTunisian sections, is described by Arenillas, Arz & Gilabert (2018).[265]
  • A study on the impact of the climatic and environmental perturbation on the morphology of foraminifera living during the Paleocene–Eocene Thermal Maximum is published by Schmidtet al. (2018).[266]
  • Taxonomic compilation and partial revision of earlyEocene deep-sea benthic Foraminifera is presented by Arreguín-Rodríguezet al. (2018).[267]
  • A study on the responses of two species of foraminifera (extantTruncorotalia crassaformis and extinctGloboconella puncticulata) toclimate change during the late Pliocene to earliest Pleistocene intensification of Northern Hemisphere glaciation (3.6–2.4 million years ago) is published by Brombacheret al. (2018).[268]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotes

Alabamina heyae[269]

Sp. nov

Valid

Foxet al.

Oligocene

Germany

A member ofRotaliida belonging to the familyAlabaminidae.

Alicantina[270]

Gen. et comb. nov

Valid

Soldan, Petrizzo & Silva

Eocene

Dunghan Formation
Langley Formation
Lizard Springs Formation
Navet Formation
Richmond Formation
Shaheed Ghat Formation
Thebes Formation
Universidad Formation

Cuba
Egypt
Italy
Jamaica
Pakistan
Spain
Syria
Trinidad and Tobago
Tunisia
Atlantic Ocean
Indian Ocean
(Kerguelen Plateau)
Pacific Ocean
(Caroline Abyssal Plain
Shatsky Rise)

A member of the familyGlobigerinidae. The type species is"Globigerina" lozanoi Colom (1954); genus also includes"Globigerina" prolata Bolli (1957).

Ammobaculites deflectus[271]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic -Early Cretaceous

Agardhfjellet Formation

Norway

Ammobaculites knorringensis[271]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic -Early Cretaceous

Agardhfjellet Formation

Norway

Ammobaculoides dhrumaensis[272]

Sp. nov

Valid

Kaminski, Malik & Setoyama

Middle Jurassic (Bajocian)

Dhruma Formation

Saudi Arabia

A member ofLituolida belonging to the familySpiroplectamminidae.

Asterigerinella jonesi[273]

Sp. nov

Valid

Rögl & Briguglio

Miocene (Burdigalian)

Quilon Formation

India

Brizalina keralensis[273]

Sp. nov

Valid

Rögl & Briguglio

Miocene (Burdigalian)

Quilon Formation

India

Chiloguembelina adriatica[274]

Sp. nov

Valid

Premec Fucek, Hernitz Kucenjak & Huber

Eocene andOligocene

Cipero Formation

Cuba
Syria
Trinidad and Tobago
Adriatic Sea
Gulf of Mexico
Pacific Ocean
(Ontong Java Plateau)

A member ofGuembelitrioidea belonging to the familyChiloguembelinidae.

Chiloguembelina andreae[274]

Sp. nov

Valid

Premec Fucek, Hernitz Kucenjak & Huber

LateEocene and earlyOligocene

France
Syria
United States
(New Jersey)

A member ofGuembelitrioidea belonging to the familyChiloguembelinidae.

Ciperoella[275]

Gen. et comb. nov

Valid

Olsson & Hemlebenin Olssonet al.

LateEocene to earlyMiocene

Cipero Formation
Tingnaro Formation

Australia
Austria
Belgium
Colombia
Cuba
France
Italy
Malta
Romania
Spain
Tanzania
Trinidad and Tobago
United States
(Mississippi)
Venezuela
Atlantic Ocean
Pacific Ocean

A member ofGlobigerinoidea belonging to the familyGlobigerinidae. The type species is"Globigerina" ciperoensis Bolli (1954); genus also includes"Globigerina" anguliofficinalis Blow (1969),"Globigerina ciperoensis" angulisuturalis Bolli (1957) (raised to the rank of the speciesCiperoella angulisuturalis) and"Globigerina" fariasi Bermúdez (1961).

Colominella piriniae[276]

Sp. nov

Valid

Mancin & Kaminski

Pliocene

Italy

A member ofTextulariida.

Cyclammina saidovae[277]

Nom. nov

Valid

Hanagata

Neogene

Japan

A species ofCyclammina; a replacement name forCyclammina pseudopusilla Hanagata (2003).

Dentoglobigerina eotripartita[278]

Sp. nov

Valid

Pearson, Wade & Olssonin Wadeet al.

Eocene andOligocene

Navet Formation

Indonesia
Tanzania
Trinidad and Tobago
United States
(Mississippi)
Adriatic Sea

A member ofGlobigerinoidea belonging to the familyGlobigerinidae.

Douglassites[279]

Gen. et sp. nov

Valid

Read & Nestell

Carboniferous (latePennsylvanian)

Riepe Spring Limestone

United States
(Nevada)

A member ofFusulinida belonging to the familySchubertellidae. Genus includes new speciesD. sprucensis.

Elazigina siderea[280]

Sp. nov

Valid

Consorti & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

Iran
Oman
Turkey

A member of the groupRotaliida belonging to the familyRotaliidae.

Globigerina archaeobulloides[281]

Sp. nov

Valid

Hemleben & Olssonin Spezzaferriet al.

Oligocene

Shubuta Formation

United States
(Alabama)

A species ofGlobigerina.

Globigerinella roeglina[281]

Sp. nov

Valid

Spezzaferri & Coxallin Spezzaferriet al.

Oligocene, possiblyMiocene

Romania
Gulf of Mexico
Indian Ocean

A member ofGlobigerinoidea belonging to the familyGlobigerinidae.

Globigerinoides joli[282]

Sp. nov

Valid

Spezzaferriin Spezzaferri, Olsson & Hemleben

Miocene

Caribbean Sea
Gulf of Mexico
SouthAtlantic Ocean
Indian Ocean
(Kerguelen Plateau)

A species ofGlobigerinoides.

Globigerinoides neoparawoodi[282]

Sp. nov

Valid

Spezzaferriin Spezzaferri, Olsson & Hemleben

Miocene

North-westernPacific Ocean

A species ofGlobigerinoides.

Globoconella pseudospinosa[283]

Sp. nov

Valid

Crundwell

EarlyPliocene

SouthwestPacific Ocean

Globorotaloides atlanticus[284]

Sp. nov

Valid

Spezzaferri & Coxall

Oligocene andMiocene

Atlantic Ocean
Indian Ocean
Pacific Ocean

A member ofGlobigerinoidea belonging to the familyGlobigerinidae.

Globoturborotalita eolabiacrassata[285]

Sp. nov

Valid

Spezzaferri & Coxallin Spezzaferriet al.

Eocene toMiocene

Belgium
France
Romania
Tanzania
United States
(New Jersey)
Atlantic Ocean
Indian Ocean
(Kerguelen Plateau)
Pacific Ocean
(Nazca Plate)

A member ofGlobigerinoidea belonging to the familyGlobigerinidae.

Globoturborotalita paracancellata[285]

Sp. nov

Valid

Olsson & Hemlebenin Spezzaferriet al.

Eocene andOligocene

WesternAtlantic Ocean
Gulf Coast of the United States

A member ofGlobigerinoidea belonging to the familyGlobigerinidae.

Globoturborotalita pseudopraebulloides[285]

Sp. nov

Valid

Olsson & Hemlebenin Spezzaferriet al.

Oligocene andMiocene

Australia
Austria
Tanzania
Trinidad and Tobago
Gulf of Mexico
SouthAtlantic Ocean
Western equatorialPacific Ocean

A member ofGlobigerinoidea belonging to the familyGlobigerinidae.

Haplophragmoides perlobatus[271]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic -Early Cretaceous

Agardhfjellet Formation

Norway

Hemisphaerammina apta[286]

Sp. nov

Valid

McNeil & Neville

EarlyEocene

Beaufort Sea

A member of the orderAstrorhizida and the suborderHemisphaeramminineae.

Ichnusella senerae[287]

Sp. nov

Valid

Rigaud, Schlagintweit & Bucur

Early Cretaceous (Barremian–earlyAptian)

Austria
France
Italy
Romania
Turkey
Croatia?
Serbia?
Ukraine?

A member of the groupSpirillinida belonging to the familySpirillinidae.

Labrospira lenticulata[271]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic -Early Cretaceous

Agardhfjellet Formation

Norway

Lenticulina stewarti[269]

Sp. nov

Valid

Foxet al.

Oligocene (Rupelian)

Germany

A member of the groupNodosarioidea belonging to the familyVaginulinidae.

Moulladella[288]

Gen. et sp. nov

Valid

Bucur & Schlagintweit

Early Cretaceous (Valanginian-Barremian)

Austria
Bulgaria
France
Romania
Serbia
Spain

A member ofLoftusiida belonging to the familyPfenderinidae. The type species is"Meyendorffina (Paracoskinolina)" jourdanensis Foury & Moullade (1966).

Neodubrovnikella[289]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

Iran

Genus includes new speciesN. maastrichtiana.

Neonavarella[290]

Gen. et sp. nov

Valid

Giusberti, Kaminski & Mancin

Paleocene (Thanetian)

Scaglia Rossa Formation

Italy

A member ofLituolida belonging to the familyAmmobaculinidae. The type species isN. sudalpina.

Neotrocholina theodori[287]

Sp. nov

Valid

Rigaud, Schlagintweit & Bucur

Early Cretaceous (Barremian–earlyAptian)

Austria
France
Iran
Poland
Romania
Turkey

A member of the groupSpirillinida belonging to the familySpirillinidae.

Nonion cepa[269]

Sp. nov

Valid

Foxet al.

LateOligocene to earlyMiocene

CentralNorth Sea basin
Netherlands

A member of the groupRotaliida belonging to the familyNonionidae.

Nummulites fayumensis[291]

Sp. nov

Valid

Al Menoufy & Boukhary

Eocene (Lutetian)

Egypt

Anummulite.

Nummulites tenuissimus[291]

Sp. nov

Valid

Al Menoufy & Boukhary

Eocene (Lutetian)

Egypt

Anummulite.

Omphalocyclus macroporus ellipsoides[292]

Subsp. nov

Valid

Al Nuaimy

Late Cretaceous (Maastrichtian)

Aqra Formation

Iraq

Omphalocyclus macroporus maukabensis[292]

Subsp. nov

Valid

Al Nuaimy

Late Cretaceous (Maastrichtian)

Aqra Formation

Iraq

Palaeoelphidium[293]

Gen. et comb. nov

Valid

Consorti, Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian)

Iran
Iraq
Qatar

A member of the familyElphidiellidae; a new genus for"Elphidiella" multiscissurata Smout (1955).

Paralachlanella[273]

Gen. et sp. nov

Valid

Rögl & Briguglio

Miocene (Burdigalian)

Quilon Formation

India

Genus includes new speciesP. pilleri.

Pseudomassilina quilonensis[273]

Sp. nov

Valid

Rögl & Briguglio

Miocene (Burdigalian)

Quilon Formation

India

Pseudopeneroplis[294]

Gen. et sp. nov

Valid

Consortiin Consortiet al.

Late Cretaceous (lateCenomanian)

Peru

A member of the superfamilySoritoidea and the familyPraerhapydioninidae. Genus includes new speciesP. oyonensis.

Quiltyella[281]

Gen. et comb. nov

Valid

Coxall & Spezzaferriin Spezzaferriet al.

Oligocene andMiocene

Austria
Romania
EastPacific Ocean

A member ofGlobigerinoidea belonging to the familyGlobigerinidae. The type species is"Clavigerinella" nazcaensis Quilty (1976); genus also includes"Hastigerinella" clavacella Rögl (1969).

Ranikothalia daviesi[295]

Sp. nov

Valid

Sirel & Deveciler

EarlyEocene

Turkey

A member of the groupRotaliida belonging to the familyNummulitidae.

Reophax pyriloculus[271]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic -Early Cretaceous

Agardhfjellet Formation

Norway

Schubertella luisorum[296]

Sp. nov

Valid

Villain Villa, Merino-Tomé & Martín Llaneza

Carboniferous (Moscovian)

La Nueva Limestone
Meruxalín Limestone
Sutu Limestone

Spain

A member ofFusulinida.

Streptochilus tasmanensis[297]

Sp. nov

Valid

Smart & Thomas

Oligocene

South Tasman Rise

A member ofBolivinoidea belonging to the familyBolivinidae.

Subbotina projecta[298]

Sp. nov

Valid

Olsson, Pearson & Wadein Wadeet al.

LateEocene andOligocene

Yazoo Formation

Tanzania
United States
(Alabama
Mississippi)
Atlantic Ocean
Pacific Ocean

A member ofGlobigerinoidea belonging to the familyGlobigerinidae.

Textularia pernana[271]

Sp. nov

Valid

Hjalmarsdottir, Nakrem & Nagy

Late Jurassic -Early Cretaceous

Agardhfjellet Formation

Norway

A species ofTextularia.

Trilobatus altospiralis[282]

Sp. nov

Valid

Spezzaferriin Spezzaferri, Olsson & Hemleben

Miocene

SouthPacific Ocean

A member ofGlobigerinoidea belonging to the familyGlobigerinidae.

Trochammina jakovlevae[299]

Sp. nov

Valid

Glinskikh & Nikitenko

Middle Jurassic (lateBajocian-earlyBathonian)

Churkino Formation

Russia

A member of the familyTrochamminidae.

Uvigerina kingi[269]

Sp. nov

Valid

Foxet al.

MiddleMiocene

Netherlands
Southern and centralNorth Sea

A member of the groupRotaliida belonging to the familyUvigerinidae.

Other organisms

[edit]

Research

[edit]
  • A study on putativestromatolites described from the 3,700-Myr-old rocks from theIsua supracrustal belt (Greenland) by Nutmanet al. (2016)[300] is published by Allwoodet al. (2018), who interpret these putative stromatolites as more likely to be structures of non-biological origin.[301]
  • Carbon isotope analyses of 11 microbial fossils from the ~3,465-million-year-oldApex chert (Australia) are published by Schopfet al. (2018), who interpret two of the five studied species as primitivephotosynthesizers, one as anArchaealmethane producer, and two as methane consumers.[302]
  • The oldest well-preserved microbial mats fabrics are described from the ≈3,472-million-year-old Middle Marker horizon,Barberton Greenstone Belt (South Africa) by Hickman-Lewiset al. (2018).[303]
  • Direct fossil evidence for life on land 3,220 million years ago in the form of terrestrialmicrobial mats is reported from the Moodies Group (South Africa) by Homannet al. (2018).[304]
  • Microfossils representing 18morphotypes are reported from the c. 2.4 billion years old Turee Creek Group (Western Australia) by Barlow & Van Kranendonk (2018).[305]
  • Ten representative types of exceptionally well-preserved mat-related structures, interpreted as likely to be of biological origin and including putativemicrobial mats and discoidalmicrobial colonies, are reported from the 2.1-billion-year-oldFrancevillian series inGabon by Aubineauet al. (2018).[306]
  • A study on the chemical, isotopic and molecular structural characteristics of the putativemulticellulareukaryote fossils from carbonaceous compressions in the 1.63 billion years old Tuanshanzi Formation (China) is published by Quet al. (2018).[307]
  • Intactporphyrins, themolecular fossils ofchlorophylls, are described from 1,100-million-year-old marine black shales of theTaoudeni Basin (Mauritania) by Gueneliet al. (2018), who also study the nitrogen isotopic values of the fossil pigments, and interpret their findings as indicating that the oceans of that time were dominated bycyanobacteria, while largerplanktonicalgae were scarce.[308]
  • A study on the evolutionary history ofbacteria is published by Loucaet al. (2018), who interpret their findings as indicating that most bacterial lineages ever to have inhabited Earth are extinct.[309]
  • Bobrovskiyet al. (2018) report molecular fossils from organically preserved specimens ofBeltanelliformis, and interpret the fossils as representing large spherical colonies ofcyanobacteria.[310]
  • Discoid imprints sampled from thePrecambrian terranes of centralDobruja (Romania) are described and assigned to the speciesBeltanelliformis brunsae by Saint Martin & Saint Martin (2018).[311]
  • A study on the age of the fossilred algaBangiomorpha pubescens is published by Gibsonet al. (2018).[312]
  • A reassessment of the anatomy and taxonomy ofOrbisiana, based on a restudy of the rediscovered originaltype material ofO. simplex, is published by Kolesnikovet al. (2018).[313]
  • A study on the positions of fossil specimens in the assemblages ofEdiacaran fossils fromMistaken Point (Canada), as well as on their implications for inferring the interactions and associations between the Ediacaran organisms, is published by Mitchell & Butterfield (2018).[314]
  • A study on the height of Ediacaran organisms from Mistaken Point, evaluating the link between the increase of height and resource competition or greater offspring dispersal, is published by Mitchell & Kenchington (2018).[315]
  • Evidence of a radiation of theEdiacaran biota that witnessed the emergence and widespread implementation of novel, animal-style ecologies is presented by Tarhanet al. (2018), who argue that this transition was linked to the expansion of Ediacaran taxa into dynamic, shallow marine environments characterized by episodic disturbance and complex and diverse organically bound substrates, and propose that younger, second-wave Ediacaran communities resulting from said radiation were part of an ecological and evolutionary continuum withPhanerozoic ecosystems.[316]
  • A study on the size range,ontogeny and palaeoenvironment ofRugoconites is published by Hall, Droser & Gehling (2018).[317]
  • Elliptical body fossils are described from the Ediacaran–Fortunian deposits of centralBrittany (France) by Néraudeauet al. (2018), representing the first body fossils described from these deposits.[318]
  • A study on the sandstone- and limestone-hosted occurrences ofPalaeopascichnus linearis (including material from a new locality in Arctic Siberia), indicative of a greater range of taxonomic and taphonomic variation, is published by Kolesnikovet al. (2018).[319]
  • A study on the organic-walledmicrofossils from the Cambrian strata in thestratotype section of the Precambrian–Cambrian boundary in theBurin Peninsula (Canada) is published by Palacioset al. (2018).[320]
  • Fossils interpreted as threads of filamentous cyanobacteria are described from theCambrian (Guzhangian)Alum Shale Formation (Sweden) by Castellaniet al. (2018).[321]
  • EnigmaticDevonian taxonProtonympha is interpreted as a possible post-Ediacaranvendobiont byRetallack (2018).[322]
  • Description of fossils of nonmarinediatoms belonging to the genusActinocyclus from the Lower to Middle Miocenelacustrine deposits inJapan and a study on the possible causal links between the evolution of nonmarineplanktonic diatoms and the climatic and environmental changes that occurred during the Miocene is published by Hayashiet al. (2018).[323]
  • A study on the cell-size frequency distributions across calcareousnanoplankton communities through the Paleocene–Eocene Thermal Maximum, on their population biomass and on theimpact of climate change on their cellular characteristics is published by Gibbset al. (2018).[324]

New taxa

[edit]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Alievium mangalensiense[325]

Sp. nov

Valid

Bragina & Bragin

Late Cretaceous

Cyprus

Aradiolarian belonging to the familyPseudoaulophacidae.

Angochitina plicata[326]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

Argentina

Achitinozoan.

Anhuithrix[327]

Gen. et comb. nov

Panget al.

Tonian

Liulaobei Formation

China

A member ofCyanobacteria; a new genus for"Omalophyma" magna Steiner (1994).

Attenborites[328]

Gen. et sp. nov

Valid

Droseret al.

Ediacaran

Rawnsley Quartzite

Australia

An organism of uncertain phylogenetic placement, described on the basis of a well-defined irregular oval to circular fossil. Genus includes new speciesA. janeae. Announced in 2018; the final version of the article naming it was published in 2020.

Cyclotella cassandrae[329]

Sp. nov

Valid

Paillèset al.

Pleistocene

Guatemala

Adiatom.

Cyclotella petenensis[329]

Sp. nov

Valid

Paillèset al.

Pleistocene

Guatemala

Adiatom.

Doulia[330]

Gen. et sp. nov

Valid

Lianet al.

Cambrian Stage 3

Hongjingshao Formation

China

A possibleplanktonic alga of uncertain phylogenetic placement. Genus includes new speciesD. rara.

Eolaminaria simigladiola[330]

Sp. nov

Valid

Lianet al.

Cambrian Stage 3

Hongjingshao Formation

China

Amacroalga of uncertain phylogenetic placement.

Epistacheoides bozorgniai[331]

Sp. nov

Valid

Falahatgar, Vachard & Sarfi

Carboniferous (Viséan)

Iran

Analga of uncertain phylogenetic placement.

Girvanella lianiformis[332]

Sp. nov

Valid

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

Greenland

A member ofCyanobacteria belonging to the family Cyanophyceae.

Girvanella pituutaq[332]

Sp. nov

Valid

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

Greenland

A member ofCyanobacteria belonging to the family Cyanophyceae.

Gorgonisphaeridium impexus[326]

Sp. nov

Valid

Noetinger, di Pasquo & Starck

Devonian

Argentina

Anacritarch.

Hylaecullulus[333]

Gen. et sp. nov

Valid

Kenchington, Dunn & Wilby

Ediacaran

United Kingdom

Arangeomorph. The type species isH. fordi.

Leiosphaeridia gorda[334]

Sp. nov

Valid

Loron & Moczydłowska

Tonian

Visingsö Group
Wynniatt Formation

Canada
Sweden

A unicellular microorganism ofalgal affinities.

Lontohystrichosphaera[250]

Gen. et sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation

Estonia

A large ornamentedacritarch of unresolved biological affinity, probably an ontogenetically and metabolically activeeukaryotic organism rather than a dormantprotistan cyst. Genus includes new speciesL. grandis.

Mallomonas aperturae[335]

Sp. nov

Valid

Siver

MiddleEocene

Giraffe Pipe locality

Canada

Asynurid, a species ofMallomonas.

Mallomonas bakeri[336]

Sp. nov

Valid

Siver

MiddleEocene

Giraffe Pipe locality

Canada

Asynurid, a species ofMallomonas.

Mallomonas skogstadii[336]

Sp. nov

Valid

Siver

MiddleEocene

Giraffe Pipe locality

Canada

Asynurid, a species ofMallomonas.

Mispertonia[337]

Gen. et sp. nov

Valid

McLeanet al.

Carboniferous (Mississippian) to LatePermian orEarly Triassic

India
United Kingdom

An organic-walled microfossil of uncertain phylogenetic placement. Genus includes new speciesM. desiccata.

Obamus[338]

Gen. et sp. nov

Valid

Dzaugiset al.

Ediacaran

Rawnsley Quartzite

Australia

Atorus-shaped organism, similar in grossmorphology to someporiferans andbenthiccnidarians. Genus includes new speciesO. coronatus. Announced in 2018; the final version of the article naming it was published in 2020.

Orpikania[332]

Gen. et sp. nov

Valid

Peel

Cambrian (Drumian)

Ekspedition Bræ Formation

Greenland

A member of the familyEpiphytaceae (a group of organisms of uncertain phylogenetic placement). Genus includes new speciesO. freucheni.

Pakupaku[339]

Gen. et sp. nov

Valid

Riedman, Porter & Calver

Tonian

Black River Dolomite

Australia

A vase-shaped microfossil. Genus includes new speciesP. kabin.

Pierceites deccanensis[340]

Sp. nov

Valid

Prasadet al.

Late Cretaceous (Maastrichtian)

India

Adinoflagellate belonging to the familyPeridiniaceae.

Pseudoalievium[325]

Gen. et 2 sp. nov

Valid

Bragina & Bragin

Late Cretaceous

Cyprus

Aradiolarian belonging to the familyPseudoaulophacidae. Genus includes new speciesP. parekklisiense andP. inflatum.

Pseudoaulophacus decoratus[325]

Sp. nov

Valid

Bragina & Bragin

Late Cretaceous

Cyprus

Aradiolarian belonging to the familyPseudoaulophacidae.

Retiranus[250]

Gen. et sp. nov

Valid

Slater, Harvey & Butterfield

Cambrian (Terreneuvian)

Lontova Formation
Voosi Formation

Estonia
Lithuania

A sheet-like or funnel-shaped organism of unresolved biological affinity. Genus includes new speciesR. balticus.

Rugophyca[330]

Gen. et sp. nov

Valid

Lianet al.

Cambrian Stage 3

Hongjingshao Formation

China

Amacroalga of uncertain phylogenetic placement. Genus includes new speciesR. longa.

Saarinomorpha[341]

Gen. et sp. nov

Valid

Kolosov & Sofroneeva

Vendian

Russia

A tubiform organic-walled segmented microfossil, resemblingSaarina juliae but smaller by one–two orders of magnitude. Genus includes new speciesS. infundibularis.

Singulariphyca[330]

Gen. et sp. nov

Valid

Lianet al.

Cambrian Stage 3

Hongjingshao Formation

China

Amacroalga of uncertain phylogenetic placement. Genus includes new speciesS. ramosa.

Stellarossica[342]

Gen. et comb. nov

Valid

Vorob'eva & Sergeev

Precambrian

Ura Formation

Russia

A large acanthomorphacritarch. Genus includes new speciesS. ampla.

Synsphaeridium parahioense[343]

Sp. nov

Valid

Yinet al.

Cambrian Series 3

India

Anacritarch.

Tristratothallus[344]

Gen. et sp. nov

Valid

Edwardset al.

Silurian (Ludfordian)

Downton Castle Sandstone Formation

United Kingdom

Anematophyte belonging to the familyNematothallaceae. Genus includes new speciesT. ludfordensis.

Vendotaenia pavimentpes[345]

Sp. nov

Valid

Yang & Qinin Yanget al.

Ediacaran

Dengying Formation

China

Analga.

Vendotaenia sixiense[345]

Sp. nov

Valid

Yang & Qinin Yanget al.

Ediacaran

Dengying Formation

China

Analga.

History of life in general

[edit]

Research related to paleontology that concerns multiple groups of the organisms listed above.

  • A study on the history of life on Earth is published by McMahon & Parnell (2018), who argue that the subsurface "deepbiosphere" outweighed the surface biosphere by about one order of magnitude for at least half of the history of life.[346]
  • A timescale of life on Earth, based on a reappraisal of the fossil material and new molecular clock analyses, is presented by Bettset al. (2018).[347]
  • A study on functional shifts in modernphototrophicmicrobial mats acrossredox gradients, and on its implications for inferring the metabolic transitions experienced during the Great Oxygenation Event, is published by Gutiérrez-Preciadoet al. (2018).[348]
  • A study on livingcyanobacteria, testing the hypothesis thatplanktonicsingle-celled cyanobacteria could drive the export of organic carbon from the surface to deep ocean in thePaleoproterozoic, is published by Kamennayaet al. (2018).[349]
  • A study on the abundance of bio-essentialtrace elements during the period in Earth's history known as the "Boring Billion" is published by Mukherjeeet al. (2018), who interpret their findings as indicating that key biological innovations ineukaryote evolution (the appearance of first eukaryotes, the acquisition of certain cellorganelles, the origin ofmulticellularity and the origin ofsexual reproduction) probably occurred during the period of a scarcity of trace elements, followed by a broad-scale diversification of eukaryotes during the period of a relative abundance of trace elements.[350]
  • A study on theeukaryotic species richness duringTonian andCryogenian is published by Riedman & Sadler (2018).[351]
  • A study on the Ediacaran ecosystem complexity is published by Darroch, Laflamme & Wagner (2018), who report evidence of the Ediacara biota forming complex-type communities throughout much of their stratigraphic range, and thus likely comprising species that competed for different resources and/or created niche for others.[352]
  • A study evaluating how temperature can govern oxygen supply to animals atoceanographic scales, as well as how temperature dynamically affects the absolute tolerance ofpartial pressure of oxygen in marineectotherms, and re-examiningbathymetric patterns within the Ediacaran fossil record in anecophysiological context, is published by Boaget al. (2018).[353]
  • A study investigating possiblewater columnredox controls on the distribution and growth of the oldest animal communities, based on data from the EdiacaranNama Group (Namibia), is published byWoodet al. (2018).[354]
  • Evanset al. (2018) report the discovery of a new assemblage of exceptionally preserved Ediacaran fossils from the Ediacara Member (Australia), including fossil material ofAndiva ivantsovi providing new information on its morphology, possibly indicative of a phylogenetic relationship withDickinsonia andYorgia.[355]
  • A study on the duration of the faunal transition from Ediacaran toCambrian biota, as indicated by data from a composite section inNamibia, is published online by Linnemannet al. (2018).[356]
  • A study on the evolution of the diversity of animal body plans, based on data from extant and Cambrian animals, is published by Delineet al. (2018).[357]
  • A review of the evidence for shell crushing (durophagy), drilling and puncturing predation in the Cambrian (and possibly the Ediacaran) is published by Bicknell & Paterson (2018).[358]
  • A study on the timing and process of ocean oxygenation in the early Cambrian and its impact on the diversification of early Cambrian animals, based on data from the CambrianNiutitang Formation (China), is published by Zhaoet al. (2018).[359]
  • A study on the evolution of marine animal communities over thePhanerozoic, evaluating the ecological changes caused by major radiations and mass extinctions, is published by Muscenteet al. (2018).[360]
  • A study evaluating whether rapid warming preferentially increased the extinction risk of tropical marine fossil taxa throughout the Phanerozoic is published online by Reddin, Kocsis & Kiessling (2018).[361]
  • A study on the impact of mass extinctions on the globalbiogeographical structure, as indicated by data on time-traceablebioregions forbenthic marine species across the Phanerozoic, is published by Kocsis, Reddin & Kiessling (2018).[362]
  • A study on thenektic andeunektic diversity and occurrences throughout thePaleozoic is published by Whalen & Briggs (2018).[363]
  • A study analyzing the link between net latitudinal range shifts of marine invertebrates and seawater temperature over the (post-Cambrian) Phanerozoic Eon is published by Reddin, Kocsis & Kiessling (2018).[364]
  • A study on within-habitat, between-habitat, and overall diversity of benthic marine invertebrates (gastropods, bivalves, trilobites, brachiopods and echinoderms) from Phanerozoic geological formations is published online by Hofmann, Tietje & Aberhan (2018).[365]
  • A study evaluating the link between macroevolutionary success (evolving many species) and macroecological success (the occupation of an unusually high number of areas by a species orclade) in fossilechinoid,cephalopod,bivalve,gastropod,brachiopod andtrilobite species is published by Wagner, Plotnick & Lyons (2018).[366]
  • A study comparing the extinction events which occurredat the end of the Ordovician and at the end of theCapitanian (middlePermian) is published by Isozaki & Servais (2018).[367]
  • Filamentousmicroorganisms associated withannelid tubeworms are described from the Ordovician toearly Silurian Yaman Kasyvolcanic-hosted massive sulfide deposit (Ural Mountains,Russia) by Georgievaet al. (2018).[368]
  • Vertebrate fossil fauna from theTournaisian-ageBallagan Formation exposed on the beach at Burnmouth (Scotland) is described by Otooet al. (2018).[369]
  • A study on the earlytetrapod diversity and biogeography in theCarboniferous and earlyPermian, evaluating the impact of theCarboniferous rainforest collapse on early tetrapod communities, is published by Dunneet al. (2018).[370]
  • A study on the patterns of dispersal andvicariance of tetrapods acrossPangaea during the Carboniferous and Permian is published by Brocklehurstet al. (2018).[371]
  • O'Connoret al. (2018) reconstruct the most likelykaryotype of thediapsidcommon ancestor based on data from extant reptiles and birds, and argue that most features of a typical 'avian-like' karyotype were in place before the divergence of birds and turtles ≈255 million years ago.[372]
  • A study evaluating whether the fossil record supports the reality of the PermianOlson's Extinction, based on an analysis of thetetrapod species richness in the tetrapod-bearing formations ofTexas preserving fossils from the time of the extinction, is published by Brocklehurst (2018).[373]
  • A study on the patterns of species richness, origination rates and extinction rates of the mid-Permian tetrapods fromSouth Africa is published by Dayet al. (2018).[374]
  • A study on the changes of distribution of terrestrialtetrapods from thePermian (Guadalupian) to theMiddle Triassic and on the impact of the Permian–Triassic extinction event on the palaeobiogeography of terrestrial tetrapods is published by Bernardi, Petti &Benton (2018).[375]
  • A study on the causes of biotic extinction during the Guadalupian-Lopingian transition is published online by Huanget al. (2018).[376]
  • A study on the composition and biotic interactions in terrestrial paleocommunities from the Karoo Basin (South Africa) spanning the Permian-Triassic mass extinction is published online by Roopnarineet al. (2018), who propose a new hypothesis to explain the persistence of biotic assemblages and their reorganization or destruction.[377]
  • A study on the biogeographic patterns and severity of extinction of marine taxa during the Permian–Triassic extinction event, evaluating whether global warming and ocean oxygen loss can mechanistically account for the marine mass extinction, is published by Pennet al. (2018).[378]
  • A study on changes in the structure ofphytoplankton communities in South China during the Permian-Triassic transition is published online by Leiet al. (2018).[379]
  • A study on the recovery ofbenthic invertebrates following the Permian–Triassic extinction event, based on analysis of changes in the species richness, functional richness, evenness, composition, and ecological complexity of benthic marine communities from theLower TriassicServino Formation (Italy), is published by Fosteret al. (2018).[380]
  • Description of an Early Triassic marine fauna from the Ad Daffah conglomerate in easternOman, and on its implications for inferring the ecology and diversity during the early aftermath of the Permian–Triassic extinction event, is published online by Brosseet al. (2018).[381]
  • A study on microbial mounds from the Lower TriassicFeixianguan Formation (China), and their implications for inferring the course of biotic recovery after the Permian–Triassic extinction event, is published by Duanet al. (2018).[382]
  • A study on the timing and pattern of ecosystem succession during and after the Permian–Triassic extinction event for the duration of the entireTriassic, as indicated by the changing diversity among non-motile, motile andnektonic animals, is published by Song, Wignall & Dunhill (2018).[383]
  • Marine faunas characterized by unusually high levels of bothbenthic andnektonic taxonomic richness are described from two Early Triassic sections from South China by Daiet al. (2018).[384]
  • A study on the historical shifts in geographical ranges and climatic niches of terrestrial vertebrates (bothendotherms andectotherms) based on data from extant and fossil vertebrates is published by Rollandet al. (2018).[385]
  • A study on the stratigraphic distribution of the marine vertebrate fossils of the Xingyi Fauna from theMiddle TriassicFalang Formation (China) is published by Luet al. (2018), who interpret their findings as indicating that the Xingyi Fauna comprises two distinct vertebrate assemblages, resulting from a major faunal change, which was probably caused by a turnover of their ecological setting from nearshore to offshore.[386]
  • A study on the patterns of diversity change and extinction selectivity in marine ecosystems during theTriassicJurassic interval, especially in relation to theTriassic–Jurassic extinction event, is published by Dunhillet al. (2018).[387]
  • A study on the extinction selectivity of marine organisms through the Late Triassic and Early Jurassic, evaluating whether there are any substantial differences between the hyperthermal events during theTriassic–Jurassic extinction event andToarcian turnover and the periods of normal background extinction, is published by Dunhillet al. (2018).[388]
  • A study on the impact of changes inocean chemistry beginning in theMesozoic on the nutritional quality ofplanktonicalgalbiomass compared to earlierphytoplankton is published by Giordanoet al. (2018).[389]
  • A study on themorphological, ecological and behavioural traits linked to the evolution of tail weaponization in extant and fossilamniotes is published by Arbour &Zanno (2018).[390]
  • A study on the factors which led to the colonization of marine environments in the evolution of amniotes is published by Vermeij & Motani (2018).[391]
  • A review of marine reptile (plesiosaur, ichthyosaur andthalattosuchian) fossils from theOxfordian sedimentary rocks inGreat Britain (United Kingdom), focusing on theCorallian Group, is published by Foffa, Young &Brusatte (2018), who report evidence of a severe reduction in observed marine reptile diversity during the Oxfordian.[392]
  • A study evaluating how the structure of marine reptile ecosystems and their ecologies changed over the roughly 18-million-year history of theJurassic Sub-Boreal Seaway of the United Kingdom, as indicated by data from fossil teeth, is published by Foffaet al. (2018).[393]
  • A diverse and ecologically informative faunal assemblage is described from the Lower CretaceousArundel Clay facies (Maryland, United States) by Frederickson, Lipka & Cifelli (2018).[394]
  • Description of an assemblage of Early Cretaceous (Barremian)coprolites from theLas Hoyas Konservat-Lagerstätte (Spain) and a study on their biological and environmental affinities is published by Barrios-de Pedroet al. (2018).[395]
  • A study on thetaphonomic properties of the inclusions contained in the Las Hoyas coprolites, and their implications for inferring the patterns of digestive processes of the producers of these coprolites, is published by Barrios-de Pedro & Buscalioni (2018).[396]
  • Description ofisocrinidcrinoids belonging to the genusIsocrinus from the Cretaceous amber fromMyanmar is published by Maoet al. (2018), who also report coral columnals and oysters from the amber from Myanmar, and evaluate the age of this amber.[397]
  • A study on the taxonomic composition of the earlyLate Cretaceous fauna from the Cliffs of Insanity microvertebrate locality (Mussentuchit Member,Cedar Mountain Formation;Utah, United States) is published by Avrahamiet al. (2018).[398]
  • Fossil assemblage including plant and vertebrate remains is described from theTuronian Ferron Sandstone Member of theMancos Shale Formation (Utah,United States) by Judet al. (2018), who report turtle and crocodilian remains and anornithopodsacrum, as well as a large silicified log assigned to the genusParaphyllanthoxylon, representing the largest known pre-Campanianflowering plant reported so far and the earliest documented occurrence of an angiosperm tree more than 1.0 m in diameter.[399]
  • A study comparing the ecological similarity of Cretaceouscold seep assemblages preserved in thePierre Shale surrounding theBlack Hills and modern cold-seep assemblages is published online by Laird & Belanger (2018).[400]
  • A record offoraminifera, calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200,000 years of thePaleocene, is presented by Loweryet al. (2018), who report evidence indicating that life reappeared in the basin just years after the Chicxulub impact and a high-productivity ecosystem was established within 30,000 years.[401]
  • Vertebrate pathogens found associated with fossilhematophagous arthropods inDominican,Mexican,Baltic, Canadian and Burmese amber are reported byPoinar (2018).[402]
  • Grimaldiet al. (2018) report biological inclusions (fungi, plants, arachnids and insects) in amber from thePaleogeneChickaloon Formation ofAlaska, representing the northernmost deposit of fossiliferous amber from theCenozoic.[403]
  • A synthesis of studies on the evolution of the cold-water coastal North Pacific biota over the last 36 million years, its origins and its influences on other temperate regions, is presented byVermeijet al. (2018).[404]
  • A review ofNeogeneQuaternary terrestrial vertebrate sites from the Middle Kura Basin (easternGeorgia and westernAzerbaijan) is published by Bukhsianidze & Koiava (2018).[405]
  • A study on the reptile and amphibian fossils from the earlyPleistocene site of the Russel-Tiglia-Egypte pit nearTegelen (Netherlands) is published by Villaet al. (2018).[406]
  • A study on the structure of the animal community known from the Okote Member of theKoobi Fora Formation at East Turkana (Kenya) as indicated by tracks and skeletal assemblages, and on the interactions ofHomo erectus with environment and associated faunas from this site, is published by Roachet al. (2018).[407]
  • A revision of Middle Pleistocene faunal record from archeological sites in Africa, and a study on its implications for inferring potential links between hominin subsistence behavior and theEarly Stone Age/Middle Stone Age technological turnover, is published online by Smithet al. (2018).[408]
  • Evidence of bird and carnivore exploitation by Neanderthals (cut-marks ingolden eagle, raven, wolf andlynx remains) is reported from theAxlor site (Spain) by Gómez-Olivenciaet al. (2018).[409]
  • A study on the compositions of the faunal and stone artifact assemblages atLiang Bua (Flores,Indonesia), aiming to determine the last appearance dates ofStegodon,giant marabou stork,Old World vulture belonging to the genusTrigonoceps, andKomodo dragon at the Liang Bua site, and to determine what raw materials were preferred by hominins from this site ~50,000–13,000 years ago and whether these are preferences were similar to those seen in the stone artifact assemblages attributed toHomo floresiensis or to those attributed to modern humans, is published by Sutiknaet al. (2018).[410]
  • A study on the fossilSporormiella, pollen and microscopic particles of charcoal recovered from sediments of Lake Mares and Lake Olhos d'Agua (Brazil) which spanned the time ofmegafaunal extinction and human arrival in southeastern Brazil, and on their implications for inferring the timing of the decline of local megafauna and its ecological implications, is published by Raczka, Bush & De Oliveira (2018).[411]
  • A study evaluating whether the occurrence and decline of spores ofSporormiella in sediments is a good proxy for the occurrence and extinction of megaherbivores, as indicated by data fromCuddie Springs in south-easternAustralia, is published by Dodson & Field (2018).[412]
  • A study evaluating how mega-herbivore animal species controlled plant community composition andnutrient cycling, relative to other factors during and after the LateQuaternary extinction event inGreat Britain andIreland, is published by Jefferset al. (2018).[413]
  • A study on the impact of the late Quaternary extinction ofmegafauna on the megafauna-deprived ecosystems is published by Galettiet al. (2018).[414]
  • A study on the possible impact of the end of the millennial-scale climate fluctuations characteristic of the ice age (and the beginning of the more stable climate regime of theHolocene approximately 11,700 years ago) on the Late Quaternary megafaunal extinctions is published online by Mannet al. (2018).[415]
  • A study on the past biodiversity, population dynamics, extinction processes, and the impact of subsistence practices on the vertebrate fauna of New Zealand, based on analysis of bone fragments from archaeological and paleontological sites covering the last 20,000 years of New Zealand's past, is published by Seersholmet al. (2018).[416]
  • A study on changes in plantpathogen communities (fungi andoomycetes) in response to changing climate during lateQuaternary, as indicated by data from solidified deposits of rodentcoprolites and nesting material from the centralAtacama Desert spanning the last ca. 49,000 years, is published by Woodet al. (2018).[417]
  • A study on theparsimony andBayesian-derived phylogenies of fossil tetrapods, evaluating which of them are in closer agreement with stratigraphic range data, is published by Sansomet al. (2018).[418]
  • A study aiming to infer the causes of differences between estimates ofspeciation and extinction rates based on molecular phylogenies and those based on fossil record is published by Silvestroet al. (2018), who provide simple mathematical formulae linking the diversification rates inferred from fossils and phylogenies.[419]
  • A review of extinction theory and the fossil record of terrestrial diversity crises, comparing past diversity crises of terrestrial vertebrate faunas with the ongoingHolocene extinction, is published byPadian (2018).[420]
  • A new metric, which can be used to quantify the term "living fossil" and determine which organisms can be reasonably referred to as such, is proposed by Bennett, Sutton & Turvey (2018).[421]
  • A novel non-invasive and label-freetomographic approach to reconstruct the three-dimensional architecture ofmicrofossils based on stimulatedRaman scattering is presented by Golreihanet al. (2018).[422]
  • Müreret al. (2018) report on the results of the use of a combination ofX-ray diffraction andcomputed tomography to gain insight into the microstructure of fossil bones ofEusthenopteron foordi andDiscosauriscus austriacus.[423]
  • A study onmelanosomes preserved in theintegument and internal organs of extant and fossil frog specimens, evaluating their implications for inferring colours of extinct animals on the basis of melanosomes preserved in fossil specimens, is published by McNamaraet al. (2018).[424]
  • A study on fossil vertebrate tissues and experimentally matured modern samples, aiming to the mechanism of soft tissue preservation and the environments that favor it, is published by Wiemannet al. (2018).[425]
  • A mechanistic model that simulates the history of life on the South American continent, driven by modeled climates of the past 800,000 years, is presented by Rangelet al. (2018).[426]
  • A study on temporal trends inbiogeography and body size evolution of Australian vertebrates is published by Brennan & Keogh (2018), who interpret their findings as indicating that gradualMiocene cooling and aridification of Australia correlated with the restrictedphenotypic diversification of multiple ecologically diverse vertebrate groups.[427]
  • A study evaluating how faithfullystratigraphic ranges of extantAdriatic molluscs are recorded in a series of cores drilled throughalluvial, coastal and shallow-marine strata of thePo Plain (Italy) is published by Nawrotet al. (2018), who also evaluate the implications of their study for interpretations of the timing, duration and ecological selectivity of mass extinction events in general.[428]
  • A study on the evolution ofmorphological disparity (i.e. diversity of anatomical types), as indicated by data from 257 published character matrices of fossil taxa, is published by Wagner (2018).[429]
  • A study on the evolution of functional and ecological innovations in temperate marinemulticellular organisms inhabiting NorthPacific during and after the LateEocene is published byVermeij (2018).[430]
  • A method for dividing a paleontological dataset intobioregions is proposed by Brocklehurst & Fröbisch (2018), who apply the proposed method to a study ofbeta diversity ofPaleozoictetrapods.[431]
  • A study aiming to estimate the magnitude and potential significance of palaeontological data from specimens housed in museum collections but not described in published literature is published by Marshallet al. (2018).[432]
  • Sallanet al. (2018) traced the cradle of evolutionary origins and diversification of fish from the mid-Paleozoic era in nearshore environments.[433]
  • Gómez-Olivenciaet al. (2018) studiedKebara 2Neanderthalthorax, aiming to understand how this ancient human species moved and breathed, based on a3-D virtual reconstruction.[434]
  • Smithet al. (2018) examined the teeth of Neanderthal children who lived 250,000 years ago in France, in order to comprehend their nursing duration, and the effect oflead exposure and severe winters on them.[435]
  • Wiemannet al. (2018) studied dinosaur's egg colour evolution, in order to unravel whether modern birds inherited egg colour from their non-avian dinosaur ancestors.[436]

Trace fossils

[edit]

Other research

[edit]

Other research related to paleontology, including research related togeology,palaeogeography,paleoceanography andpaleoclimatology.

  • A study testing the hypothesis that chemodenitrification, the rapid reduction ofnitric oxide by ferrous iron, would have enhanced theflux ofnitrous oxide from Proterozoic seas, leading to nitrous oxide becoming an important constituent of Earth's atmosphere during Proterozoic and possibly life's primary terminalelectron acceptor during the transition from an anoxic to oxic surface Earth, is published by Stantonet al. (2018).[440]
  • A study on the iron mineralogy of the 1.1-billion-year-old Paleolake Nonesuch (Nonesuch Formation), and on its implications for inferring whether the waters of this lake were oxygenated, is published by Slotznick, Swanson-Hysell & Sperling (2018).[441]
  • A study on the Earth's atmosphere and the productivity of global biosphere 1.4 billion years ago, based on triple oxygen isotope measurements sedimentary sulfates from the Sibley basin (Ontario,Canada), is published by Crockfordet al. (2018).[442]
  • A study on the isotopically enrichedchromium in Mesoproterozoic-aged shales from the Shennongjia Group (China) dating back to 1.35 billion years ago is published byCanfieldet al. (2018), who interpret their findings as document elevated atmospheric oxygen levels through most of Mesoproterozoic Era, likely sufficient for earlycrown group animal respiration, but attained over 400 million years before they evolved.[443]
  • A study on the rate of biotic oxygen production and the attendant large-scale biogeochemistry of the mid-Proterozoic Earth system is published online by Ozaki, Reinhard & Tajika (2018).[444]
  • A study on thepaleomagnetism of the PrecambrianBunger Hills dykes of theMawson Craton (East Antarctica), and on its tectonic implications, is published by Liuet al. (2018).[445]
  • A study on the causes of formation and on global extent of theGreat Unconformity is published online by Kelleret al. (2018), who interpret their findings as indicating that this unconformity may record rapid erosion duringNeoproterozoic "Snowball Earth" glaciations, and that environmental and geochemical changes which led to the diversification of multicellular animals may be a direct consequence of Neoproterozoic glaciation.[446]
  • A study on the environments and food sources that sustained theEdiacaran biota is published by Pehret al. (2018), who present thelipid biomarker and nitrogen and carbon isotopic data obtained from lateEdiacaran (<560 million years old) strata from seven drill cores and three outcrops spanningBaltica.[447]
  • Gougeonet al. (2018) report evidence from the Lower CambrianChapel Island Formation (Canada) indicating that a mixed layer of sediment, of similar structure to that of modern marine sediments (which results frombioturbation byepifaunal and shallowinfaunal organisms), was well established in shallow marine settings by the early Cambrian.[448]
  • A study on the effects of the rise of bioturbation on global elemental cycles during the Cambrian is published by van de Veldeet al. (2018).[449]
  • A review of the history of the definition of theGreat Ordovician Biodiversification Event, aiming to clarify its concept and duration, is published by Servais & Harper (2018).[450]
  • A study on thephytoplankton community structure andexport production at the end of the Ordovician, as indicated by data from theVinini Formation (Nevada,United States), and on their impact on the globalcarbon cycle and possible relation to the onset of theLate Ordovician glaciation, is published by Shenet al. (2018).[451]
  • Evidence of multiplemercury enrichments in the two-step lateFrasnian crisis interval from paleogeographically distant successions inMorocco,Germany and northernRussia is presented by Rackiet al. (2018), who interpret their findings as indicating that theLate Devonian extinction was caused by rapid climatic perturbations promoted in turn by volcanic cataclysm.[452]
  • A study on the sedimentaryfacies, oxygen isotopes and the genericconodont composition in two continuous Devonian (late Frasnian to the end-Famennian) outcrops in the Montagne Noire (Col des Tribes section, France, part of theArmorica microcontinent in the Devonian) and in the Buschteich section (Germany, part of the Saxo-Thuringian microplate in the Devonian), assessing the water depth, approximate position relative to the shore and paleotemperatures in the Late Devonian, and evaluating whether environmental changes affected both areas similarly and at the same pace in the Late Devonian, is published online by Girardet al. (2018).[453]
  • A study on the onset and paleoenvironmental transitions associated with theHangenberg Crisis within theCleveland Shale member of theOhio Shale is published online by Martinezet al. (2018).[454]
  • A study on the age of abentonite layer from Bed 36 in the Frasnian–Famennian succession at the abandoned Steinbruch Schmidt Quarry (Germany), aiming to determine the precise age of the Frasnian–Famennian boundary and the precise timing of the Late Devonian extinction, is published by Percivalet al. (2018).[455]
  • A study on the environmental changes and faunal turnover in theKaroo Basin (South Africa) during the latePermian is published by Viglietti, Smith & Rubidge (2018).[456]
  • A study on carbonate microfacies and foraminifer abundances in three Upper Permian sections from isolated carbonate platforms of the Nanpanjiang Basin (China), indicative of a marine environmental instability up to 60,000 years precedingPermian–Triassic extinction event, is published online by Tianet al. (2018).[457]
  • A study on thehalogen compositions of Siberian rocks emplaced before and after the eruption of the Siberian flood basalts during the Permian–Triassic extinction event, and on its implications for inferring the source and nature of volatiles in the Siberianlarge igneous province, is published by Broadleyet al. (2018).[458]
  • Evidence of enhanced continental chemicalweathering at the Permian–Triassic boundary is reported from bulk rock samples from the Meishan section in South China by Sunet al. (2018), who also evaluate the potential impact of thisenhanced weathering on global climate changes when the end-Permian extinction occurred.[459]
  • A study on theU-Pbgeochronology,biostratigraphy andchemostratigraphy of a highly expanded section atPenglaitan (Guangxi,China) is published online by Shenet al. (2018), who interpret their findings as indicative of a sudden end-Permian mass extinction that occurred at 251.939 ± 0.031 million years ago.[460]
  • A study on the age of the dinosaur-bearingTriassicSanta Maria Formation andCaturrita Formation (Brazil) is published by Langer, Ramezani & Da Rosa (2018).[461]
  • Paleomagnetic and geochronologic study on theChinle Formation (Petrified Forest National Park,Arizona,United States) is published by Kentet al. (2018), who report evidence indicating that a 405,000-yearorbital eccentricity cycle linked to gravitational interactions withJupiter andVenus was already influencing Earth's climate in theLate Triassic.[462]
  • Evidence ofsill intrusions which were likely cause of the Triassic–Jurassic extinction event is reported from theAmazonas andSolimões Basins (Brazil) by Heimdalet al. (2018).[463]
  • A study on the palaeoenvironmental conditions that existed during the time theUpper CretaceousWinton Formation (Australia) was deposited is published by Fletcher, Moss & Salisbury (2018).[464]
  • A study on the age of the Namba Member of theGalula Formation (Tanzania), yielding fossils ofPakasuchus,Rukwasuchus,Rukwatitan andShingopana, is published by Widlanskyet al. (2018).[465]
  • A study on the geology, age and palaeoenvironment of the main fossil-bearing beds of the CretaceousGriman Creek Formation (New South Wales,Australia) is published online by Bellet al. (2018).[466]
  • A study on the nature of thefluvial systems ofLaramidia during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from theKaiparowits Formation of southernUtah, and on the behavior of dinosaurs over these landscapes, is published online by Crystalet al. (2018).[467]
  • A study on the rainfall seasonality and freshwater discharge on theIndian subcontinent in theLate Cretaceous (Maastrichtian), based on data from specimens of themollusc speciesPhygraea (Phygraea) vesicularis from the Kallankuruchchi Formation (India), is published by Ghoshet al. (2018).[468]
  • Evidence of increased crustal production atmid-ocean ridges at theCretaceous-Paleogene boundary, indicative of magmatism triggered byChicxulub impact, is presented by Byrnes & Karlstrom (2018).[469]
  • A study on the oxygen isotopic composition of fish debris from theGlobal Boundary Stratotype Section and Point for the Cretaceous/Paleogene boundary at El Kef (Tunisia), indicative of a greenhouse warming in the aftermath of the Chicxulub impact, is published by MacLeodet al. (2018).[470]
  • A study on the environmental changes during the global warming following the brief impact winter at the Cretaceous-Paleogene boundary, based on geochemical, micropaleontological and palynological data from Cretaceous-Paleogene boundary sections inTexas,Denmark andSpain, is published by Vellekoopet al. (2018).[471]
  • A study on the Paleocene intermediate- and deep-waterneodymium-isotope records from the North and South Atlantic Ocean, and on their implications for inferring the impact of changes in overturning circulation caused by the opening of the Atlantic Ocean on climate changes culminating in the greenhouse conditions of the Eocene, is published by Batenburget al. (2018).[472]
  • A study on themagnetofossil concentrations preserved within sediments corresponding to the Paleocene–Eocene Thermal Maximum, as well as on the implications of magnetofossil abundance and morphology signatures for tracing palaeo-environmental conditions during the Paleocene–Eocene Thermal Maximum, is published by Changet al. (2018).[473]
  • A study on the impact ofgreenhouse gas forcing andorbital forcing on changes in the seasonalhydrological cycle during the Paleocene–Eocene Thermal Maximum (for regions where proxy data is available) is published byKiehlet al. (2018).[474]
  • A continuous Eocene equatorialsea surface temperature record is presented by Cramwinckelet al. (2018), who also construct a 26-million-year multi-proxy, multi-site stack of Eocene tropical climate evolution.[475]
  • A study on the continentalsilicateweathering response to the inferred CO2 rise and warming during the Middle Eocene Climatic Optimum is published by van der Ploeget al. (2018).[476]
  • Suet al. (2018) use radiometrically dated plant fossil assemblages to quantify when southeasternTibet achieved its present elevation, and what kind of floras existed there at that time.[477]
  • Description of a plant megafossil assemblage from theKailas Formation in western part of the southernLhasa terrane, and a study on its implications for inferring the elevation history of the southernTibetan Plateau, is published online by Aiet al. (2018).[478]
  • A study on the relationship between theRovno andBaltic amber deposits, based on stable carbon and hydrogen isotope analyses, is published by Mändet al. (2018), who interpret their findings as indicative of distinct origin of Rovno and Baltic amber deposits.[479]
  • A study aiming to establish an accurate and precise age model for the eruption of theColumbia River Basalt Group, and to use it to test the hypothesis that there is a temporal relationship between the eruption of the Columbia River Basalt Group and the mid-Miocene climate optimum, is published by Kasbohm & Schoene (2018).[480]
  • A study on the age of theAshfall Fossil Beds fossil site (Nebraska,United States) is published by Smithet al. (2018).[481]
  • A study on the causes of changes of environmental conditions in theParatethys Sea of Central Europe during the middle Miocene is published online by Simonet al. (2018).[482]
  • A study on plant fossils spanning 14–4 million years ago from sites in Europe, Asia and East Africa, aiming to test the hypothesis of a single cohesivebiome in the Miocene that extended from Mongolia to East Africa and at its peak covered much of the Old World, is published by Denket al. (2018), who interpret data from plant fossil record as disproving the existence of a cohesivesavannah biome from eastern Asia to northeast Africa, formerly inferred from mammal fossil record.[483]
  • A study on changes in local climate and habitat conditions in centralSpain in a period from 9.1 to 6.3 million years ago, and on the diet and ecology of large mammals from this area in this time period as indicated bytooth wear patterns, is published online by De Miguel, Azanza & Morales (2018).[484]
  • Faith (2018) evaluates the aridity index, a widely used technique for reconstructing local paleoclimate and water deficits from oxygen isotope composition of fossil mammal teeth, arguing that in some taxa altered drinking behavior (influencing oxygen isotope composition of teeth) might have been caused by dietary change rather than water deficits.[485][486][487]
  • A study evaluating when the island ofSulawesi (Indonesia) gained its modern shape and size, and determining the timings of diversification of the three largest endemic mammals on the island (thebabirusa, theCelebes warty pig and theanoa) is published by Frantzet al. (2018).[488]
  • A study on thePliocene fish fossils from theKanapoi site (Kenya) and their implications for reconstructing lake and river environments in the Kanapoi Formation is published online by Stewart & Rufolo (2018).[489]
  • Evidence indicating that reducednutrientupwelling in theBering Sea and expansion ofNorth Pacific Intermediate Water coincided with the Mid-Pleistocene Transition cooling is presented by Kenderet al. (2018), who assess the potential links between cooling, sea ice expansion, closure of theBering Strait, North Pacific Intermediate Water production, reduced high latitude CO2 and nutrient upwelling, and development of the Mid-Pleistocene Transition.[490]
  • Domínguez-Rodrigo & Baquedano (2018) evaluate the ability of successful machine learning methods to compare and distinguish various types of bone surface modifications (trampling marks, crocodile bite marks and cut marks made with stone tools) in archaeofaunal assemblages.[491]
  • Description of new mammal and fish remains from theOlduvai Gorge site (Tanzania), comparing the mammal assemblage from this site to the present mammal community ofSerengeti, and a study on their implications for reconstructing the paleoecology of this site at ~1.7–1.4 million years ago, is published by Bibiet al. (2018).[492]
  • A study on the environment in the interior of theArabian Peninsula in the Pleistocene, as indicated by data from stable carbon and oxygen isotope analysis of fossil mammaltooth enamel from the middle Pleistocene locality of Ti's al Ghadah (Saudi Arabia), is published by Robertset al. (2018).[493]
  • A study on the environmental dynamics before and after the onset of the earlyMiddle Stone Age in theOlorgesailie Basin (Kenya) is published by Pottset al. (2018).[494]
  • A study on the chronology of theAcheulean and early Middle Stone Age sedimentary deposits in the Olorgesailie Basin (Kenya) is published by Deinoet al. (2018).[495]
  • A study on the proxy evidence for environmental changes during past 116,000 years in lake sediment cores from theChew Bahir basin, southEthiopia (close to the key hominin site ofOmo Kibish), and on its implications for inferring the environmental context for dispersal ofanatomically modern humans from northeastern Africa, is published by Viehberget al. (2018).[496]
  • A study on the effects of theToba supereruption in East Africa is published by Yostet al. (2018), who find no evidence of the eruption causing avolcanic winter in East Africa or apopulation bottleneck among African populations ofanatomically modern humans.[497]
  • A study on the environmental conditions in the area of present-dayBasque Country (Spain) across the Middle to UpperPaleolithic transition, based on stable isotope data fromred deer and horse bones, is published by Joneset al. (2018).[498]
  • The first reconstructions of terrestrial temperature and hydrologic changes in the south-central margin of theBering land bridge from theLast Glacial Maximum to the present are presented by Woolleret al. (2018).[499]
  • A study on the fossil-boundnitrogenisotope records from theSouthern Ocean is published by Studeret al. (2018), who interpret their findings as indicative of an acceleration ofnitrate supply to the Southern Ocean surface from underlying deep water during the Holocene, possibly contributing to the Holocene atmospheric CO2 rise.[500]
  • A study on the causes of replacement of mature rainforests by a forest–savannah mosaic in Western Central Africa between 3,000 y ago and 2,000 years ago, based on a continuous record of 10,500 years of vegetation and hydrological changes fromLake Barombi Mbo (Cameroon) inferred from changes in carbon and hydrogen isotope compositions of plant waxes, is published by Garcinet al. (2018), who interpret their findings as indicating that humans triggered the rainforest fragmentation 2,600 years ago.[501][502][503][504][505]
  • A study on the vegetational and climatic changes since the last glacial period, based on data from 594 sites worldwide, and aiming to estimate the extent of future ecosystem changes under alternative scenarios of global warming, is published by Nolanet al. (2018).[506]
  • A study on the changing ecology of woodland vegetation of southern mainlandGreece during the latePleistocene and the early-midHolocene, and on the ecological context of the first introduction of crop domesticates in the southern Greek mainland, as indicated by data from carbonized fuel wood waste from theFranchthi Cave, is published by Asouti, Ntinou & Kabukcu (2018).[507]
  • A largeimpact crater found beneathHiawatha Glacier (Greenland), most likely formed during thePleistocene, is reported by Kjæret al. (2018).[508]

Paleoceanography

[edit]
  • A study on the nitrogen isotope ratios, selenium abundances, and selenium isotope ratios from the ~2.66 billion years oldJeerinah Formation (Australia), providing evidence of transient surface ocean oxygenation ~260 million years before theGreat Oxygenation Event, is published by Koehleret al. (2018).[509]
  • A study on the ocean chemistry at the start of theMesoproterozoic as indicated by rare earth element, iron-speciation and inorganic carbon isotope data from the 1,600–1,550 million years old Yanliao Basin,North China Craton is published by Zhanget al. (2018), who report evidence of a progressive oxygenation event starting at ≈1,570 million years ago, immediately prior to the occurrence of complex multicellulareukaryotes in shelf areas of the Yanliao Basin.[510]
  • Evidence ofeuxinia occurring in thephotic zone of the ocean in the Mesoproterozoic, based on measurements ofmercury isotope compositions in late Mesoproterozoic (~1.1 billion years old) shales from theAtar Group and theEl Mreiti Group (Tauodeni Basin,Mauritania), is presented by Zhenget al. (2018).[511]
  • A study on abundantpyriteconcretions from the topmostNantuo Formation (China), deposited during the terminalCryogenianMarinoan glaciation, is published by Langet al. (2018), who interpret these concretions as evidence of a transient but widespread presence of marineeuxinia in the aftermath of the Marinoan glaciation.[512]
  • A study on wave ripples and tidallaminae in theElatina Formation (Australia), interpreted as evidence of rapid sea level rise in the aftermath of the Marinoan glaciation, is published by Myrow, Lamb & Ewing (2018).[513]
  • A study on the global oceanredox conditions at a time when theEdiacaran biota began to decline, based on analysis of uranium isotopes in carbonates from theDengying Formation (China), is published by Zhanget al. (2018), who interpret their findings as indicative ofan episode of extensive oceanic anoxia at the end of the Ediacaran.[514]
  • New uranium isotope data from upper Ediacaran to lowerCambrian marine carbonate successions, indicative of short-lived episodes of widespread marine anoxia near the Ediacaran-Cambrian transition and duringCambrian Stage 2, is presented by Weiet al. (2018), who argue that theCambrian explosion might have been triggered by marineredox fluctuations rather than progressive oxygenation.[515]
  • Newδ15N data from late Ediacaran to Cambrian strata from South China is presented by Wanget al. (2018), who interpret their findings as indicating that ocean redox dynamics were closely coupled with key evolutionary events during the Ediacaran–Cambrian transition.[516]
  • A study on the isotopic composition and surface temperatures of early Cambrian seas, based on stable oxygen isotope data from thesmall shelly fossils from theComley limestones (United Kingdom), is published by Hearinget al. (2018).[517]
  • High-resolutiongeochemical,sedimentological and biodiversity data from the CambrianSirius PassetLagerstätte (Greenland is presented by Hammarlundet al. (2018), who aim to assess the chemical conditions in the shelf sea inhabited by the Sirius Passet fauna.[518]
  • A study on the impact of the disruption of sediments caused byFortunian bioturbation on the ocean chemistry, as indicated by data from theChapel Island Formation (Canada), is published by Hantsooet al. (2018).[519]
  • A study on the timing of theSauktransgression in theGrand Canyon region is published by Karlstromet al. (2018).[520]
  • A study on the oxygen isotope composition of seawater throughout thePhanerozoic is published by Ryb & Eiler (2018).[521]
  • Jin, Zhan & Wu (2018) present paleontological, sedimentological, and geochemical data to test a hypothesis that a cold surface current became established by the late Middle Ordovician in the equatorial peri-Gondwana oceans, similar to the eastern equatorial Pacific cold tongue today.[522]
  • Evidence from uranium isotopes from Upper Ordovician–lower Silurian marine limestones ofAnticosti Island (Canada), indicative of an abrupt global-oceananoxic event coincident with the Late Ordovician mass extinction, is presented by Bartlettet al. (2018).[523]
  • A study on the oceanredox conditions and climate change across a Late Ordovician to Early Silurian on the Yangtze Shelf Sea (China) and their implications for inferring the causes of the Late Ordovician mass extinction is published by Zouet al. (2018).[524]
  • Evidence of multiple episodes of oceanicanoxia in theEarly Triassic, based on U-isotope data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran), is presented by Zhanget al. (2018).[525]
  • A study on changes in global bottom water oxygen contents over theToarcian OceanicAnoxic Event, based onthallium isotope records from two ocean basins, is published by Themet al. (2018), who report evidence of global marine deoxygenation of ocean water some 600,000 years before the classically defined Toarcian Oceanic Anoxic Event.[526]
  • A study on the palaeoenvironmental conditions of the seas at high latitudes (60°) of southernSouth America during the Early Cretaceous is published online by Gómez Dacalet al. (2018).[527]
  • A study evaluating the utility of oxygen-isotope compositions of fossilised foraminiferatests as proxies for surface- and deep-ocean paleotemperatures, and its implications for inferring Late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures, published by Bernardet al. (2017)[528] is criticized by Evanset al. (2018).[529][530]
  • Evidence from sulfur-isotope data indicative of a large-scaleocean deoxygenation during thePaleocene–Eocene Thermal Maximum is presented by Yao, Paytan & Wortmann (2018).[531]
  • Nitrogen isotope data from deposits from the northeast margin of theTethys Ocean, spanning the Paleocene–Eocene Thermal Maximum, is presented by Junium, Dickson & Uveges (2018), who interpret their findings as indicating that dramatic change in thenitrogen cycle occurred during the Paleocene–Eocene Thermal Maximum.[532]
  • A study aiming to evaluate the global extent of surface ocean acidification during the Paleocene–Eocene Thermal Maximum is published by Babilaet al. (2018).[533]
  • A study on the tropical sea-surface temperatures in theEocene is published by Evanset al. (2018).[534]
  • A 25-million-year-longalkenone-based record of surface temperature change in thePaleogene from the NorthAtlantic Ocean is presented by Liuet al. (2018).[535]
  • A study on the likely magnitude of the sea-level drawdown during theMessinian salinity crisis, based on the analysis of the lateNeogene faunas of theBalearic Islands, is published by Maset al. (2018).[536]
  • An extensive, buried sedimentary body deposited by the passage of a megaflood from the western to the easternMediterranean Sea in thePliocene (Zanclean), at the end of the Messinian salinity crisis, is identified in the western Ionian Basin by Micallefet al. (2018).[537]
  • A study on the impact of major, abrupt environmental changes over the past 30,000 years on theGreat Barrier Reef is published by Websteret al. (2018).[538]
  • Evidence of sea level drop relative to the modern level at the shelf edge of the Great Barrier Reef between 21,900 and 20,500 years ago, followed by period of sea level rise lasting around 4,000 years, is presented by Yokoyamaet al. (2018).[539]

Paleoclimatology

[edit]
  • A study on the geologic record ofMilankovitch climate cycles, extending their analysis into theProterozoic and aiming to reconstruct the history of solar system characteristics, is published by Meyers & Malinverno (2018).[540]
  • A study on the effect of different forms of primitivephotosynthesis on Earth's early atmospheric chemistry and climate is published by Ozakiet al. (2018).[541]
  • A quantitative estimate of Paleoproterozoic atmospheric oxygen levels is presented by Bellefroidet al. (2018).[542]
  • A study on the timing of the onset of theSturtian glaciation, based on new stratigraphic and geochronological data from the upper Tambien Group (Ethiopia), is published by Scott MacLennanet al. (2018).[543]
  • A study on changes in the atmospheric concentration ofcarbon dioxide throughout the Phanerozoic, as indicated by data from a product ofchlorophyllphytane from marine sediments and oils, is published by Witkowskiet al. (2018).[544]
  • A revised model and a new high-resolution reconstruction of the oxygenation of the Paleozoic atmosphere is presented by Krauseet al. (2018).[545]
  • A study on the Early Ordovician climate, as indicated by new high-resolution phosphate oxygen isotope record of conodont assemblages from the Lange Ranch section of centralTexas, is published by Quintonet al. (2018), who interpret their findings as consistent with very warm temperatures during the Early Ordovician.[546]
  • A study on the climate changes during the period of theLate Devonian extinction (and possibly causing it), inferred from a high-resolution oxygen isotope record based onconodontapatite from theFrasnianFamennian transition in South China, is published by Huang, Joachimski & Gong (2018).[547]
  • A study on the atmospheric oxygen levels through thePhanerozoic, evaluating whetherRomer's gap andthe concurrent gap in the fossil record of insects were caused by low oxygen levels, is published by Schachatet al. (2018).[548]
  • A study on the impact of sulfur and carbon outgassing from theSiberian Traps flood basalt magmatism on the climate changes at the end of the Permian is published by Blacket al. (2018).[549]
  • A study on the atmosphericcarbon dioxide concentration levels in theEarly Cretaceous based on data from specimens of the fossilconifer speciesPseudofrenelopsis papillosa is published by Jing & Bainian (2018).[550]
  • A study on the terrestrial climate in northernChina at the Cretaceous-Paleogene boundary, indicating the occurrence of a warming caused by the onset ofDeccan Traps volcanism and the occurrence of extinctions prior to the Chicxulub impact, is published by Zhanget al. (2018).[551]
  • A study on the sources of secondary CO2 inputs after the initial rapid onset of the Paleocene–Eocene Thermal Maximum, contributing to the prolongation of this event, is published online by Lyonset al. (2018).[552]
  • Estimates of mean annual terrestrial temperatures in the mid-latitudes during the early Paleogene are presented by Naafset al. (2018).[553]
  • A study on the early stages of development of Asian inland aridity and its underlying mechanisms, based on data from red clay sequence from the Cenozoic Xorkol Basin (Altyn-Tagh, northeasternTibetan Plateau), is published by Liet al. (2018), who interpret their findings as indicating that enhanced Eocene Asian inland aridity was mainly driven by global palaeoclimatic changes rather than being a direct response to the plateau uplift.[554]
  • New mid-latitude terrestrial climate proxy record for southeasternAustralia from the middle Eocene to the middle Miocene, indicative of a widespread cooling in the Gippsland Basin beginning in the middle Eocene, is presented by Korasidiset al. (2018).[555]
  • A study on CO2 concentrations during the early Miocene, as indicated bystomatal characteristics of fossil leaves from a late early Miocene assemblage fromPanama and a leaf gas-exchange model, is published by Londoñoet al. (2018).[556]
  • A study on the climate in the areas of theIberian Peninsula inhabited by hominins during the Early Pleistocene, as indicated by data from macroflora and pollen assemblages, is published online by Altolaguirreet al. (2018).[557]
  • A study on the hydrological changes in theLimpopo Rivercatchment and in sea surface temperature in the southwesternIndian Ocean for the past 2.14 million years, and on their implications for inferring the palaeoclimatic changes in southeastern Africa in this time period and their possible impact on the evolution of early hominins, is published by Caleyet al. (2018).[558]
  • A study evaluating whether changes of vegetation and diet of East African herbivorous mammals were linked to climatic fluctuations 1.7 million years ago, based on data from mammal teeth from the Olduvai Gorge site, as well as evaluating whether crocodile teeth from this site may be used as paleoclimatic indicators, is published by Ascariet al. (2018).[559]
  • Evidence for progressive aridification in East Africa since about 575,000 years before present, based on data from sediments fromLake Magadi (Kenya), is presented by Owenet al. (2018), who also evaluate the influence of the increasing Middle- to Late-Pleistocene aridification and environmental variability on the physical and cultural evolution ofHomo sapiens in East Africa.[560]
  • A study on the climatic changes in theLake Tana area in the last 150,000 years and their implications for early modern human dispersal out of Africa is published by Lambet al. (2018).[561]
  • A high-resolution palaeoclimate reconstruction for theEemian from northernFinland, based on pollen and plant macrofossil record, is presented by Salonenet al. (2018).[562]
  • A study on the extent and nature of millennial/centennial-scale climate instability during the LastInterglacial (129–116 thousand years ago), as indicated by data from joint pollen and ocean proxy analyses in a deep-sea core on the Portuguese Margin (Atlantic Ocean) andspeleothem record from Antro del Corchia cave system (Italy), is published by Tzedakiset al. (2018).[563]
  • A study on the timing and duration of periods of climate deterioration in the interior of theIberian Peninsula in the latePleistocene, evaluating the impact of climate on the abandonment of inner Iberian territories byNeanderthals 42,000 years ago, is published by Wolfet al. (2018).[564]
  • A study on the climate changes in Europe during the Middle–UpperPaleolithic transition (based onspeleothem records from the Ascunsă Cave and from the Tăușoare Cave,Romania), and on their implications for the replacement of Neanderthals by modern humans in Europe, is published by Fernándezet al. (2018).[565]
  • A study on the timing of the latest Pleistocene glaciation in southeasternAlaska and its implication for inferring the route and timing of early human migration to the Americas is published by Lesneket al. (2018).[566]
  • Quantitative estimates of climate in western North America over the past 50,000 years, based on data from plant community composition of more than 600 individual paleomiddens, are presented by Harbert & Nixon (2018).[567]
  • A study assessing the similarity of future projected climate states to the climate during the Early Eocene, the Mid-Pliocene, the Last Interglacial (129–116ka), the Mid-Holocene (6 ka), preindustrial (c. 1850CE), and the20th century is published by Burkeet al. (2018).[568]

References

[edit]
  1. ^Gini-Newman, Garfield; Graham, Elizabeth (2001).Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd.ISBN 9780070887398.OCLC 46769716.
  2. ^Jouko Rikkinen; S. Kristin L. Meinke; Heinrich Grabenhorst; Carsten Gröhn; Max Kobbert; Jörg Wunderlich; Alexander R. Schmidt (2018). "Calicioid lichens and fungi in amber – Tracing extant lineages back to the Paleogene".Geobios.51 (5):469–479.Bibcode:2018Geobi..51..469R.doi:10.1016/j.geobios.2018.08.009.hdl:10138/308761.S2CID 135125977.
  3. ^Andrey O. Frolov; Irina M. Mashchuk (2018).Jurassic flora and vegetation of the Irkutsk Coal Basin. V.B. Sochava Institute of Geography SB RAS Publishers. pp. 1–541.ISBN 978-5-94797-328-0.
  4. ^George Poinar (2020). "A mid-Cretaceous pycnidia,Palaeomycus epallelus gen. et sp. nov., in Myanmar amber".Historical Biology: An International Journal of Paleobiology.32 (2):234–237.Bibcode:2020HBio...32..234P.doi:10.1080/08912963.2018.1481836.S2CID 89977016.
  5. ^George O. Poinar Jr.; Fernando E.Vega (2018). "A mid-Cretaceous ambrosia fungus,Paleoambrosia entomophila gen. nov. et sp. nov. (Ascomycota: Ophiostomatales) in Burmese (Myanmar) amber, and evidence for a femoral mycangium".Fungal Biology.122 (12):1159–1162.Bibcode:2018FunB..122.1159P.doi:10.1016/j.funbio.2018.08.002.PMID 30449353.S2CID 53950691.
  6. ^Michael Krings; Carla J. Harper; Edith L. Taylor (2018)."Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description ofPerexiflasca tayloriana gen. et sp. nov.†".Philosophical Transactions of the Royal Society B: Biological Sciences.373 (1739) 20160500.doi:10.1098/rstb.2016.0500.PMC 5745336.PMID 29254965.
  7. ^Ulla Kaasalainen; Jochen Heinrichs; Matthew A. M. Renner; Lars Hedenäs; Alfons Schäfer-Verwimp; Gaik Ee Lee; Michael S. Ignatov; Jouko Rikkinen; Alexander R. Schmidt (2018). "A Caribbean epiphyte community preserved in Miocene Dominican amber".Earth and Environmental Science Transactions of the Royal Society of Edinburgh.107 (2–3):321–331.doi:10.1017/S175569101700010X.hdl:10138/234078.S2CID 134335842.
  8. ^Christine Strullu-Derrien; Alan R. T. Spencer; Tomasz Goral; Jaclyn Dee; Rosmarie Honegger; Paul Kenrick; Joyce E. Longcore; Mary L. Berbee (2018)."New insights into the evolutionary history of Fungi from a 407 Ma Blastocladiomycota fossil showing a complex hyphal thallus".Philosophical Transactions of the Royal Society B: Biological Sciences.373 (1739) 20160502.doi:10.1098/rstb.2016.0502.PMC 5745337.PMID 29254966.
  9. ^Mahasin Ali Khan; Meghma Bera; Subir Bera (2018). "Vizellopsidites siwalika, a new fossil epiphyllous fungus from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya".Nova Hedwigia.107 (3–4):543–555.Bibcode:2018NovaH.107..543A.doi:10.1127/nova_hedwigia/2018/0491.S2CID 90753098.
  10. ^Michael Krings; Carla J. Harper (2018). "Additional observations on the fungal reproductive unitWindipila spinifera from the Windyfield chert, and description of a similar form,Windipila pumila nov. sp., from the nearby Rhynie chert (Lower Devonian, Scotland)".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.288 (3):235–242.Bibcode:2018NJGPA.288..235K.doi:10.1127/njgpa/2018/0736.S2CID 134885794.
  11. ^Tiequan Shao; Yunhuan Liu; Baichuan Duan; Huaqiao Zhang; Hu Zhang; Qi Wang; Yanan Zhang; Jiachen Qin (2018). "The Fortunian (lowermost Cambrian)Qinscyphus necopinus (Cnidaria, Scyphozoa, Coronatae) underwent direct development".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.289 (2):149–159.Bibcode:2018NJGPA.289..149S.doi:10.1127/njgpa/2018/0755.S2CID 134628513.
  12. ^Jian Han; Guoxiang Li; Xing Wang; Xiaoguang Yang; Junfeng Guo; Osamu Sasaki; Tsuyoshi Komiya (2018). "Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria)".Journal of Paleontology.92 (1):3–13.Bibcode:2018JPal...92....3H.doi:10.1017/jpa.2017.10.S2CID 134119760.
  13. ^Rosemarie Christine Baron-Szabo (2018). "Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages".Zootaxa.4383 (1):1–98.doi:10.11646/zootaxa.4383.1.1.PMID 29689916.
  14. ^A.A. Berezovsky; T. J. Satanovska (2018)."РОДAcropora (Scleractinia) В СРЕДНЕМ ЭОЦЕНЕ КРИВБАССА".Сучасна геологічна наука і практика в дослідженнях студентів і молодих фахівців: Матеріали XIV Всеукраїнської науково-практичної конференції. pp. 18–20.
  15. ^abcMohamed Gameil; Abdelbaset S. El-Sorogy; Khaled Al-Kahtany (2020). "Solitary corals of the Campanian Hajajah Limestone Member, Aruma Formation, Central Saudi Arabia".Historical Biology: An International Journal of Paleobiology.32 (1):1–17.Bibcode:2020HBio...32....1G.doi:10.1080/08912963.2018.1461217.S2CID 90300789.
  16. ^abXiangdong Wang; Mohammad N. Gorgij; Le Yao (2018). "A Cathaysian rugose coral fauna from the upper Carboniferous of central Iran".Journal of Paleontology.93 (3):399–415.doi:10.1017/jpa.2018.89.S2CID 134434930.
  17. ^abcdefghijklHannes Löser; Matthias Heinrich (2018)."New coral genera and species from the Rußbach and Gosau area (Upper Cretaceous; Austria)".Palaeodiversity.11 (1):127–149.doi:10.18476/pale.11.a7.S2CID 135281044.
  18. ^abCristiano Ricci; Bernard Lathuilière; Giovanni Rusciadelli (2018). "Coral communities, zonation and paleoecology of an Upper Jurassic reef complex (Ellipsactinia Limestones, central Apennines, Italy)".Rivista Italiana di Paleontologia e Stratigrafia.124 (3):433–508.doi:10.13130/2039-4942/10608 (inactive 5 September 2025).{{cite journal}}: CS1 maint: DOI inactive as of September 2025 (link)
  19. ^abcJan J. Król; Mikołaj K. Zapalski; Błażej Berkowski (2018). "Emsian tabulate corals of Hamar Laghdad (Morocco): taxonomy and ecological interpretation".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.290 (1–3):75–102.Bibcode:2018NJGPA.290...75K.doi:10.1127/njgpa/2018/0773.S2CID 134534666.
  20. ^abcdeRoss A. McLean (2018). "Fasciphyllid and spongophyllid rugose corals from the Middle Devonian of western Canada".Palaeontographica Canadiana.37:1–117.ISBN 978-1-897095-85-0.
  21. ^Shan Chang; Sébastien Clausen; Lei Zhang; Qinglai Feng; Michael Steiner; David J. Bottjer; Yan Zhang; Min Shi (2018). "New probable cnidarian fossils from the lower Cambrian of the Three Gorges area, South China, and their ecological implications".Palaeogeography, Palaeoclimatology, Palaeoecology.505:150–166.Bibcode:2018PPP...505..150C.doi:10.1016/j.palaeo.2018.05.039.S2CID 135344120.
  22. ^abShuji Niko (2018). "Miocene scleractinian corals from the Bihoku Group in the Shobara area, Hiroshima Prefecture, Southwest Japan".Bulletin of the Akiyoshi-dai Museum of Natural History.53:7–16.
  23. ^abcKun Liang; Robert J. Elias; Dong-Jin Lee (2018). "The early record of halysitid tabulate corals, and morphometrics ofCatenipora from the Ordovician of north-central China".Papers in Palaeontology.4 (3):363–379.Bibcode:2018PPal....4..363L.doi:10.1002/spp2.1111.S2CID 134241894.
  24. ^Kun Liang; Wenkun Qie; Luozhong Pan; Baoan Yin (2018). "Morphometrics and palaeoecology of syringoporoid tabulate corals from the upper Famennian (Devonian) Etoucun Formation, Huilong, South China".Palaeobiodiversity and Palaeoenvironments.99 (1):101–115.doi:10.1007/s12549-018-0363-y.S2CID 133849052.
  25. ^abcHannes Löser; Thomas Steuber; Christian Löser (2018)."Early Cenomanian coral faunas from Nea Nikopoli (Kozani, Greece; Cretaceous)".Carnets de Géologie.18 (3):23–121.Bibcode:2018CarGe..18...23L.doi:10.4267/2042/66094.
  26. ^A.A. Berezovsky; T. J. Satanovska (2018)."РОДLithophyllon (Scleractinia) В ВЕРХНЕМ ЭОЦЕНЕ ДНЕПРА".Міжнародна науково-технічна конференція "Розвиток промисловості та суспільства". Секція 5. Геологія і прикладна мінералогія. 23-25 травня 2018 р. Матеріали конференції. pp. 14–19.
  27. ^Sergio Rodríguez; Hans Peter Schönlaub; Herbert Kabon (2018)."Lonsdaleia carnica n. sp., a new colonial coral from the late Mississippian Kirchbach Formation of the Carnic Alps (Austria)"(PDF).Jahrbuch der Geologischen Bundesanstalt.158 (1–4):49–57.
  28. ^Guang-Xu Wang; Xin-Yi He; Lan Tang; Ian G. Percival (2018). "Silurian amplexoid rugose coral generaPilophyllia Ge and Yu, 1974 andNeopilophyllia new genus from South China".Journal of Paleontology.92 (6):982–1004.Bibcode:2018JPal...92..982W.doi:10.1017/jpa.2018.29.S2CID 134817990.
  29. ^A.A. Berezovsky; T. J. Satanovska (2018)."ОБ ОДНОМ ВИДЕ КОРАЛЛОВ СЕМЕЙСТВА Oculinidae (Scleractinia) ИЗ ВЕРХНЕГО ЭОЦЕНА г. ДНЕПРА".Сучасна геологічна наука і практика в дослідженнях студентів і молодих фахівців: Матеріали XIV Всеукраїнської науково-практичної конференції. pp. 47–52.
  30. ^Elżbieta Morycowa (2018)."Supplemental data on Triassic (Anisian) corals from Upper Silesia (Poland)".Annales Societatis Geologorum Poloniae.88 (1):37–45.doi:10.14241/asgp.2018.001.
  31. ^Shuji Niko; Shigeyuki Suzuki; Eiji Taguchi (2018). "Stylophora kibiensis, a new Miocene species of scleractinian coral from the Katsuta Group in the Misaki area, Okayama Prefecture, Southwest Japan".Bulletin of the Akiyoshi-dai Museum of Natural History.53:17–21.
  32. ^Shuji Niko; Mahdi Badpa; Abbas Ghaderi; Mohammad Reza Ataei (2018)."Early Permian tabulate corals from the Jamal Formation, East-Central Iran"(PDF).Bulletin of the National Museum of Nature and Science, Series C.44:19–29.Archived(PDF) from the original on 2018-12-22. Retrieved2018-12-21.
  33. ^Błażej Berkowski (2018). "New genus and speciesWendticyathus nudus (Rugosa) and a short review of Emsian rugose corals from Hamar Laghdad, Morocco".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.290 (1–3):117–125.Bibcode:2018NJGPA.290..117B.doi:10.1127/njgpa/2018/0770.S2CID 134592835.
  34. ^Chang-Min Yu (2018). "Restudy of the Early Devonian rugose coralXystriphylloides from South China".Palaeoworld.27 (2):159–169.doi:10.1016/j.palwor.2017.06.001.S2CID 134820856.
  35. ^abcdefghiEmanuela Di Martino; Paul D. Taylor (2018)."Early Pleistocene and Holocene bryozoans from Indonesia".Zootaxa.4419 (1):1–70.doi:10.11646/zootaxa.4419.1.1.PMID 30313550.
  36. ^Ernst, Andrej; Krainer, Karl; Lucas, Spencer (2018). "Bryozoan fauna of the Lake Valley Formation (Mississippian), New Mexico".Journal of Paleontology.92 (4):577–595.Bibcode:2018JPal...92..577E.doi:10.1017/jpa.2017.146.S2CID 135266996.
  37. ^Zhiliang Zhang; Leonid E. Popov; Lars E. Holmer; Zhifei Zhang (2018)."Earliest ontogeny of early Cambrian acrotretoid brachiopods — first evidence for metamorphosis and its implications".BMC Evolutionary Biology.18 (1): 42.Bibcode:2018BMCEE..18...42Z.doi:10.1186/s12862-018-1165-6.PMC 5880059.PMID 29609541.
  38. ^Zhiliang Zhang; Zhifei Zhang; Lars E. Holmer; Feiyang Chen (2018)."Post-metamorphic allometry in the earliest acrotretoid brachiopods from the lower Cambrian (Series 2) of South China, and its implications".Palaeontology.61 (2):183–207.Bibcode:2018Palgy..61..183Z.doi:10.1111/pala.12333.S2CID 3199997.
  39. ^Judith A. Sclafani; Curtis R. Congreve; Andrew Z. Krug; Mark E. Patzkowsky (2018). "Effects of mass extinction and recovery dynamics on long-term evolutionary trends: a morphological study of Strophomenida (Brachiopoda) across the Late Ordovician mass extinction".Paleobiology.44 (4):603–619.Bibcode:2018Pbio...44..603S.doi:10.1017/pab.2018.24.S2CID 92364910.
  40. ^Fernando García Joral; José Francisco Baeza-Carratalá; Antonio Goy (2018). "Changes in brachiopod body size prior to the Early Toarcian (Jurassic) Mass Extinction".Palaeogeography, Palaeoclimatology, Palaeoecology.506:242–249.Bibcode:2018PPP...506..242G.doi:10.1016/j.palaeo.2018.06.045.hdl:10045/77781.S2CID 135368506.
  41. ^Fernando Julián Lavié (2018). "Linguliformean brachiopods from the Las Plantas Formation (Ordovician, Sandbian), Argentine Precordillera".Ameghiniana.55 (5):600–606.Bibcode:2018Amegh..55..600L.doi:10.5710/AMGH.22.06.2018.3187.hdl:11336/88327.S2CID 134007925.
  42. ^Maurizio Gaetani; Marco Balini; Alda Nicora; Martino Giorgioni; Giulio Pavia (2018)."The Himalayan connection of the Middle Triassic brachiopod fauna from Socotra (Yemen)".Bulletin of Geosciences.93 (2):247–268.doi:10.3140/bull.geosci.1665.S2CID 134157425.
  43. ^abJuan L. Benedetto (2018). "The strophomenide brachiopodAhtiella Öpik in the Ordovician of Gondwana and the early history of the plectambonitoids".Journal of Paleontology.92 (5):768–793.Bibcode:2018JPal...92..768B.doi:10.1017/jpa.2018.9.hdl:11336/129659.S2CID 135270782.
  44. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbJohn Bruce Waterhouse (2018).Late Carboniferous and Early Permian Brachiopoda and Mollusca from the lower Jungle Creek and upper Ettrain Formations of the Yukon Territory, Canada(PDF). Earthwise. Vol. 15. pp. 1–514.
  45. ^José Francisco Baeza-Carratalá; Alfréd Dulai; José Sandoval (2018). "First evidence of brachiopod diversification after the end-Triassic extinction from the pre-Pliensbachian Internal Subbetic platform (South-Iberian Paleomargin)".Geobios.51 (5):367–384.Bibcode:2018Geobi..51..367B.doi:10.1016/j.geobios.2018.08.010.hdl:10045/81989.S2CID 134589701.
  46. ^abcdValeryi V. Baranov; Robert B. Blodgett (2018)."Stringocephalid brachiopods in the upper Givetian (late Middle Devonian) of southeastern Alaska (Coronados Islands) and their paleobiogeographical significance".New Mexico Museum of Natural History and Science Bulletin.79:17–30.
  47. ^Colin D. Sproat; Renbin Zhan (2018). "Altaethyrella (Brachiopoda) from the Late Ordovician of the Tarim Basin, Northwest China, and its significance".Journal of Paleontology.92 (6):1005–1017.Bibcode:2018JPal...92.1005S.doi:10.1017/jpa.2018.31.S2CID 133780466.
  48. ^Meiqiong Zhang; Xueping Ma (2018). "Origination and diversification of Devonian ambocoelioid brachiopods in South China".Palaeobiodiversity and Palaeoenvironments.99 (1):63–90.doi:10.1007/s12549-018-0333-4.S2CID 134525323.
  49. ^abcdefghijklmnopqrsR. E. Alekseeva; G. A. Afanasjeva; I. A. Grechishnikova; N. V. Oleneva; A. V. Pakhnevich (2018)."Devonian and Carboniferous brachiopods and biostratigraphy of Transcaucasia".Paleontological Journal.52 (8):829–967.Bibcode:2018PalJ...52..829A.doi:10.1134/S0031030118080014.S2CID 195319311.
  50. ^abcdefghijklmnopqrsR. E. Alekseeva; G. A. Afanasjeva; I. A. Grechishnikova; N. V. Oleneva; A. V. Pakhnevich (2018)."Devonian and Carboniferous brachiopods and biostratigraphy of Transcaucasia (ending)".Paleontological Journal.52 (9):969–1085.Bibcode:2018PalJ...52..969A.doi:10.1134/S0031030118090010.S2CID 92497411.
  51. ^abVladyslav Poletaev (2018).Atlas-opredelitel' kamennougol'nykh spiriferid Vostochnoy Yevropy. LAT&K.ISBN 978-966-02-8430-2.
  52. ^abVladyslav Poletaev (2024)."New and revised taxa of Carboniferous spiriferides (Brachiopoda, Spiriferida) from the Donets Basin (Ukraine) and South Urals (Russia)".European Journal of Taxonomy (968):132–155.Bibcode:2024EJTax.968.2723P.doi:10.5852/ejt.2024.968.2723.
  53. ^abJenaro L. García-Alcalde (2018)."Rare Middle and Upper Devonian dalmanelloid (Orthida) of the Cantabrian Mountains, N Spain"(PDF).Spanish Journal of Palaeontology.33 (1):57–82.doi:10.7203/sjp.33.1.13242.S2CID 134824836.
  54. ^Juan L. Benedetto; Fernando J. Lavie; Diego F. Muñoz (2018). "Broeggeria Walcott and other upper Cambrian and Tremadocian linguloid brachiopods from NW Argentina".Geological Journal.53 (1):102–119.Bibcode:2018GeolJ..53..102B.doi:10.1002/gj.2880.hdl:11336/44744.S2CID 132483546.
  55. ^abcdefgJohn Bruce Waterhouse (2018). "Brachiopods from the Blackie Formation at Peel River".Carboniferous (Visean to Moscovian) brachiopods from the Yukon Territory(PDF). Earthwise. Vol. 16. pp. 69–145.
  56. ^abcdMichal Mergl (2018). "The late Emsian association of weakly plicate brachiopods from Hamar Laghdad (Tafilalt, Morocco) and their ecology".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.290 (1–3):153–182.Bibcode:2018NJGPA.290..153M.doi:10.1127/njgpa/2018/0775.S2CID 134399249.
  57. ^abcdJohn Bruce Waterhouse (2018). "Brachiopods from the upper Blackie Formation and Wahoo Formation, Lisburne Group".Carboniferous (Visean to Moscovian) brachiopods from the Yukon Territory(PDF). Earthwise. Vol. 16. pp. 146–184.
  58. ^Pu Zong; Xue-Ping Ma (2018). "Spiriferide brachiopods from the Famennian (Late Devonian) Hongguleleng Formation of western Junggar, Xinjiang, northwestern China".Palaeoworld.27 (1):66–89.doi:10.1016/j.palwor.2017.07.002.
  59. ^abcV.V. Baranov (2018)."New atrypids (Brachiopoda) from the Lower Devonian of Northeast Russia".Paleontological Journal.52 (3):255–264.Bibcode:2018PalJ...52..255B.doi:10.1134/S0031030118030024.S2CID 90343320.
  60. ^Stanisław Skompski; Andrzej Baliński; Michał Szulczewski; Inga Zawadzka (2018)."Middle/Upper Devonian brachiopod shell concentrations from the intra-shelf basinal carbonates of the Holy Cross Mountains (central Poland)".Acta Geologica Polonica.68 (4):607–633.doi:10.1515/agp-2018-0034 (inactive 4 July 2025).Archived from the original on 18 August 2022. Retrieved4 March 2020.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  61. ^abcdeDesmond L. Strusz; Ian G. Percival (2018)."Silurian (Wenlock) brachiopods from the Quidong district, Southeastern New South Wales, Australia".Australasian Palaeontological Memoirs.51:81–129.ISSN 2205-8877.Archived from the original on 2019-04-07. Retrieved2019-04-07.
  62. ^Adam T. Halamski; Andrzej Baliński (2018)."Eressella, a new uncinuloid brachiopod genus from the Middle Devonian of Europe and Africa".Annales Societatis Geologorum Poloniae.88 (1):21–35.doi:10.14241/asgp.2018.003.
  63. ^abcdJohn Bruce Waterhouse (2018). "Brachiopods from the Hart River Formation".Carboniferous (Visean to Moscovian) brachiopods from the Yukon Territory(PDF). Earthwise. Vol. 16. pp. 8–68.
  64. ^Eric Simon; Bernard Mottequin (2018)."Extreme reduction of morphological characters: a type of brachidial development found in several Late Cretaceous and Recent brachiopod species—new relationships between taxa previously listed asincertae sedis".Zootaxa.4444 (1):1–24.doi:10.11646/zootaxa.4444.1.1.PMID 30313939.S2CID 52973949.
  65. ^Huiting Wu; Weihong He; G.R. Shi; Kexin Zhang; Tinglu Yang; Yang Zhang; Yifan Xiao; Bing Chen; Shunbao Wu (2018). "A new Permian–Triassic boundary brachiopod fauna from the Xinmin section, southwestern Guizhou, south China and its extinction patterns".Alcheringa: An Australasian Journal of Palaeontology.42 (3):339–372.Bibcode:2018Alch...42..339W.doi:10.1080/03115518.2018.1462400.S2CID 134984830.
  66. ^Miguel A. Torres-Martínez; Francisco Sour-Tovar; Ricardo Barragán (2018). "Kukulkanus, a new genus of buxtoniin brachiopod from the Artinskian–Kungurian (Early Permian) of Mexico".Alcheringa: An Australasian Journal of Palaeontology.42 (2):268–275.Bibcode:2018Alch...42..268T.doi:10.1080/03115518.2017.1395073.S2CID 135354115.
  67. ^abJun-ichi Tazawa (2018)."Early Carboniferous (Mississippian) brachiopods from the Hikoroichi Formation, South Kitakami Belt, Japan"(PDF).Memoir of the Fukui Prefectural Dinosaur Museum.17:27–87.
  68. ^G. A. Afanasjeva; Tazawa Jun-Ichi; Miyake Yukio (2018). "New brachiopod speciesLeurosina katasumiensis (Chonetida) from the Kungurian Katasumi Limestone of the Kusu Area, central Japan".Paleontological Journal.52 (4):389–393.Bibcode:2018PalJ...52..389A.doi:10.1134/S0031030118040020.S2CID 91371431.
  69. ^Miguel A. Torres-Martínez; Francisco Sour-Tovar (2018)."Productidinid brachiopods (Strophomenata, Productida), includingMartinezchaconia luisae, new genus and new species of Linoproductidae, from the Carboniferous of Santiago Ixtaltepec region, Oaxaca, Southeast México"(PDF).Spanish Journal of Palaeontology.33 (1):205–214.doi:10.7203/sjp.33.1.13250.S2CID 135123646.Archived(PDF) from the original on 2018-10-03. Retrieved2018-10-02.
  70. ^José Francisco Baeza-Carratalá; Fernando Pérez-Valera; Juan Alberto Pérez-Valera (2018)."The oldest post-Paleozoic (Ladinian, Triassic) brachiopods from the Betic Range, SE Spain".Acta Palaeontologica Polonica.63 (1):71–85.doi:10.4202/app.00415.2017.hdl:10045/73440.
  71. ^Jun-ichi Tazawa; Hideo Araki (2018). "Middle Permian (Wordian) brachiopod fauna from Matsukawa, South Kitakami Belt, Japan, Part 2".Science Reports of Niigata University. (Geology).33:9–24.hdl:10191/50554.
  72. ^abMichal Mergl; Jiří Frýda; Michal Kubajko (2018)."Response of organophosphatic brachiopods to the mid-Ludfordian (late Silurian) carbon isotope excursion and associated extinction events in the Prague Basin (Czech Republic)".Bulletin of Geosciences.93 (3):347–368.doi:10.3140/bull.geosci.1710.S2CID 55521218.
  73. ^Valeryi V. Baranov; Mostafa Falahatgar; Robert B. Blodgett; Mojtaba Javidan; Tahereh Parvizi (2018)."Brachiopods from the Famennian (Khoshyeilagh Formation) of Damghan, northern Iran".New Mexico Museum of Natural History and Science Bulletin.79:37–49.
  74. ^Rebecca L. Freeman; James F. Miller; Benjamin F. Dattilo (2018). "Linguliform brachiopods across a Cambrian–Ordovician (Furongian, Early Ordovician) biomere boundary: the Sunwaptan–Skullrockian North American Stage boundary in the Wilberns and Tanyard formations of central Texas".Journal of Paleontology.92 (5):751–767.Bibcode:2018JPal...92..751F.doi:10.1017/jpa.2018.8.S2CID 134012657.
  75. ^abAdam T. Halamski; Andrzej Baliński (2018). "Early Dalejan (Emsian) brachiopods from Hamar Laghdad (eastern Anti-Atlas, Morocco)".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.290 (1–3):127–152.Bibcode:2018NJGPA.290..127H.doi:10.1127/njgpa/2018/0774.S2CID 134939119.
  76. ^abA. V. Pakhnevich (2018). "New Upper Devonian rhynchonellids (Brachiopoda) from Transcaucasia".Paleontological Journal.52 (2):131–136.Bibcode:2018PalJ...52..131P.doi:10.1134/S0031030118020077.S2CID 90027289.
  77. ^Bryan Shirley; Madleen Grohganz; Michel Bestmann; Emilia Jarochowska (2018)."Wear, tear and systematic repair: testing models of growth dynamics in conodonts with high-resolution imaging".Proceedings of the Royal Society B: Biological Sciences.285 (1886) 20181614.doi:10.1098/rspb.2018.1614.PMC 6158523.PMID 30185642.
  78. ^D. F. Terrill; C. M. Henderson; J. S. Anderson (2018)."New applications of spectroscopy techniques reveal phylogenetically significant soft tissue residue in Paleozoic conodonts".Journal of Analytical Atomic Spectrometry.33 (6):992–1002.doi:10.1039/C7JA00386B.S2CID 104041915.
  79. ^James R. Wheeley; Phillip E. Jardine; Robert J. Raine; Ian Boomer; M. Paul Smith (2018)."Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species".Geology.46 (5):467–470.Bibcode:2018Geo....46..467W.doi:10.1130/G40145.1.S2CID 84177978.
  80. ^Thomas J. Suttner; Erika Kido (2018)."Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species: COMMENT".Geology.46 (9) e451.Bibcode:2018Geo....46E.451S.doi:10.1130/G45241C.1.S2CID 134969840.
  81. ^James R. Wheeley; M. Paul Smith (2018)."Paleoecologic and palaeoceanographic interpretation of δ18O variability in Lower Ordovician conodont species: REPLY".Geology.46 (9) e452.Bibcode:2018Geo....46E.452W.doi:10.1130/G45433Y.1.S2CID 134346101.
  82. ^Z. T. Zhang; Y. D. Sun; P. B. Wignall; J. L. Fu; H. X. Li; M. Y. Wang; X. L. Lai (2018)."Conodont size reduction and diversity losses during the Carnian (Late Triassic) Humid Episode in SW China"(PDF).Journal of the Geological Society.175 (6):1027–1031.doi:10.1144/jgs2018-002.S2CID 134077252.
  83. ^M.L. Golding (2018). "Heterogeneity of conodont faunas in the Cache Creek Terrane, Canada; significance for tectonic reconstructions of the North American Cordillera".Palaeogeography, Palaeoclimatology, Palaeoecology.506:208–216.Bibcode:2018PPP...506..208G.doi:10.1016/j.palaeo.2018.06.038.S2CID 134681051.
  84. ^Martyn Lee Golding (2018)."Reconstruction of the multielement apparatus ofNeogondolella ex gr.regalis Mosher, 1970 (Conodonta) from the Anisian (Middle Triassic) in British Columbia, Canada".Journal of Micropalaeontology.37 (1):21–24.Bibcode:2018JMicP..37...21G.doi:10.5194/jm-37-21-2018.
  85. ^Muhui Zhang; Haishui Jiang; Mark A. Purnell; Xulong Lai (2017)."Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts: articulated skeletons ofHindeodus".Palaeontology.60 (4):595–608.Bibcode:2017Palgy..60..595Z.doi:10.1111/pala.12305.hdl:2381/40480.S2CID 37171920.
  86. ^Sachiko Agematsu; Martyn L. Golding; Michael J. Orchard (2018)."Comments on: Testing hypotheses of element loss and instability in the apparatus composition of complex conodonts (Zhanget al.)".Palaeontology.61 (5):785–792.Bibcode:2018Palgy..61..785A.doi:10.1111/pala.12372.S2CID 134014368.
  87. ^Mark A. Purnell; Muhui Zhang; Haishui Jiang; Xulong Lai (2018)."Reconstruction, composition and homology of conodont skeletons: a response to Agematsuet al.".Palaeontology.61 (5):793–796.Bibcode:2018Palgy..61..793P.doi:10.1111/pala.12387.hdl:2381/42406.S2CID 134511692.
  88. ^Thomas J. Suttner; Erika Kido; Antonino Briguglio (2018)."A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae".Journal of Systematic Palaeontology.16 (11):909–926.Bibcode:2018JSPal..16..909S.doi:10.1080/14772019.2017.1354090.PMC 6023268.PMID 29997454.
  89. ^Alexander N. Zimmerman; Claudia C. Johnson; P. David Polly (2018). "Taxonomic and evolutionary pattern revisions resulting from geometric morphometric analysis of PennsylvanianNeognathodus conodonts, Illinois Basin".Paleobiology.44 (4):660–683.Bibcode:2018Pbio...44..660Z.doi:10.1017/pab.2018.28.S2CID 91654089.
  90. ^abcdefMichael J. Orchard (2018)."The Lower-Middle Norian (Upper Triassic) boundary: New conodont taxa and a refined biozonation"(PDF).Bulletins of American Paleontology.395–396 (395–396):165–193.doi:10.32857/bap.2018.395.12 (inactive 4 July 2025).S2CID 134425258. Archived fromthe original(PDF) on 2018-12-15. Retrieved2018-12-15.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  91. ^Josefina Carlorosi; Graciela Sarmiento; Susana Heredia (2018). "Selected Middle Ordovician key conodont species from the Santa Gertrudis Formation (Salta, Argentina): an approach to its biostratigraphical significance".Geological Magazine.155 (4):878–892.Bibcode:2018GeoM..155..878C.doi:10.1017/S0016756816001035.hdl:11336/61916.S2CID 133541958.
  92. ^abKeyi Hu; Yuping Qi; Tamara I. Nemyrovska (2018). "Mid-Carboniferous conodonts and their evolution: new evidence from Guizhou, South China".Journal of Systematic Palaeontology.17 (6):451–489.doi:10.1080/14772019.2018.1440255.S2CID 90661288.
  93. ^abcAli Murat Kılıç; Pablo Plasencia; Fuat Önder (2018)."Debate on skeletal elements of the Triassic conodontCornudina Hirschmann".Acta Geologica Polonica.68 (2):147–159.doi:10.1515/agp-2017-0034 (inactive 4 July 2025).Archived from the original on 19 September 2021. Retrieved4 March 2020.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  94. ^Javier Sanz-López; Silvia Blanco-Ferrera (2018)."Conodonts with high potential for correlation in the upper Tournasian to middle Viséan (Mississippian) of the Cantabrian Mountains, Spain"(PDF).Bulletins of American Paleontology.395–396 (395–396):71–87.doi:10.32857/bap.2018.395.07 (inactive 4 July 2025).S2CID 133971566. Archived fromthe original(PDF) on 2018-12-15. Retrieved2018-12-15.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  95. ^abcNicholas J. Hogancamp; James E. Barrick (2018)."Morphometric analysis and taxonomic revision of North American species of theIdiognathodus eudoraensis Barrick, Heckel, & Boardman, 2008 group (Missourian, Upper Pennsylvanian Conodonts)"(PDF).Bulletins of American Paleontology.395–396 (395–396):35–69.doi:10.32857/bap.2018.395.06 (inactive 4 July 2025).S2CID 135415448. Archived fromthe original(PDF) on 2018-12-15. Retrieved2018-12-15.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  96. ^James E. Barrick; Nicholas J. Hogancamp; Steven J. Rosscoe (2022). "Evolutionary patterns in Late Pennsylvanian conodonts". In S.G. Lucas; W.A. DiMichele; S. Opluštil; X. Wang (eds.).Ice Ages, Climate Dynamics and Biotic Events: the Late Pennsylvanian World. Geological Society, London, Special Publications. Vol. 535. The Geological Society of London. pp. 383–408.doi:10.1144/SP535-2022-139.S2CID 253194718.
  97. ^Phil Frederick; James E. Barrick (2018)."A new species ofIdiognathoides (conodont) in the Lower Pennsylvanian Ladrones Limestone of the Alexander terrane, southeast Alaska, and its paleogeographic significance".Micropaleontology.64 (4):269–283.Bibcode:2018MiPal..64..269F.doi:10.47894/mpal.64.4.02.S2CID 248309750.Archived from the original on 2018-11-18. Retrieved2018-11-18.
  98. ^Martyn L. Golding; Michael J. Orchard (2018). "Magnigondolella, a new conodont genus from the Triassic of North America".Journal of Paleontology.92 (2):207–220.Bibcode:2018JPal...92..207G.doi:10.1017/jpa.2017.123.S2CID 133681181.
  99. ^Dong-Xun Yuan; Yi-Chun Zhang; Shu-Zhong Shen (2018). "Conodont succession and reassessment of major events around the Permian-Triassic boundary at the Selong Xishan section, southern Tibet, China".Global and Planetary Change.161:194–210.Bibcode:2018GPC...161..194Y.doi:10.1016/j.gloplacha.2017.12.024.
  100. ^abSven Hartenfels; Ralph Thomas Becker (2018). "Age and correlation of the transgressiveGonioclymenia Limestone (Famennian, Tafilalt, eastern Anti-Atlas, Morocco)".Geological Magazine.155 (3):586–629.Bibcode:2018GeoM..155..586H.doi:10.1017/S0016756816000893.S2CID 133466476.
  101. ^abcTakumi Maekawa; Toshifumi Komatsu; Toshio Koike (2018). "Early Triassic conodonts from the Tahogawa Member of the Taho Formation, Ehime Prefecture, southwest Japan".Paleontological Research.22 (s1):1–62.Bibcode:2018PalRe..22S...1M.doi:10.2517/2018PR001.S2CID 134005889.
  102. ^abcJianfeng Lu; José Ignacio Valenzuela-Ríos; Chengyuan Wang; Jau-Chyn Liao; Yi Wang (2018). "Emsian (Lower Devonian) conodonts from the Lufengshan section (Guangxi, South China)".Palaeobiodiversity and Palaeoenvironments.99 (1):45–62.doi:10.1007/s12549-018-0325-4.hdl:10550/94137.S2CID 134950864.
  103. ^abcdKatarzyna Narkiewicz; Peter Königshof (2018). "New Middle Devonian conodont data from the Dong Van area, NE Vietnam (South China Terrane)".PalZ.92 (4):633–650.Bibcode:2018PalZ...92..633N.doi:10.1007/s12542-018-0408-6.S2CID 134577197.
  104. ^Javier Sanz-López; Silvia Blanco-Ferrera; C. Giles Miller (2018)."Morphologic variation in the P1 element of Mississippian species of the conodont genusPseudognathodus"(PDF).Spanish Journal of Palaeontology.33 (1):185–204.doi:10.7203/sjp.33.1.13248.S2CID 134522337.Archived(PDF) from the original on 2018-10-02. Retrieved2018-10-02.
  105. ^Martyn L. Golding (2018)."The multielement apparatuses of Guadalupian to Lopingian (Middle-Upper Permian) sweetognathids from North America, and their significance for the phylogeny of Late Paleozoic conodonts"(PDF).Bulletins of American Paleontology.395–396 (395–396):115–125.doi:10.32857/bap.2018.395.09 (inactive 4 July 2025).S2CID 134404882. Archived fromthe original(PDF) on 2018-12-15. Retrieved2018-12-15.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  106. ^abcdZaitian Zhang; Yadong Sun; Xulong Lai; Paul B. Wignall (2018)."Carnian (Late Triassic) conodont faunas from south-western China and their implications"(PDF).Papers in Palaeontology.4 (4):513–535.Bibcode:2018PPal....4..513Z.doi:10.1002/spp2.1116.S2CID 135356888.
  107. ^Byung-Su Lee (2018). "Recognition and significance of theAurilobodus serratus Conodont Zone (Darriwilian) in lower Paleozoic sequence of the Jeongseon–Pyeongchang area, Korea".Geosciences Journal.22 (5):683–696.Bibcode:2018GescJ..22..683L.doi:10.1007/s12303-018-0032-1.S2CID 135184429.
  108. ^abMichael T. Read; Merlynd K. Nestell (2018)."Cisuralian (Early Permian) sweetognathid conodonts from the upper part of the Riepe Spring Limestone, North Spruce Mountain Ridge, Elko County, Nevada"(PDF).Bulletins of American Paleontology.395–396 (395–396):89–113.doi:10.32857/bap.2018.395.08 (inactive 4 July 2025).S2CID 134650297. Archived fromthe original(PDF) on 2018-12-15. Retrieved2018-12-15.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  109. ^Carlton E. Brett; James J. Zambito IV; Gordon C. Baird; Z. Sarah Aboussalam; R. Thomas Becker; Alexander J. Bartholomew (2018). "Litho-, bio-, and sequence stratigraphy of the Boyle-Portwood Succession (Middle Devonian, Central Kentucky, USA)".Palaeobiodiversity and Palaeoenvironments.98 (2):331–368.Bibcode:2018PdPe...98..331B.doi:10.1007/s12549-018-0323-6.S2CID 134132371.
  110. ^Carlo Corradini; Maria G. Corriga (2018)."The new genusWalliserognathus and the origin ofPolygnathoides siluricus (Conodonta, Silurian)".Estonian Journal of Earth Sciences.67 (2):113–121.Bibcode:2018EsJES..67..113C.doi:10.3176/earth.2018.08.hdl:11368/2950576.
  111. ^Marco Romano; Neil Brocklehurst; Jörg Fröbisch (2018). "The postcranial skeleton ofEnnatosaurus tecton (Synapsida, Caseidae)".Journal of Systematic Palaeontology.16 (13):1097–1122.Bibcode:2018JSPal..16.1097R.doi:10.1080/14772019.2017.1367729.S2CID 89922565.
  112. ^Neil Brocklehurst; Jörg Fröbisch (2018). "A reexamination ofMilosaurus mccordi, and the evolution of large body size in Carboniferous synapsids".Journal of Vertebrate Paleontology.38 (5) e1508026.Bibcode:2018JVPal..38E8026B.doi:10.1080/02724634.2018.1508026.S2CID 91487577.
  113. ^Ashley Kruger; Bruce S. Rubidge; Fernando Abdala (2018). "A juvenile specimen ofAnteosaurus magnificus Watson, 1921 (Therapsida: Dinocephalia) from the South African Karoo, and its implications for understanding dinocephalian ontogeny".Journal of Systematic Palaeontology.16 (2):139–158.Bibcode:2018JSPal..16..139K.doi:10.1080/14772019.2016.1276106.hdl:11336/67088.S2CID 90346300.
  114. ^Julien Benoit; Kenneth D. Angielczyk; Juri A. Miyamae; Paul Manger; Vincent Fernandez; Bruce Rubidge (2018). "Evolution of facial innervation in anomodont therapsids (Synapsida): Insights from X-ray computerized microtomography".Journal of Morphology.279 (5):673–701.Bibcode:2018JMorp.279..673B.doi:10.1002/jmor.20804.PMID 29464761.S2CID 3428692.
  115. ^Kévin Rey; Michael O. Day; Romain Amiot; Jean Goedert; Christophe Lécuyer; Judith Sealy; Bruce S. Rubidge (2018). "Stable isotope record implicates aridification without warming during the late Capitanian mass extinction".Gondwana Research.59:1–8.Bibcode:2018GondR..59....1R.doi:10.1016/j.gr.2018.02.017.S2CID 135404039.
  116. ^Savannah L. Olroyd; Christian A. Sidor; Kenneth D. Angielczyk (2018). "New materials of the enigmatic dicynodontAbajudon kaayai (Therapsida, Anomodontia) from the lower Madumabisa Mudstone Formation, middle Permian of Zambia".Journal of Vertebrate Paleontology.37 (6) e1403442.doi:10.1080/02724634.2017.1403442.S2CID 89986797.
  117. ^Ricardo Araújo; Vincent Fernandez; Richard D. Rabbitt; Eric G. Ekdale; Miguel T. Antunes; Rui Castanhinha; Jörg Fröbisch; Rui M. S. Martins (2018)."Endothiodon cf.bathystoma (Synapsida: Dicynodontia) bony labyrinth anatomy, variation and body mass estimates".PLOS ONE.13 (3) e0189883.Bibcode:2018PLoSO..1389883A.doi:10.1371/journal.pone.0189883.PMC 5851538.PMID 29538421.
  118. ^Gianfrancis D. Ugalde; Rodrigo T. Müller; Hermínio Ismael de Araújo-Júnior; Sérgio Dias-da-Silva; Felipe L. Pinheiro (2018). "A peculiar bonebed reinforces gregarious behaviour for the Triassic dicynodontDinodontosaurus".Historical Biology: An International Journal of Paleobiology.32 (6):764–772.doi:10.1080/08912963.2018.1533960.S2CID 92735247.
  119. ^Kenneth D. Angielczyk; P. John Hancox; Ali Nabavizadeh (2018). "A redescription of the Triassic kannemeyeriiform dicynodontSangusaurus (Therapsida, Anomodontia), with an analysis of its feeding system".Journal of Vertebrate Paleontology.37 (Supplement to No. 6):189–227.doi:10.1080/02724634.2017.1395885.S2CID 90116315.
  120. ^Christian F. Kammerer; Kenneth D. Angielczyk; Sterling J. Nesbitt (2018). "Novel hind limb morphology in a kannemeyeriiform dicynodont from the Manda Beds (Songea Group, Ruhuhu Basin) of Tanzania".Journal of Vertebrate Paleontology.37 (Supplement to No. 6):178–188.doi:10.1080/02724634.2017.1309422.S2CID 89750474.
  121. ^Valeria Susana Perez Loinaze; Ezequiel Ignacio Vera; Lucas Ernesto Fiorelli; Julia Brenda Desojo (2018). "Palaeobotany and palynology of coprolites from the Late Triassic Chañares Formation of Argentina: implications for vegetation provinces and the diet of dicynodonts".Palaeogeography, Palaeoclimatology, Palaeoecology.502:31–51.Bibcode:2018PPP...502...31P.doi:10.1016/j.palaeo.2018.04.003.hdl:11336/81031.S2CID 134075049.
  122. ^Paolo Citton; Ignacio Díaz-Martínez; Silvina de Valais; Carlos Cónsole-Gonella (2018)."Triassic pentadactyl tracks from the Los Menucos Group (Río Negro province, Patagonia Argentina): possible constraints on the autopodial posture of Gondwanan trackmakers".PeerJ.6 e5358.doi:10.7717/peerj.5358.PMC 6086091.PMID 30123702.
  123. ^Grzegorz Racki; Spencer G. Lucas (2018). "Timing of dicynodont extinction in light of an unusual Late Triassic Polish fauna and Cuvier's approach to extinction".Historical Biology: An International Journal of Paleobiology.32 (4):452–461.doi:10.1080/08912963.2018.1499734.S2CID 91926999.
  124. ^Eva-Maria Bendel; Christian F. Kammerer; Nikolay Kardjilov; Vincent Fernandez; Jörg Fröbisch (2018)."Cranial anatomy of the gorgonopsianCynariops robustus based on CT-reconstruction".PLOS ONE.13 (11) e0207367.Bibcode:2018PLoSO..1307367B.doi:10.1371/journal.pone.0207367.PMC 6261584.PMID 30485338.
  125. ^Rachel N. O'Meara; Wendy Dirks; Agustín G. Martinelli (2018)."Enamel formation and growth in non-mammalian cynodonts".Royal Society Open Science.5 (5) 172293.Bibcode:2018RSOS....572293O.doi:10.1098/rsos.172293.PMC 5990740.PMID 29892415.
  126. ^Marc van den Brandt; Fernando Abdala (2018). "Cranial morphology and phylogenetic analysis ofCynosaurus suppostus (Therapsida, Cynodontia) from the upper Permian of the Karoo Basin, South Africa".Palaeontologia Africana.52:201–221.hdl:10539/24254.
  127. ^Brenen M. Wynd; Brandon R. Peecook; Megan R. Whitney; Christian A. Sidor (2018). "The first occurrence ofCynognathus crateronotus (Cynodontia: Cynognathia) in Tanzania and Zambia, with implications for the age and biostratigraphic correlation of Triassic strata in southern Pangea".Journal of Vertebrate Paleontology.37 (Supplement to No. 6):228–239.doi:10.1080/02724634.2017.1421548.S2CID 89972431.
  128. ^Leandro C. Gaetano; Helke Mocke; Fernando Abdala (2018). "The postcranial anatomy ofDiademodon tetragonus (Cynodontia, Cynognathia)".Journal of Vertebrate Paleontology.38 (3) e1451872.Bibcode:2018JVPal..38E1872G.doi:10.1080/02724634.2018.1451872.hdl:11336/84457.S2CID 90344418.
  129. ^Christian A. Sidor; James A. Hopson (2018). "Cricodon metabolus (Cynodontia: Gomphodontia) from the Triassic Ntawere Formation of northeastern Zambia: patterns of tooth replacement and a systematic review of the Trirachodontidae".Journal of Vertebrate Paleontology.37 (Supplement to No. 6):39–64.doi:10.1080/02724634.2017.1410485.S2CID 89932366.
  130. ^Phil H. Lai; Andrew A. Biewener; Stephanie E. Pierce (2018)."Three-dimensional mobility and muscle attachments in the pectoral limb of the Triassic cynodontMassetognathus pascuali (Romer, 1967)".Journal of Anatomy.232 (3):383–406.doi:10.1111/joa.12766.PMC 5807948.PMID 29392730.
  131. ^Micheli Stefanello; Rodrigo Temp Müller; Leonardo Kerber; Ricardo N. Martínez; Sérgio Dias-da-Silva (2018). "Skull anatomy and phylogenetic assessment of a large specimen of Ecteniniidae (Eucynodontia: Probainognathia) from the Upper Triassic of southern Brazil".Zootaxa.4457 (3):351–378.doi:10.11646/zootaxa.4457.3.1.PMID 30314154.S2CID 52977449.
  132. ^Cristian P. Pacheco; Agustín G. Martinelli; Ane E. B. Pavanatto; Marina B. Soares; Sérgio Dias-da-Silva (2018). "Prozostrodon brasiliensis, a probainognathian cynodont from the Late Triassic of Brazil: second record and improvements on its dental anatomy".Historical Biology: An International Journal of Paleobiology.30 (4):475–485.Bibcode:2018HBio...30..475P.doi:10.1080/08912963.2017.1292423.hdl:11336/94044.S2CID 90730154.
  133. ^Morgan L. Guignard; Agustin G. Martinelli; Marina B. Soares (2018). "Reassessment of the postcranial anatomy ofProzostrodon brasiliensis and implications for postural evolution of non-mammaliaform cynodonts".Journal of Vertebrate Paleontology.38 (5) e1511570.Bibcode:2018JVPal..38E1570G.doi:10.1080/02724634.2018.1511570.hdl:11336/93954.S2CID 92028529.
  134. ^Jennifer Botha-Brink; Marina Bento Soares; Agustín G. Martinelli (2018)."Osteohistology of Late Triassic prozostrodontian cynodonts from Brazil".PeerJ.6 e5029.doi:10.7717/peerj.5029.PMC 6026457.PMID 29967724.
  135. ^José F. Bonaparte; A. W. Crompton (2018). "Origin and relationships of the Ictidosauria to non-mammalian cynodonts and mammals".Historical Biology: An International Journal of Paleobiology.30 (1–2):174–182.Bibcode:2018HBio...30..174B.doi:10.1080/08912963.2017.1329911.S2CID 39187081.
  136. ^Eva A. Hoffman; Timothy B. Rowe (2018). "Jurassic stem-mammal perinates and the origin of mammalian reproduction and growth".Nature.561 (7721):104–108.Bibcode:2018Natur.561..104H.doi:10.1038/s41586-018-0441-3.PMID 30158701.S2CID 205570021.
  137. ^Julien Benoit (2019)."Parental care or opportunism in South African Triassic cynodonts?".South African Journal of Science.115 (3/4): Art. #5589.doi:10.17159/sajs.2019/5589.S2CID 109676327.
  138. ^Júlio C.A. Marsola; Jonathas S. Bittencourt; Átila A.S. Da Rosa; Agustín G. Martinelli; Ana Maria Ribeiro; Jorge Ferigolo; Max C. Langer (2018)."New sauropodomorph and cynodont remains from the Late TriassicSacisaurus site in southern Brazil and its stratigraphic position in the Norian Caturrita Formation".Acta Palaeontologica Polonica.63 (4):653–669.doi:10.4202/app.00492.2018.hdl:1843/39551.S2CID 56233925.
  139. ^Stephan Lautenschlager; Pamela G. Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2018)."The role of miniaturization in the evolution of the mammalian jaw and middle ear".Nature.561 (7724):533–537.Bibcode:2018Natur.561..533L.doi:10.1038/s41586-018-0521-4.PMID 30224748.S2CID 52284325.
  140. ^Lucas E. Fiorelli; Sebastián Rocher; Agustín G. Martinelli; Martín D. Ezcurra; E. Martín Hechenleitner; Miguel Ezpeleta (2018). "Tetrapod burrows from the Middle–Upper Triassic Chañares Formation (La Rioja, Argentina) and its palaeoecological implications".Palaeogeography, Palaeoclimatology, Palaeoecology.496:85–102.Bibcode:2018PPP...496...85F.doi:10.1016/j.palaeo.2018.01.026.hdl:11336/81008.
  141. ^K. E. Jones; K. D. Angielczyk; P. D. Polly; J. J. Head; V. Fernandez; J. K. Lungmus; S. Tulga; S. E. Pierce (2018)."Fossils reveal the complex evolutionary history of the mammalian regionalized spine"(PDF).Science.361 (6408):1249–1252.Bibcode:2018Sci...361.1249J.doi:10.1126/science.aar3126.PMID 30237356.S2CID 52310287.
  142. ^Aaron R. H. LeBlanc; Kirstin S. Brink; Megan R. Whitney; Fernando Abdala; Robert R. Reisz (2018)."Dental ontogeny in extinct synapsids reveals a complex evolutionary history of the mammalian tooth attachment system".Proceedings of the Royal Society B: Biological Sciences.285 (1890) 20181792.doi:10.1098/rspb.2018.1792.PMC 6235047.PMID 30404877.
  143. ^abFrederik Spindler; Ralf Werneburg; Joerg W. Schneider; Ludwig Luthardt; Volker Annacker; Ronny Rößler (2018)."First arboreal 'pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny".PalZ.92 (2):315–364.Bibcode:2018PalZ...92..315S.doi:10.1007/s12542-018-0405-9.S2CID 133846070.
  144. ^Spencer G. Lucas; Larry F. Rinehart; Matthew D. Celeskey (2018)."The oldest specialized tetrapod herbivore: A new eupelycosaur from the Permian of New Mexico, USA".Palaeontologia Electronica.21 (3): Article number 21.3.39.Bibcode:2018PalEl..21..899L.doi:10.26879/899.
  145. ^Christian F. Kammerer; Vladimir Masyutin (2018)."A new therocephalian (Gorynychus masyutinae gen. et sp. nov.) from the Permian Kotelnich locality, Kirov Region, Russia".PeerJ.6 e4933.doi:10.7717/peerj.4933.PMC 5995100.PMID 29900076.
  146. ^Michael O. Day; Roger M. H. Smith; Julien Benoit; Vincent Fernandez; Bruce S. Rubidge (2018). "A new species of burnetiid (Therapsida, Burnetiamorpha) from the early Wuchiapingian of South Africa and implications for the evolutionary ecology of the family Burnetiidae".Papers in Palaeontology.4 (3):453–475.Bibcode:2018PPal....4..453D.doi:10.1002/spp2.1114.S2CID 90992821.
  147. ^Tomasz Sulej; Grzegorz Niedźwiedzki (2019)."An elephant-sized Late Triassic synapsid with erect limbs".Science.363 (6422):78–80.Bibcode:2019Sci...363...78S.doi:10.1126/science.aal4853.PMID 30467179.S2CID 53716186.Archived from the original on 2023-04-26. Retrieved2021-09-03.
  148. ^Christian F. Kammerer; Vladimir Masyutin (2018)."Gorgonopsian therapsids (Nochnitsa gen. nov. andViatkogorgon) from the Permian Kotelnich locality of Russia".PeerJ.6 e4954.doi:10.7717/peerj.4954.PMC 5995105.PMID 29900078.
  149. ^Christian F. Kammerer (2018). "The first skeletal evidence of a dicynodont from the lower Elliot Formation of South Africa".Palaeontologia Africana.52:102–128.hdl:10539/24148.
  150. ^Tomasz Sulej; Grzegorz Niedźwiedzki; Mateusz Tałanda; Dawid Dróżdż; Ewa Hara (2020). "A new early Late Triassic non-mammaliaform eucynodont from Poland".Historical Biology: An International Journal of Paleobiology.32 (1):80–92.Bibcode:2020HBio...32...80S.doi:10.1080/08912963.2018.1471477.S2CID 90448333.
  151. ^Ane Elise Branco Pavanatto; Flávio Augusto Pretto; Leonardo Kerber; Rodrigo Temp Müller; Átila Augusto Stock Da-Rosa; Sérgio Dias-da-Silva (2018). "A new Upper Triassic cynodont-bearing fossiliferous site from southern Brazil, with taphonomic remarks and description of a new traversodontid taxon".Journal of South American Earth Sciences.88:179–196.Bibcode:2018JSAES..88..179P.doi:10.1016/j.jsames.2018.08.016.S2CID 135131520.
  152. ^Lívia Roese Miron; Ane Elise Branco Pavanatto; Flávio Augusto Pretto; Rodrigo Temp Müller; Sérgio Dias-da-Silva; Leonardo Kerber (2020). "Siriusgnathus niemeyerorum (Eucynodontia: Gomphodontia): The youngest South American traversodontid?".Journal of South American Earth Sciences.97 102394.Bibcode:2020JSAES..9702394M.doi:10.1016/j.jsames.2019.102394.S2CID 210628164.
  153. ^Erik A. Sperling; Richard G. Stockey (2018)."The temporal and environmental context of early animal evolution: considering all the ingredients of an 'explosion'".Integrative and Comparative Biology.58 (4):605–622.doi:10.1093/icb/icy088.PMID 30295813.
  154. ^Frances S. Dunn; Alexander G. Liu; Philip C. J. Donoghue (2018)."Ediacaran developmental biology".Biological Reviews.93 (2):914–932.doi:10.1111/brv.12379.PMC 5947158.PMID 29105292.
  155. ^Thomas Alexander Dececchi; Carolyn Greentree; Marc Laflamme; Guy M. Narbonne (2018). "Phylogenetic relationships among the Rangeomorpha: The Importance of outgroup selection and implications for their diversification".Canadian Journal of Earth Sciences.55 (11):1223–1239.Bibcode:2018CaJES..55.1223D.doi:10.1139/cjes-2018-0022.S2CID 133710380.
  156. ^Lily M. Reid; Diego C. García-Bellido; James G. Gehling (2018)."An Ediacaran opportunist? Characteristics of a juvenileDickinsonia costata population from Crisp Gorge, South Australia".Journal of Paleontology.92 (3):313–322.Bibcode:2018JPal...92..313R.doi:10.1017/jpa.2017.142.hdl:2440/132663.S2CID 131766139.
  157. ^Ilya Bobrovskiy; Janet M. Hope; Andrey Ivantsov; Benjamin J. Nettersheim; Christian Hallmann; Jochen J. Brocks (2018)."Ancient steroids establish the Ediacaran fossilDickinsonia as one of the earliest animals".Science.361 (6408):1246–1249.Bibcode:2018Sci...361.1246B.doi:10.1126/science.aat7228.hdl:1885/230014.PMID 30237355.S2CID 52306108.
  158. ^Jennifer F. Hoyal Cuthill; Jian Han (2018)."Cambrian petalonamidStromatoveris phylogenetically links Ediacaran biota to later animals"(PDF).Palaeontology.61 (6):813–823.Bibcode:2018Palgy..61..813H.doi:10.1111/pala.12393.S2CID 54054510.Archived(PDF) from the original on 2022-03-31. Retrieved2019-12-05.
  159. ^Tatsuo Oji; Stephen Q. Dornbos; Keigo Yada; Hitoshi Hasegawa; Sersmaa Gonchigdorj; Takafumi Mochizuki; Hideko Takayanagi; Yasufumi Iryu (2018)."Penetrative trace fossils from the late Ediacaran of Mongolia: early onset of the agronomic revolution".Royal Society Open Science.5 (2) 172250.Bibcode:2018RSOS....572250O.doi:10.1098/rsos.172250.PMC 5830798.PMID 29515908.
  160. ^Luis A. Buatois; John Almond; M. Gabriela Mángano; Sören Jensen; Gerard J. B. Germs (2018)."Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion".Scientific Reports.8 (1) 4514.Bibcode:2018NatSR...8.4514B.doi:10.1038/s41598-018-22859-9.PMC 5852133.PMID 29540817.
  161. ^Zhe Chen; Xiang Chen; Chuanming Zhou; Xunlai Yuan; Shuhai Xiao (2018)."Late Ediacaran trackways produced by bilaterian animals with paired appendages".Science Advances.4 (6) eaao6691.Bibcode:2018SciA....4.6691C.doi:10.1126/sciadv.aao6691.PMC 5990303.PMID 29881773.
  162. ^Felicity J. Coutts; Corey J.A. Bradshaw; Diego C. García-Bellido; James G. Gehling (2018). "Evidence of sensory-driven behavior in the Ediacaran organismParvancorina: Implications and autecological interpretations".Gondwana Research.55:21–29.Bibcode:2018GondR..55...21C.doi:10.1016/j.gr.2017.10.009.hdl:2328/37851.
  163. ^Marc Laflamme; James G. Gehling; Mary L. Droser (2018)."Deconstructing an Ediacaran frond: three-dimensional preservation ofArborea from Ediacara, South Australia".Journal of Paleontology.92 (3):323–335.Bibcode:2018JPal...92..323L.doi:10.1017/jpa.2017.128.S2CID 133800784.
  164. ^Akshay Mehra; Adam Maloof (2018)."Multiscale approach reveals thatCloudina aggregates are detritus and not in situ reef constructions".Proceedings of the National Academy of Sciences of the United States of America.115 (11):E2519 –E2527.Bibcode:2018PNAS..115E2519M.doi:10.1073/pnas.1719911115.PMC 5856547.PMID 29483244.
  165. ^Sara B. Pruss; Clara L. Blättler; Francis A. Macdonald; John A. Higgins (2018). "Calcium isotope evidence that the earliest metazoan biomineralizers formed aragonite shells".Geology.46 (9):763–766.Bibcode:2018Geo....46..763P.doi:10.1130/G45275.1.S2CID 133671917.
  166. ^Rachel Wood; Amelia Penny (2018)."Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan".Proceedings of the Royal Society B: Biological Sciences.285 (1870) 20171938.doi:10.1098/rspb.2017.1938.PMC 5784191.PMID 29321296.
  167. ^David Gold (2018)."Life in changing fluids: A critical appraisal of swimming animals before the Cambrian".Integrative and Comparative Biology.58 (4):677–687.doi:10.1093/icb/icy015.PMID 29726896.
  168. ^Chuan Yang; Xian-Hua Li; Maoyan Zhu; Daniel J. Condon; Junyuan Chen (2018)."Geochronological constraint on the Cambrian Chengjiang biota, South China"(PDF).Journal of the Geological Society.175 (4):659–666.Bibcode:2018JGSoc.175..659Y.doi:10.1144/jgs2017-103.S2CID 135091168.Archived(PDF) from the original on 2022-10-09. Retrieved2019-12-05.
  169. ^Julien Kimmig; Brian R. Pratt (2018). "Coprolites in the Ravens Throat River Lagerstätte of northwestern Canada: implications for the middle Cambrian food web".PALAIOS.33 (4):125–140.Bibcode:2018Palai..33..125K.doi:10.2110/palo.2017.038.hdl:1808/26559.S2CID 134429364.
  170. ^Zongjun Yin; Duoduo Zhao; Bing Pan; Fangchen Zhao; Han Zeng; Guoxiang Li; David J. Bottjer; Maoyan Zhu (2018)."Early Cambrian animal diapause embryos revealed by X-ray tomography".Geology.46 (5):387–390.Bibcode:2018Geo....46..387Y.doi:10.1130/G40081.1.
  171. ^J. Alex Zumberge; Gordon D. Love; Paco Cárdenas; Erik A. Sperling; Sunithi Gunasekera; Megan Rohrssen; Emmanuelle Grosjean; John P. Grotzinger; Roger E. Summons (2018)."Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animals".Nature Ecology & Evolution.2 (11):1709–1714.Bibcode:2018NatEE...2.1709Z.doi:10.1038/s41559-018-0676-2.PMC 6589438.PMID 30323207.
  172. ^Joseph P. Botting; Lucy A. Muir; Wenhui Wang; Wenkun Qie; Jingqiang Tan; Linna Zhang; Yuandong Zhang (2018). "Sponge-dominated offshore benthic ecosystems across South China in the aftermath of the end-Ordovician mass extinction".Gondwana Research.61:150–171.Bibcode:2018GondR..61..150B.doi:10.1016/j.gr.2018.04.014.S2CID 134827223.
  173. ^Astrid Schuster; Sergio Vargas; Ingrid S. Knapp; Shirley A. Pomponi; Robert J. Toonen; Dirk Erpenbeck; Gert Wörheide (2018)."Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth-death clock model".BMC Evolutionary Biology.18 (1): 114.Bibcode:2018BMCEE..18..114S.doi:10.1186/s12862-018-1230-1.PMC 6052604.PMID 30021516.
  174. ^Ben J. Slater; Sebastian Willman; Graham E. Budd; John S. Peel (2018). "Widespread preservation of small carbonaceous fossils (SCFs) in the early Cambrian of North Greenland".Geology.46 (2):107–110.Bibcode:2018Geo....46..107S.doi:10.1130/G39788.1.
  175. ^Christian B. Skovsted; Timothy P. Topper (2018)."Mobergellans from the early Cambrian of Greenland and Labrador: new morphological details and implications for the functional morphology of mobergellans".Journal of Paleontology.92 (1):71–79.Bibcode:2018JPal...92...71S.doi:10.1017/jpa.2017.41.S2CID 133828207.
  176. ^Yuanlong Zhao; Mingkun Wang; Steven T. LoDuca; Xinglian Yang; Yuning Yang; Yujuan Liu; Xin Cheng (2018). "Paleoecological significance of complex fossil associations of the eldonioidPararotadiscus guizhouensis with other faunal members of the Kaili Biota (Stage 5, Cambrian, South China)".Journal of Paleontology.92 (6):972–981.Bibcode:2018JPal...92..972Z.doi:10.1017/jpa.2018.41.S2CID 133814969.
  177. ^Leanne Chambers; Danita Brandt (2018). "Explaining gregarious behaviour inBanffia constricta from the Middle Cambrian Burgess Shale, British Columbia".Lethaia.51 (1):120–125.Bibcode:2018Letha..51..120C.doi:10.1111/let.12231.
  178. ^Yujing Li; Mark Williams; Sarah E. Gabbott; Ailin Chen; Peiyun Cong; Xianguang Hou (2018)."The enigmatic metazoanYuyuanozoon magnificissimi from the early Cambrian Chengjiang Biota, Yunnan Province, South China".Journal of Paleontology.92 (6):1081–1091.Bibcode:2018JPal...92.1081L.doi:10.1017/jpa.2018.18.hdl:2381/41417.S2CID 134315161.
  179. ^Michael Foote; Roger A. Cooper; James S. Crampton; Peter M. Sadler (2018)."Diversity-dependent evolutionary rates in early Palaeozoic zooplankton".Proceedings of the Royal Society B: Biological Sciences.285 (1873) 20180122.doi:10.1098/rspb.2018.0122.PMC 5832717.PMID 29491177.
  180. ^James S. Crampton; Stephen R. Meyers; Roger A. Cooper; Peter M. Sadler; Michael Foote; David Harte (2018)."Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles".Proceedings of the National Academy of Sciences of the United States of America.115 (22):5686–5691.Bibcode:2018PNAS..115.5686C.doi:10.1073/pnas.1714342115.PMC 5984487.PMID 29760070.
  181. ^Shixue Hu; Bernd-D. Erdtmann; Michael Steiner; Yuandong Zhang; Fangchen Zhao; Zhiliang Zhang; Jian Han (2018)."Malongitubus: a possible pterobranch hemichordate from the early Cambrian of South China".Journal of Paleontology.92 (1):26–32.Bibcode:2018JPal...92...26H.doi:10.1017/jpa.2017.134.S2CID 134247593.
  182. ^Khaoula Kouraiss; Khadija El Hariri; Abderrazak El Albani; Abdelfattah Azizi; Arnaud Mazurier; Jean Vannier (2018). "X-ray microtomography applied to fossils preserved in compression: Palaeoscolescid worms from the Lower Ordovician Fezouata Shale".Palaeogeography, Palaeoclimatology, Palaeoecology.508:48–58.Bibcode:2018PPP...508...48K.doi:10.1016/j.palaeo.2018.07.012.S2CID 135277318.
  183. ^Bing Pan; Glenn A. Brock; Christian B.Skovsted; Marissa J. Betts; Timothy P. Topper; Guoxiang Li (2018)."Paterimitra pyramidalis Laurie, 1986, the first tommotiid discovered from the early Cambrian of North China".Gondwana Research.63:179–185.Bibcode:2018GondR..63..179P.doi:10.1016/j.gr.2018.05.014.S2CID 134139899.
  184. ^Andrey Yu. Zhuravlev; Rachel A. Wood (2018)."The two phases of the Cambrian Explosion".Scientific Reports.8 (1) 16656.Bibcode:2018NatSR...816656Z.doi:10.1038/s41598-018-34962-y.PMC 6226464.PMID 30413739.
  185. ^Daniel Fontana Ferreira Cardia; Reinaldo J. Bertini; Lucilene Granuzzio Camossi; Luiz Antonio Letizio (2018)."The first record of Ascaridoidea eggs discovered in Crocodyliformes hosts from the Upper Cretaceous of Brazil".Revista Brasileira de Paleontologia.21 (3):238–244.Bibcode:2018RvBrP..21..238C.doi:10.4072/rbp.2018.3.04.S2CID 134803965.
  186. ^Stephen Pates; Allison C. Daley (2017)."Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada".Papers in Palaeontology.3 (3):461–470.Bibcode:2017PPal....3..461P.doi:10.1002/spp2.1084.S2CID 135026011.
  187. ^abJosé A. Gámez Vintaned; Andrey Y. Zhuravlev (2018)."Comment on "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontanStanleycaris" by Stephen Pates, Allison C. Daley, and Javier Ortega-Hernández".Acta Palaeontologica Polonica.63 (1):103–104.doi:10.4202/app.00335.2017 (inactive 4 July 2025).{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  188. ^abcStephen Pates; Allison C. Daley; Javier Ortega-Hernández (2018)."Reply to Comment on "Aysheaia prolata from the Utah Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontanStanleycaris" with the formal description ofStanleycaris".Acta Palaeontologica Polonica.63 (1):105–110.doi:10.4202/app.00443.2017.S2CID 55704049.
  189. ^Allison C. Daley; Jonathan B. Antcliffe; Harriet B. Drage; Stephen Pates (2018)."Early fossil record of Euarthropoda and the Cambrian Explosion".Proceedings of the National Academy of Sciences of the United States of America.115 (21):5323–5331.Bibcode:2018PNAS..115.5323D.doi:10.1073/pnas.1719962115.PMC 6003487.PMID 29784780.
  190. ^James F. Fleming; Reinhardt Møbjerg Kristensen; Martin Vinther Sørensen; Tae-Yoon S. Park; Kazuharu Arakawa; Mark Blaxter; Lorena Rebecchi; Roberto Guidetti; Tom A. Williams; Nicholas W. Roberts; Jakob Vinther; Davide Pisani (2018)."Molecular palaeontology illuminates the evolution of ecdysozoan vision".Proceedings of the Royal Society B: Biological Sciences.285 (1892) 20182180.doi:10.1098/rspb.2018.2180.PMC 6283943.PMID 30518575.
  191. ^Jianni Liu; Rudy Lerosey-Aubril; Michael Steiner; Jason A. Dunlop; Degan Shu; John R. Paterson (2018)."Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan".National Science Review.5 (6):863–869.doi:10.1093/nsr/nwy057.
  192. ^K. A. Sheppard; D. E. Rival; J.-B. Caron (2018)."On the hydrodynamics ofAnomalocaris tail fins".Integrative and Comparative Biology.58 (4):703–711.doi:10.1093/icb/icy014.hdl:1974/22737.PMID 29697774.
  193. ^Richard A. Robison; Beverley Cobb Richards (1981). "Larger bivalve arthropods from the Middle Cambrian of Utah".The University of Kansas Paleontological Contributions.106:1–19.hdl:1808/3757.
  194. ^Rudy Lerosey-Aubril; Stephen Pates (2018)."New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton".Nature Communications.9 (1) 3774.Bibcode:2018NatCo...9.3774L.doi:10.1038/s41467-018-06229-7.PMC 6138677.PMID 30218075.
  195. ^Javier Ortega-Hernández; Dongjing Fu; Xingliang Zhang; Degan Shu (2018)."Gut glands illuminate trunk segmentation in Cambrian fuxianhuiids".Current Biology.28 (4):R146 –R147.Bibcode:2018CBio...28.R146O.doi:10.1016/j.cub.2018.01.040.PMID 29462577.S2CID 3437933.
  196. ^Jianni Liu; Michael Steiner; Jason A. Dunlop; Degan Shu (2018)."Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids".Proceedings of the Royal Society B: Biological Sciences.285 (1876) 20180051.doi:10.1098/rspb.2018.0051.PMC 5904315.PMID 29643211.
  197. ^Dongjing Fu; Javier Ortega-Hernández; Allison C. Daley; Xingliang Zhang; Degan Shu (2018)."Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China".BMC Evolutionary Biology.18 (1): 147.Bibcode:2018BMCEE..18..147F.doi:10.1186/s12862-018-1262-6.PMC 6162911.PMID 30268090.
  198. ^Ailin Chen; Hong Chen; David A. Legg; Yu Liu; Xian-guang Hou (2018). "A redescription ofLiangwangshania biloba Chen, 2005, from the Chengjiang biota (Cambrian, China), with a discussion of possible sexual dimorphism in fuxianhuiid arthropods".Arthropod Structure & Development.47 (5):552–561.Bibcode:2018ArtSD..47..552C.doi:10.1016/j.asd.2018.08.001.PMID 30125735.S2CID 52053402.
  199. ^Tae-Yoon S. Park; Ji-Hoon Kihm; Jusun Woo; Changkun Park; Won Young Lee; M. Paul Smith; David A. T. Harper; Fletcher Young; Arne T. Nielsen; Jakob Vinther (2018)."Brain and eyes ofKerygmachela reveal protocerebral ancestry of the panarthropod head".Nature Communications.9 (1) 1019.Bibcode:2018NatCo...9.1019P.doi:10.1038/s41467-018-03464-w.PMC 5844904.PMID 29523785.
  200. ^Mike B. Meyer; G. Robert Ganis; Jacalyn M. Wittmer; Jan A. Zalasiewicz; Kenneth De Baets (2018)."A Late Ordovician planktic assemblage with exceptionally preserved soft-bodied problematica from the Martinsburg Formation, Pennsylvania".PALAIOS.33 (1):36–46.Bibcode:2018Palai..33...36M.doi:10.2110/palo.2017.036.hdl:2381/41455.S2CID 134333149.
  201. ^S. L. Cobain; D. M. Hodgson; J. Peakall; P. B. Wignall; M. R. D. Cobain (2018)."A new macrofaunal limit in the deep biosphere revealed by extreme burrow depths in ancient sediments".Scientific Reports.8 (1) 261.Bibcode:2018NatSR...8..261C.doi:10.1038/s41598-017-18481-w.PMC 5762628.PMID 29321598.
  202. ^Zhi-liang Zhang; Christian B. Skovsted; Zhi-fei Zhang (2018)."A hyolithid without helens preserving the oldest hyolith muscle scars; palaeobiology ofParamicrocornus from the Shujingtuo Formation (Cambrian Series 2) of South China".Palaeogeography, Palaeoclimatology, Palaeoecology.489:1–14.Bibcode:2018PPP...489....1Z.doi:10.1016/j.palaeo.2017.07.021.S2CID 135308961.
  203. ^Hai-Jing Sun; Fang-Chen Zhao; Rong-Qin Wen; Han Zeng; Jin Peng (2018). "Feeding strategy and locomotion of Cambrian hyolithides".Palaeoworld.27 (3):334–342.doi:10.1016/j.palwor.2018.03.003.S2CID 134939616.
  204. ^Vivianne Berg-Madsen; Martin Valent; Jan Ove R. Ebbestad (2018)."An orthothecid hyolith with a digestive tract from the early Cambrian of Bornholm, Denmark".GFF.140 (1):25–37.Bibcode:2018GFF...140...25B.doi:10.1080/11035897.2018.1432680.S2CID 51792799.
  205. ^Jongsun Hong; Jae-Ryong Oh; Jeong-Hyun Lee; Suk-Joo Choh; Dong-Jin Lee (2018). "The earliest evolutionary link of metazoan bioconstruction: Laminar stromatoporoid–bryozoan reefs from the Middle Ordovician of Korea".Palaeogeography, Palaeoclimatology, Palaeoecology.492:126–133.Bibcode:2018PPP...492..126H.doi:10.1016/j.palaeo.2017.12.018.
  206. ^Michał Zatoń; Grzegorz Niedźwiedzki; Michał Rakociński; Henning Blom; Benjamin P. Kear (2018). "Earliest Triassic metazoan bioconstructions in East Greenland reveal a pioneering benthic community from immediately after the end-Permian mass extinction".Global and Planetary Change.167:87–98.doi:10.1016/j.gloplacha.2018.05.009.S2CID 134625665.
  207. ^Raymond R. Rogers; Kristina A. Curry Rogers; Brian C. Bagley; James J. Goodin; Joseph H. Hartman; Jeffrey T. Thole; Michał Zatoń (2018). "Pushing the record of trematode parasitism of bivalves upstream and back to the Cretaceous".Geology.46 (5):431–434.Bibcode:2018Geo....46..431R.doi:10.1130/G40035.1.
  208. ^Elizabeth M. Harper; J. Alistair Crame; Caroline E. Sogot (2018).""Business as usual": Drilling predation across the K-Pg mass extinction event in Antarctica".Palaeogeography, Palaeoclimatology, Palaeoecology.498:115–126.Bibcode:2018PPP...498..115H.doi:10.1016/j.palaeo.2018.03.009.S2CID 134360685.Archived from the original on 2020-09-11. Retrieved2019-12-05.
  209. ^Xueqian Feng; Zhong-Qiang Chen; David J. Bottjer; Margaret L. Fraiser; Yan Xu; Mao Luo (2018). "Additional records of ichnogenusRhizocorallium from the Lower and Middle Triassic, South China: Implications for biotic recovery after the end-Permian mass extinction".GSA Bulletin.130 (7–8):1197–1215.Bibcode:2018GSAB..130.1197F.doi:10.1130/B31715.1.
  210. ^Aaron O'Dea; Brigida De Gracia; Blanca Figuerola; Santosh Jagadeeshan (2018)."Young species of cupuladriid bryozoans occupied new Caribbean habitats faster than old species".Scientific Reports.8 (1) 12168.Bibcode:2018NatSR...812168O.doi:10.1038/s41598-018-30670-9.PMC 6093879.PMID 30111864.
  211. ^abcdAnna V. Koromyslova; Silviu O. Martha; Alexey V. Pakhnevich (2018). "The internal morphology ofAcoscinopleura Voigt, 1956 (Cheilostomata, Bryozoa) from the Campanian–Maastrichtian of Central and Eastern Europe".PalZ.92 (2):241–266.Bibcode:2018PalZ...92..241K.doi:10.1007/s12542-017-0385-1.S2CID 135386908.
  212. ^abAnna V. Koromyslova; Evgeny Yu. Baraboshkin; Silviu O. Martha (2018). "Late Campanian to late Maastrichtian bryozoans encrusting on belemnite rostra from the Aktolagay Plateau in western Kazakhstan".Geobios.51 (4):307–333.Bibcode:2018Geobi..51..307K.doi:10.1016/j.geobios.2018.06.001.S2CID 134292905.
  213. ^abPaul D. Taylor; Silviu O. Martha; Dennis P. Gordon (2018). "Synopsis of 'onychocellid' cheilostome bryozoan genera".Journal of Natural History.52 (25–26):1657–1721.Bibcode:2018JNatH..52.1657T.doi:10.1080/00222933.2018.1481235.S2CID 89706861.
  214. ^Jie Yang; Javier Ortega-Hernández; David A. Legg; Tian Lan; Jin-bo Hou; Xi-guang Zhang (2018)."Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods".Nature Communications.9 (1) 470.Bibcode:2018NatCo...9..470Y.doi:10.1038/s41467-017-02754-z.PMC 5794847.PMID 29391458.
  215. ^Pei-Yun Cong; Thomas H. P. Harvey; Mark Williams; David J. Siveter; Derek J. Siveter; Sarah E. Gabbott; Yu-Jing Li; Fan Wei; Xian-Guang Hou (2018)."Naked chancelloriids from the lower Cambrian of China show evidence for sponge-type growth".Proceedings of the Royal Society B: Biological Sciences.285 (1881) 20180296.doi:10.1098/rspb.2018.0296.PMC 6030521.PMID 29925613.
  216. ^abJun Zhao; Guo-Biao Li; Paul A. Selden (2018). "New well-preserved scleritomes of Chancelloriida from early Cambrian Guanshan Biota, eastern Yunnan, China".Journal of Paleontology.92 (6):955–971.Bibcode:2018JPal...92..955Z.doi:10.1017/jpa.2018.43.S2CID 119066659.
  217. ^Juan Luis Suárez Andrés; Patrick N. Wyse Jackson (2018). "First report of a Palaeozoic fenestrate bryozoan with an articulated growth habit".Journal of Iberian Geology.44 (2):273–283.Bibcode:2018JIbG...44..273S.doi:10.1007/s41513-018-0054-6.S2CID 189934400.
  218. ^abcdLeandro M. Pérez; Juan López-Gappa; Miguel Griffin (2018). "Taxonomic status of some species of Aspidostomatidae (Bryozoa, Cheilostomata) from the Oligocene and Miocene of Patagonia (Argentina)".Journal of Paleontology.92 (3):432–441.Bibcode:2018JPal...92..432P.doi:10.1017/jpa.2017.143.hdl:11336/94085.S2CID 134620001.
  219. ^Yunhuan Liu; Qi Wang; Tiequan Shao; Huaqiao Zhang; Jiachen Qin; Li Chen; Yongchun Liang; Cheng Chen; Jiaqi Xue; Xiaowen Liu (2018). "New material of three-dimensionally phosphatized and microscopic cycloneuralians from the Cambrian Paibian Stage of South China".Journal of Paleontology.92 (1):87–98.Bibcode:2018JPal...92...87L.doi:10.1017/jpa.2017.40.S2CID 134706282.
  220. ^Paul D. Taylor; Soledad Brezina (2018). "A new Cenozoic cyclostome bryozoan genus from Argentina and New Zealand: strengthening the biogeographical links between South America and Australasia".Alcheringa: An Australasian Journal of Palaeontology.42 (3):441–446.Bibcode:2018Alch...42..441T.doi:10.1080/03115518.2018.1432073.S2CID 133874253.
  221. ^Michael Wachtler; Chiara Ghidoni (2018)."A fossil polychaete worm from the Illyrian of the Dolomites (Northern Italy)". In Thomas Perner; Michael Wachtler (eds.).Some new and exciting Triassic Archosauria from the Dolomites (Northern Italy). pp. 17–22.
  222. ^Alfons H.M. VandenBerg (2018). "Fragmentation as a novel propagation strategy in an Early Ordovician graptolite".Alcheringa: An Australasian Journal of Palaeontology.42 (1):1–9.Bibcode:2018Alch...42....1V.doi:10.1080/03115518.2017.1395074.S2CID 133787895.
  223. ^José Antonio Gámez Vintaned; Eladio Liñán; David Navarro; Andrey Yu. Zhuravlev (2018). "The oldest Cambrian skeletal fossils of Spain (Cadenas Ibéricas, Aragón)".Geological Magazine.155 (7):1465–1474.Bibcode:2018GeoM..155.1465G.doi:10.1017/S0016756817000358.S2CID 134018462.
  224. ^E.N. Malysheva (2018)."A new sphinctozoan species (Porifera),Colospongia lenis sp. nov., from the Upper Permian reefs of southern Primorye".Paleontological Journal.52 (3):231–233.Bibcode:2018PalJ...52..231M.doi:10.1134/S0031030118030085.S2CID 90545525.
  225. ^Juan Carlos Gutiérrez-Marco; Olev Vinn (2018). "Cornulitids (tubeworms) from the Late OrdovicianHirnantia fauna of Morocco".Journal of African Earth Sciences.137:61–68.Bibcode:2018JAfES.137...61G.doi:10.1016/j.jafrearsci.2017.10.005.
  226. ^Haijing Sun; John M. Malinky; Maoyan Zhu; Diying Huang (2018)."Palaeobiology of orthothecide hyoliths from the Cambrian Manto Formation of Hebei Province, North China".Acta Palaeontologica Polonica.63 (1):87–101.doi:10.4202/app.00413.2017.S2CID 56473799.
  227. ^Andrej Ernst; Karl Krainer; Spencer G. Lucas (2018). "Bryozoan fauna of the Lake Valley Formation (Mississippian), New Mexico".Journal of Paleontology.92 (4):577–595.Bibcode:2018JPal...92..577E.doi:10.1017/jpa.2017.146.S2CID 135266996.
  228. ^abcdefJohn S. Peel; Sebastian Willman (2018). "The Buen Formation (Cambrian Series 2) biota of North Greenland".Papers in Palaeontology.4 (3):381–432.Bibcode:2018PPal....4..381P.doi:10.1002/spp2.1112.S2CID 134539597.
  229. ^Petr Štorch; Michael J. Melchin (2018)."Lower Aeronian triangulate monograptids of the genusDemirastrites Eisel, 1912: biostratigraphy, palaeobiogeography, anagenetic changes and speciation".Bulletin of Geosciences.93 (4):513–537.doi:10.3140/bull.geosci.1731.S2CID 73575630.
  230. ^abA. Perejón; M. Rodríguez-Martínez; E. Moreno-Eiris; S. Menéndez; J. Reitner (2018). "First microbial-archaeocyathan boundstone record from early Cambrian erratic cobbles in glacial diamictite deposits of Namibia (Dwyka Group, Carboniferous)".Journal of Systematic Palaeontology.17 (11):881–910.doi:10.1080/14772019.2018.1481151.S2CID 92032464.
  231. ^Alfons H.M. Vandenberg (2018). "Didymograptellus kremastus n. sp., a new name for the Chewtonian (mid-Floian, Lower Ordovician) graptoliteD. protobifidussensu Benson & Keble, 1935,non Elles, 1933".Alcheringa: An Australasian Journal of Palaeontology.42 (2):258–267.Bibcode:2018Alch...42..258V.doi:10.1080/03115518.2017.1398347.S2CID 134425523.
  232. ^abcEmanuela Di Martino; Silviu O. Martha; Paul D. Taylor (2018). "The Madagascan Maastrichtian bryozoans of Ferdinand Canu – Systematic revision and scanning electron microscopic study".Annales de Paléontologie.104 (2):101–128.Bibcode:2018AnPal.104..101D.doi:10.1016/j.annpal.2018.04.001.
  233. ^abSeyed Hamid Vaziri; Mahmoud Reza Majidifard; Marc Laflamme (2018)."Diverse assemblage of Ediacaran fossils from central Iran".Scientific Reports.8 (1) 5060.Bibcode:2018NatSR...8.5060V.doi:10.1038/s41598-018-23442-y.PMC 5864923.PMID 29567986.
  234. ^abcdeJeanninny Carla Comniskey; Renato Pirani Ghilardi (2018)."Devonian Tentaculitoidea of the Malvinokaffric Realm of Brazil, Paraná Basin".Palaeontologia Electronica.21 (2): Article number 21.2.21A.doi:10.26879/712.
  235. ^abMatthew H. Dick; Chika Sakamoto; Toshifumi Komatsu (2018). "Cheilostome Bryozoa from the Upper Cretaceous Himenoura Group, Kyushu, Japan".Paleontological Research.22 (3):239–264.Bibcode:2018PalRe..22..239D.doi:10.2517/2017PR022.S2CID 134160944.
  236. ^abcJobst Wendt (2018). "The first tunicate with a calcareous exoskeleton (Upper Triassic, northern Italy)".Palaeontology.61 (4):575–595.Bibcode:2018Palgy..61..575W.doi:10.1111/pala.12356.S2CID 135456629.
  237. ^Karma Nanglu; Jean-Bernard Caron (2018)."A new Burgess Shale polychaete and the origin of the annelid head revisited".Current Biology.28 (2): 319–326.e1.Bibcode:2018CBio...28E.319N.doi:10.1016/j.cub.2017.12.019.PMID 29374441.S2CID 2553089.
  238. ^Jin Guo; Stephen Pates; Peiyun Cong; Allison C. Daley; Gregory D. Edgecombe; Taimin Chen; Xianguang Hou (2018)."A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota".Papers in Palaeontology.5 (1):99–110.Bibcode:2019PPal....5...99G.doi:10.1002/spp2.1231.S2CID 134909330.Archived from the original on 2020-10-02. Retrieved2020-08-24.
  239. ^Stephen Pates; Allison C. Daley (2019)."The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts".Geological Magazine.156 (7):1233–1246.Bibcode:2019GeoM..156.1233P.doi:10.1017/S0016756818000547.S2CID 134299859.
  240. ^Qiang Ou; Georg Mayer (2018)."A Cambrian unarmoured lobopodian, †Lenisambulatrix humboldti gen. et sp. nov., compared with new material of †Diania cactiformis".Scientific Reports.8 (1) 13667.Bibcode:2018NatSR...813667O.doi:10.1038/s41598-018-31499-y.PMC 6147921.PMID 30237414.
  241. ^abcdUrszula Hara; Thomas Mörs; Jonas Hagström; Marcelo A. Reguero (2018)."Eocene bryozoan assemblages from the La Meseta Formation of Seymour Island, Antarctica".Geological Quarterly.62 (3):705–728.doi:10.7306/gq.1432.S2CID 133717118.
  242. ^Joseph P. Botting; Yuandong Zhang; Lucy A. Muir (2018)."A candidate stem-group rossellid (Porifera, Hexactinellida) from the latest Ordovician Anji Biota, China".Bulletin of Geosciences.93 (3):275–285.doi:10.3140/bull.geosci.1706.S2CID 133988966.
  243. ^abEnis Kemal Sagular; Zeki Ünal Yümün; Engin Meriç (2018). "New didemnid ascidian spicule records calibrated to the nannofossil data chronostratigraphically in the Quaternary marine deposits of Lake İznik (NW Turkey) and their paleoenvironmental interpretations".Quaternary International.486:143–155.Bibcode:2018QuInt.486..143S.doi:10.1016/j.quaint.2017.08.060.S2CID 133996845.
  244. ^Marcelo G. Carrera; Juan Jose Rustán; N. Emilio Vaccari; Miguel Ezpeleta (2018)."A new Mississippian hexactinellid sponge from the western Gondwana: Taxonomic and paleobiogeographic implications".Acta Palaeontologica Polonica.63 (1):63–70.doi:10.4202/app.00403.2017.hdl:11336/88317.
  245. ^Z. A. Tolokonnikova; E. S. Ponomarenko (2018). "The first data on bryozoans from the Lyaiol Formation (Upper Devonian, Upper Frasnian) in South Timan".Paleontological Journal.52 (6):593–598.Bibcode:2018PalJ...52..593T.doi:10.1134/S0031030118060114.S2CID 91826922.
  246. ^Ján Schlögl; Tomáš Kočí; Manfred Jäger; Tomasz Segit; Jan Sklenář; Driss Sadki; Mounsif Ibnoussina; Adam Tomašových (2018). "Tempestitic shell beds formed by a new serpulid polychaete from the Bajocian (Middle Jurassic) of the Central High Atlas (Morocco)".PalZ.92 (2):219–240.Bibcode:2018PalZ...92..219S.doi:10.1007/s12542-017-0381-5.S2CID 133913555.
  247. ^Lucy A. Muir; Joseph P. Botting; Steven N. A. Walker; James D. Schiffbauer; Breandán Anraoi MacGabhann (2018). "Onuphionella corusca sp. nov.: an early Cambrian-type agglutinated tube from Upper Ordovician strata of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.).The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. Vol. 485. The Geological Society of London. pp. 297–309.doi:10.1144/SP485.7.S2CID 220277313.
  248. ^Haijing Sun; Martin R. Smith; Han Zeng; Fangchen Zhao; Guoxiang Li; Maoyan Zhu (2018)."Hyoliths with pedicles illuminate the origin of the brachiopod body plan".Proceedings of the Royal Society B: Biological Sciences.285 (1887) 20181780.doi:10.1098/rspb.2018.1780.PMC 6170810.PMID 30257914.
  249. ^Juan López-Gappa; Leandro Martín Pérez; Miguel Griffin (2018). "First fossil occurrence of the genusPlatychelyna Hayward and Thorpe (Bryozoa: Cheilostomata)".Ameghiniana.55 (5):607–613.Bibcode:2018Amegh..55..607L.doi:10.5710/AMGH.11.06.2018.3188.hdl:11336/93942.S2CID 133686687.
  250. ^abcBen J. Slater; Thomas H. P. Harvey; Nicholas J. Butterfield (2018)."Small carbonaceous fossils (SCFs) from the Terreneuvian (lower Cambrian) of Baltica".Palaeontology.61 (3):417–439.Bibcode:2018Palgy..61..417S.doi:10.1111/pala.12350.hdl:2381/41261.S2CID 55788255.
  251. ^abYunhuan Liu; Jiachen Qin; Qi Wang; Andreas Maas; Baichuan Duan; Yanan Zhang; Hu Zhang; Tiequan Shao; Huaqiao Zhang (2018). "New armoured scalidophorans (Ecdysozoa, Cycloneuralia) from the Cambrian Fortunian Zhangjiagou Lagerstätte, South China".Papers in Palaeontology.5 (2):241–260.doi:10.1002/spp2.1239.S2CID 196672360.
  252. ^Pei-Yun Cong; Gregory D. Edgecombe; Allison C. Daley; Jin Guo; Stephen Pates; Xian-Guang Hou (2018)."New radiodonts with gnathobase-like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta".Papers in Palaeontology.4 (4):605–621.Bibcode:2018PPal....4..605C.doi:10.1002/spp2.1219.S2CID 90258934.
  253. ^L. A. Viskova; A. V. Pakhnevich (2018). "Bryozoa (Stenolaemata) from the upper Callovian (Middle Jurassic) of the Moscow Region".Paleontological Journal.52 (6):599–609.Bibcode:2018PalJ...52..599V.doi:10.1134/S0031030118060126.S2CID 195302239.
  254. ^abcAnna V. Koromyslova; Paul D. Taylor; Silviu O. Martha; Matthew Riley (2018)."Rhagasostoma (Bryozoa) from the Late Cretaceous of Eurasia: taxonomic revision, stratigraphy and palaeobiogeography".European Journal of Taxonomy (490):1–66.doi:10.5852/ejt.2018.490.S2CID 134102826.
  255. ^Yong Yi Zhen (2018)."Conodonts, corals and stromatoporoids from Late Ordovician and latest Silurian allochthonous limestones in the Cuga Burga Volcanics of central western New South Wales".Proceedings of the Linnean Society of New South Wales.140:265–294.
  256. ^abcJohn S. Peel (2018)."Sponge spicules from the Holm Dal Formation (Cambrian Series 3, Guzhangian) of North Greenland (Laurentia)".GFF.140 (4):306–317.Bibcode:2018GFF...140..306P.doi:10.1080/11035897.2018.1479444.S2CID 135037720.
  257. ^abRossana Sanfilippo; Antonietta Rosso; Agatino Reitano; Viola Alfio; Gianni Insacco (2018)."New serpulid polychaetes from the Permian of western Sicily".Acta Palaeontologica Polonica.63 (3):579–584.doi:10.4202/app.00448.2017.S2CID 54871456.
  258. ^Yuning Yang; Xingliang Zhang; Yuanlong Zhao; Yiru Qi; Linhao Cui (2018). "New paleoscolecid worms from the early Cambrian north margin of the Yangtze Platform, South China".Journal of Paleontology.92 (1):49–58.Bibcode:2018JPal...92...49Y.doi:10.1017/jpa.2017.50.S2CID 134657064.
  259. ^Paul D. Taylor; Emanuela Di Martino (2018). "Sonarina tamilensis n. gen., n. sp., an unusual cheilostome bryozoan from the Late Cretaceous of southern India".Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.288 (1):79–85.Bibcode:2018NJGPA.288...79T.doi:10.1127/njgpa/2018/0724.
  260. ^Jean-Bernard Caron;Robert R. Gaines; M. Gabriela Mángano; Michael Streng; Allison C. Daley (2010)."A new Burgess Shale–type assemblage from the "thin" Stephen Formation of the southern Canadian Rockies".Geology.38 (9):811–814.Bibcode:2010Geo....38..811C.doi:10.1130/G31080.1.Archived from the original on 2023-12-07. Retrieved2019-12-05.
  261. ^John S. Peel (2019)."Tarimspira from the Cambrian (Series 2, Stage 4) of Laurentia (Greenland): extending the skeletal record of paraconodontid vertebrates".Journal of Paleontology.93 (1):115–125.Bibcode:2019JPal...93..115P.doi:10.1017/jpa.2018.68.S2CID 134345229.
  262. ^Derek J. Siveter; Derek E. G. Briggs; David J. Siveter; Mark D. Sutton; David Legg (2018)."A three-dimensionally preserved lobopodian from the Herefordshire (Silurian) Lagerstätte, UK".Royal Society Open Science.5 (8) 172101.Bibcode:2018RSOS....572101S.doi:10.1098/rsos.172101.PMC 6124121.PMID 30224988.
  263. ^Shimei Pan; Qinglai Feng; Shan Chang (2018)."Small shelly fossils from the Cambrian Terreneuvian Yanjiahe Formation, Yichang, Hubei Province, China".Acta Micropalaeontologica Sinica.35 (1):30–40.Archived from the original on 2018-04-27. Retrieved2018-04-26.
  264. ^Orabi H. Orabi; Mahmoud Faris; Nageh A. Obaidalla; Amr S. Zaki (2018)."Impacts of ocean acidification on planktonic foraminifera: a case study from the Cretaceous Paleocene transition at the Farafra Oasis, Egypt".Revue de Paléobiologie, Genève.37 (1):29–40.
  265. ^Ignacio Arenillas; José A. Arz; Vicente Gilabert (2018)."Blooms of aberrant planktic foraminifera across the K/Pg boundary in the Western Tethys: causes and evolutionary implications".Paleobiology.44 (3):460–489.Bibcode:2018Pbio...44..460A.doi:10.1017/pab.2018.16.S2CID 73621620.
  266. ^Daniela N. Schmidt; Ellen Thomas; Elisabeth Authier; David Saunders; Andy Ridgwell (2018)."Strategies in times of crisis—insights into the benthic foraminiferal record of the Palaeocene–Eocene Thermal Maximum".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.376 (2130) 20170328.Bibcode:2018RSPTA.37670328S.doi:10.1098/rsta.2017.0328.PMC 6127389.PMID 30177568.
  267. ^Gabriela J. Arreguín-Rodríguez; Ellen Thomas; Simon D'haenens; Robert P. Speijer; Laia Alegret (2018)."Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world".PLOS ONE.13 (2) e0193167.Bibcode:2018PLoSO..1393167A.doi:10.1371/journal.pone.0193167.PMC 5825042.PMID 29474429.
  268. ^Anieke Brombacher; Paul A. Wilson; Ian Bailey; Thomas H. G. Ezard (2018)."Temperature is a poor proxy for synergistic climate forcing of plankton evolution".Proceedings of the Royal Society B: Biological Sciences.285 (1883) 20180665.doi:10.1098/rspb.2018.0665.PMC 6083249.PMID 30051846.
  269. ^abcdLyndsey R. Fox; Stephen Stukins; Tom Hill; Haydon Bailey (2018)."New species of Cenozoic benthic foraminifera from the former British Petroleum micropalaeontology collection".Journal of Micropalaeontology.37 (1):11–16.Bibcode:2018JMicP..37...11F.doi:10.5194/jm-37-11-2018.hdl:10141/622325.S2CID 226953798.
  270. ^Dario Marcello Soldan; Maria Rose Petrizzo; Isabella Premoli Silva (2018). "Alicantina, a new Eocene planktonic foraminiferal genus for thelozanoi group".Journal of Foraminiferal Research.48 (1):41–52.Bibcode:2018JForR..48...41S.doi:10.2113/gsjfr.48.1.41.
  271. ^abcdefHanna Rosa Hjalmarsdottir; Hans Arne Nakrem; Jeno Nagy (2018)."Environmental significance and taxonomy of well preserved foraminifera from Upper Jurassic - Lower Cretaceous hydrocarbon seep carbonates, central Spitsbergen".Micropaleontology.64 (5–6):435–480.Bibcode:2018MiPal..64..435H.doi:10.47894/mpal.64.6.09.hdl:10852/71300.S2CID 217317484.Archived from the original on 2019-01-13. Retrieved2019-01-12.
  272. ^Michael A. Kaminski; Muhammad Hammad Malik; Eiichi Setoyama (2018)."The occurrence of a shallow-waterAmmobaculoides assemblage in the Middle Jurassic (Bajocian) Dhruma Formation of Central Saudi Arabia".Journal of Micropalaeontology.37 (1):149–152.Bibcode:2018JMicP..37..149K.doi:10.5194/jm-37-149-2018.
  273. ^abcdFred Rögl; Antonino Briguglio (2018). "The foraminiferal fauna of the Channa Kodi section at Padappakkara, Kerala, India".Palaeontographica Abteilung A.312 (1–4):47–101.Bibcode:2018PalAA.312...47B.doi:10.1127/pala/2018/0082.S2CID 133856056.
  274. ^abVlasta Premec Fucek; Morana Hernitz Kucenjak; Brian T. Huber (2018). "Taxonomy, biostratigraphy, and phylogeny of OligoceneChiloguembelina andJenkinsina". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 459–480.
  275. ^Richard K. Olsson; Christoph Hemleben; Helen K. Coxall; Bridget S. Wade (2018). "Taxonomy, biostratigraphy, and phylogeny of OligoceneCiperoella n. gen.". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 215–230.
  276. ^Nicoletta Mancin; Michael A. Kaminski (2018). "Colominella piriniae n. sp.: a new textulariid from the Pliocene Mediterranean record".Journal of Foraminiferal Research.48 (2):172–180.Bibcode:2018JForR..48..172M.doi:10.2113/gsjfr.48.2.172.
  277. ^Satoshi Hanagata (2018)."Cyclammina saidovae, a new name forCyclammina pseudopusilla Hanagata 2003 (preoccupied)".Micropaleontology.64 (5–6): 416.Bibcode:2018MiPal..64..416H.doi:10.47894/mpal.64.6.07.S2CID 248221192.Archived from the original on 2019-01-13. Retrieved2019-01-12.
  278. ^Bridget S. Wade; Paul N. Pearson; Richard K. Olsson; Andrew J. Fraass; R. Mark Leckie; Christoph Hemleben (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene and Lower MioceneDentoglobigerina andGloboquadrina". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 331–384.
  279. ^Michael T. Read; Merlynd K. Nestell (2018)."Douglassites, a new genus of schubertellid fusulinid from the Virgilian (Upper Pennsylvanian) of Elko County, Nevada, U.S.A."Micropaleontology.64 (4):317–327.Bibcode:2018MiPal..64..317R.doi:10.47894/mpal.64.4.05.S2CID 248313180.Archived from the original on 2018-11-18. Retrieved2018-11-18.
  280. ^Lorenzo Consorti; Koorosh Rashidi (2018)."A new evidence of passing the Maastichtian–Paleocene boundary by larger benthic foraminifers: The case of Elazigina from the Maastrichtian Tarbur Formation of Iran".Acta Palaeontologica Polonica.63 (3):595–605.doi:10.4202/app.00487.2018.S2CID 55450851.
  281. ^abcSilvia Spezzaferri; Helen K. Coxall; Richard K. Olsson; Christoph Hemleben (2018). "Taxonomy, biostratigraphy, and phylogeny of OligoceneGlobigerina,Globigerinella, andQuityella n. gen.". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 179–214.
  282. ^abcSilvia Spezzaferri; Richard K. Olsson; Christoph Hemleben (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene to Lower MioceneGlobigerinoides andTrilobatus". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 269–306.
  283. ^Martin P. Crundwell (2018). "Globoconella pseudospinosa, n. sp.: a new Early Pliocene planktonic foraminifera from the southwest Pacific".Journal of Foraminiferal Research.48 (4):288–300.Bibcode:2018JForR..48..288C.doi:10.2113/gsjfr.48.4.288.S2CID 135020562.
  284. ^Helen K. Coxall; Silvia Spezzaferri (2018). "Taxonomy, biostratigraphy, and phylogeny of OligoceneCatapsydrax,Globorotaloides, andProtentelloides". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 79–124.
  285. ^abcSilvia Spezzaferri; Richard K. Olsson; Christoph Hemleben; Bridget S. Wade; Helen K. Coxall (2018). "Taxonomy, biostratigraphy, and phylogeny of Oligocene and Lower MioceneGloboturborotalita". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 231–268.
  286. ^David H. McNeil; Lisa A. Neville (2018)."On a grain of sand – a microhabitat for the opportunistic agglutinated foraminiferaHemisphaerammina apta n. sp., from the early Eocene Arctic Ocean".Journal of Micropalaeontology.37 (1):295–303.Bibcode:2018JMicP..37..295M.doi:10.5194/jm-37-295-2018.
  287. ^abSylvain Rigaud; Felix Schlagintweit; Ioan I. Bucur (2018). "The foraminiferal genusNeotrocholina Reichel, 1955 and its less known relatives: A reappraisal".Cretaceous Research.91:41–65.Bibcode:2018CrRes..91...41R.doi:10.1016/j.cretres.2018.04.014.S2CID 134257170.
  288. ^Ioan I. Bucur; Felix Schlagintweit (2018)."Moulladella jourdanensis (Foury & Moullade, 1966) n. gen., n. comb.: Valanginian-early late Barremian larger benthic foraminifera from the northern Neotethyan margin"(PDF).Acta Palaeontologica Romaniae.14 (2):45–59.Archived(PDF) from the original on 2019-05-11. Retrieved2019-05-11.
  289. ^Felix Schlagintweit; Koorosh Rashidi (2018)."Neodubrovnikella maastrichtiana n. gen., n. sp., a new larger agglutinated benthic Foraminifera from the Maastrichtian of Iran".Micropaleontology.64 (5–6):507–513.Bibcode:2018MiPal..64..507S.doi:10.47894/mpal.64.6.12.S2CID 248225304.Archived from the original on 2019-01-13. Retrieved2019-01-12.
  290. ^Luca Giusberti; Michael A. Kaminski; Nicoletta Mancin (2018)."The bathyal larger lituolidNeonavarella n. gen. (Foraminifera) from the Thanetian Scaglia Rossa Formation of northeastern Italy".Micropaleontology.64 (5–6):417–434.Bibcode:2018MiPal..64..414G.doi:10.47894/mpal.64.6.08.hdl:11577/3284915.S2CID 133945623.Archived from the original on 2020-07-17. Retrieved2019-01-12.
  291. ^abSafia Al Menoufy; Mohamed Boukhary (2018). "Nummulites fayumensis n. sp. andNummulites tenuissimus n. sp. from Munquar El-rayan, Fayum, Egypt".Journal of Foraminiferal Research.48 (1):17–28.Bibcode:2018JForR..48...17A.doi:10.2113/gsjfr.48.1.17.
  292. ^abQahtan A.M. Al Nuaimy (2018). "New quantitative data onOmphalocyclus from the Maastrichtian in Northern Iraq".Journal of African Earth Sciences.138:319–335.doi:10.1016/j.jafrearsci.2017.11.016.
  293. ^Lorenzo Consorti; Felix Schlagintweit; Koorosh Rashidi (2018). "Palaeoelphidium gen. nov. (type species:Elphidiella multiscissurata Smout 1955): The oldest Elphidiellidae (benthic foraminifera) from Maastrichtian shallow-water carbonates of the Middle East".Cretaceous Research.86:163–169.Bibcode:2018CrRes..86..163C.doi:10.1016/j.cretres.2018.02.011.
  294. ^Lorenzo Consorti; Juan Pablo Navarro-Ramirez; Stéphane Bodin; Adrian Immenhauser (2018). "The architecture and associated fauna ofPerouvianella peruviana, an endemic larger benthic foraminifera from the Cenomanian–Turonian transition interval of central Peru".Facies.64 (1) 2.Bibcode:2018Faci...64....2C.doi:10.1007/s10347-017-0514-z.S2CID 135126012.
  295. ^Ercüment Sirel; Ali Deveciler (2018)."Diagnostic structural elements ofRanikothalia Caudri and re-description of its six species from Thanetian-Ilerdian of Turkey".Journal of the Palaeontological Society of India.63 (1):19–36.Bibcode:2018JPalS..63...19S.doi:10.1177/0971102320180102.
  296. ^Elisa Villa; Oscar Merino-Tomé; Jaime Martín Llaneza (2018)."Fusulines from the Central Asturian Coalfield (Pennsylvanian, Cantabrian Zone, Spain) and their significance for biostratigraphic correlation"(PDF).Spanish Journal of Palaeontology.33 (1):231–260.doi:10.7203/sjp.33.1.13252.S2CID 135233438.Archived(PDF) from the original on 2018-10-03. Retrieved2018-10-02.
  297. ^Christopher W. Smart; Ellen Thomas (2018). "Taxonomy, biostratigraphy, and phylogeny of OligoceneStreptochilus". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 495–510.
  298. ^Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Kirsty M. Edgar; Isabella Premoli Silva (2018). "Taxonomy, biostratigraphy, and phylogeny of OligoceneSubbotina". In Bridget S. Wade; Richard K. Olsson; Paul N. Pearson; Brian T. Huber; William A. Berggren (eds.).Atlas of Oligocene planktonic foraminifera. The Cushman Foundation for Foraminiferal Research. pp. 307–330.
  299. ^L. A. Glinskikh; B. L. Nikitenko (2018). "Representatives of the genusTrochammina (Foraminifera) from the Middle Jurassic of the Arctic and Boreal regions".Paleontological Journal.52 (3):221–230.Bibcode:2018PalJ...52..221G.doi:10.1134/S0031030118030048.S2CID 90348225.
  300. ^Allen P. Nutman; Vickie C. Bennett; Clark R. L. Friend; Martin J. Van Kranendonk; Allan R. Chivas (2016)."Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures".Nature.537 (7621):535–538.Bibcode:2016Natur.537..535N.doi:10.1038/nature19355.PMID 27580034.S2CID 205250494.Archived from the original on 2019-11-13. Retrieved2019-12-05.
  301. ^Abigail C. Allwood; Minik T. Rosing; David T. Flannery; Joel A. Hurowitz; Christopher M. Heirwegh (2018). "Reassessing evidence of life in 3,700-million-year-old rocks of Greenland".Nature.563 (7730):241–244.Bibcode:2018Natur.563..241A.doi:10.1038/s41586-018-0610-4.PMID 30333621.S2CID 52987320.
  302. ^J. William Schopf; Kouki Kitajima; Michael J. Spicuzza; Anatoliy B. Kudryavtsev; John W. Valley (2018)."SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions".Proceedings of the National Academy of Sciences of the United States of America.115 (1):53–58.Bibcode:2018PNAS..115...53S.doi:10.1073/pnas.1718063115.PMC 5776830.PMID 29255053.
  303. ^Keyron Hickman-Lewis; Barbara Cavalazzi; Frédéric Foucher; Frances Westall (2018). "Most ancient evidence for life in the Barberton Greenstone Belt: microbial mats and biofabrics of the ~3.47 Ga Middle Marker horizon".Precambrian Research.312:45–67.Bibcode:2018PreR..312...45H.doi:10.1016/j.precamres.2018.04.007.hdl:11585/619579.S2CID 134118012.
  304. ^Martin Homann; Pierre Sansjofre; Mark Van Zuilen; Christoph Heubeck; Jian Gong; Bryan Killingsworth; Ian S. Foster; Alessandro Airo; Martin J. Van Kranendonk; Magali Ader; Stefan V. Lalonde (2018)."Microbial life and biogeochemical cycling on land 3,220 million years ago"(PDF).Nature Geoscience.11 (9):665–671.Bibcode:2018NatGe..11..665H.doi:10.1038/s41561-018-0190-9.S2CID 134935568.Archived(PDF) from the original on 2021-05-09. Retrieved2021-02-04.
  305. ^Erica Victoria Barlow; Martin Julian Van Kranendonk (2018). "Snapshot of an early Paleoproterozoic ecosystem: Two diverse microfossil communities from the Turee Creek Group, Western Australia".Geobiology.16 (5):449–475.Bibcode:2018Gbio...16..449B.doi:10.1111/gbi.12304.PMID 30091832.S2CID 51939442.
  306. ^Jérémie Aubineau; Abderrazak El Albani; Ernest Chi Fru; Murray Gingras; Yann Batonneau; Luis A. Buatois; Claude Geffroy; Jérôme Labanowski; Claude Laforest; Laurent Lemée; Maria G. Mángano; Alain Meunier; Anne-Catherine Pierson-Wickmann; Philippe Recourt; Armelle Riboulleau; Alain Trentesaux; Kurt O. Konhauser (2018)."Unusual microbial mat-related structural diversity 2.1 billion years ago and implications for the Francevillian biota"(PDF).Geobiology.16 (5):476–497.Bibcode:2018Gbio...16..476A.doi:10.1111/gbi.12296.PMID 29923673.S2CID 49316052.Archived(PDF) from the original on 2019-04-27. Retrieved2019-12-05.
  307. ^Yuangao Qu; Shixing Zhu; Martin Whitehouse; Anders Engdahl; Nicola McLoughlin (2018). "Carbonaceous biosignatures of the earliest putative macroscopic multicellular eukaryotes from 1630 Ma Tuanshanzi Formation, north China".Precambrian Research.304:99–109.Bibcode:2018PreR..304...99Q.doi:10.1016/j.precamres.2017.11.004.
  308. ^N. Gueneli; A. M. McKenna; N. Ohkouchi; C. J. Boreham; J. Beghin; E. J. Javaux; J. J. Brocks (2018)."1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers".Proceedings of the National Academy of Sciences of the United States of America.115 (30):E6978 –E6986.Bibcode:2018PNAS..115E6978G.doi:10.1073/pnas.1803866115.PMC 6064987.PMID 29987033.
  309. ^Stilianos Louca; Patrick M. Shih; Matthew W. Pennell; Woodward W. Fischer; Laura Wegener Parfrey; Michael Doebeli (2018)."Bacterial diversification through geological time"(PDF).Nature Ecology & Evolution.2 (9):1458–1467.Bibcode:2018NatEE...2.1458L.doi:10.1038/s41559-018-0625-0.PMID 30061564.S2CID 51867346.
  310. ^Ilya Bobrovskiy; Janet M. Hope; Anna Krasnova; Andrey Ivantsov; Jochen J. Brocks (2018). "Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin forBeltanelliformis".Nature Ecology & Evolution.2 (3):437–440.Bibcode:2018NatEE...2..437B.doi:10.1038/s41559-017-0438-6.PMID 29358605.S2CID 3334262.
  311. ^Jean-Paul Saint Martin; Simona Saint Martin (2018)."Beltanelliformis brunsae Mennerin Keller, Menner, Stepanov & Chumakov, 1974: an Ediacaran fossil from Neoproterozoic of Dobrogea (Romania)".Geodiversitas.40 (23):537–548.Bibcode:2018Geodv..40..537M.doi:10.5252/geodiversitas2018v40a23.S2CID 134512804.
  312. ^Timothy M. Gibson; Patrick M. Shih; Vivien M. Cumming; Woodward W. Fischer; Peter W. Crockford; Malcolm S.W. Hodgskiss; Sarah Wörndle; Robert A. Creaser; Robert H. Rainbird; Thomas M. Skulski; Galen P. Halverson (2018)."Precise age ofBangiomorpha pubescens dates the origin of eukaryotic photosynthesis"(PDF).Geology.46 (2):135–138.Bibcode:2018Geo....46..135G.doi:10.1130/G39829.1.
  313. ^Anton V. Kolesnikov; Alexander G. Liu; Taniel Danelian; Dmitriy V. Grazhdankin (2018)."A reassessment of the problematic Ediacaran genusOrbisiana Sokolov 1976".Precambrian Research.316:197–205.Bibcode:2018PreR..316..197K.doi:10.1016/j.precamres.2018.08.011.S2CID 134213721.
  314. ^Emily G. Mitchell; Nicholas J. Butterfield (2018)."Spatial analyses of Ediacaran communities at Mistaken Point".Paleobiology.44 (1):40–57.Bibcode:2018Pbio...44...40M.doi:10.1017/pab.2017.35.S2CID 90612964.
  315. ^Emily G. Mitchell; Charlotte G. Kenchington (2018)."The utility of height for the Ediacaran organisms of Mistaken Point".Nature Ecology & Evolution.2 (8):1218–1222.Bibcode:2018NatEE...2.1218M.doi:10.1038/s41559-018-0591-6.PMID 29942022.S2CID 49409652.
  316. ^Lidya G. Tarhan; Mary L. Droser; Devon B. Cole; James G. Gehling (2018)."Ecological expansion and extinction in the late Ediacaran: weighing the evidence for environmental and biotic drivers".Integrative and Comparative Biology.58 (4):688–702.doi:10.1093/icb/icy020.PMID 29718307.
  317. ^Christine M.S. Hall; Mary L. Droser; James G. Gehling (2018)."Sizing upRugoconites: A study of the ontogeny and ecology of an enigmatic Ediacaran genus".Australasian Palaeontological Memoirs.51:7–17.ISSN 2205-8877.
  318. ^Didier Néraudeau; Marie-Pierre Dabard; Abderrazak El Albani; Romain Gougeon; Arnaud Mazurier; Anne-Catherine Pierson-Wickmann; Marc Poujol; Jean-Paul Saint Martin; Simona Saint Martin (2018). "First evidence of Ediacaran–Fortunian elliptical body fossils in the Brioverian series of Brittany, NW France".Lethaia.51 (4):513–522.Bibcode:2018Letha..51..513N.doi:10.1111/let.12270.
  319. ^Anton V. Kolesnikov; Vladimir I. Rogov; Natalia V. Bykova; Taniel Danelian; Sébastien Clausen; Andrey V. Maslov; Dmitriy V. Grazhdankin (2018). "The oldest skeletal macroscopic organismPalaeopascichnus linearis".Precambrian Research.316:24–37.Bibcode:2018PreR..316...24K.doi:10.1016/j.precamres.2018.07.017.S2CID 134885946.
  320. ^Teodoro Palacios; Sören Jensen; Sandra M. Barr; Chris E. White; Paul M. Myrow (2018). "Organic-walled microfossils from the Ediacaran–Cambrian boundary stratotype section, Chapel Island and Random formations, Burin Peninsula, Newfoundland, Canada: Global correlation and significance for the evolution of early complex ecosystems".Geological Journal.53 (5):1728–1742.Bibcode:2018GeolJ..53.1728P.doi:10.1002/gj.2998.S2CID 134245510.
  321. ^Christopher Castellani; Andreas Maas; Mats E. Eriksson; Joachim T. Haug; Carolin Haug; Dieter Waloszek (2018)."First record of Cyanobacteria in Cambrian Orsten deposits of Sweden".Palaeontology.61 (6):855–880.Bibcode:2018Palgy..61..855C.doi:10.1111/pala.12374.S2CID 134049042.
  322. ^Gregory J. Retallack (2018). "Reassessment of the Devonian problematicumProtonympha as another post-Ediacaran vendobiont".Lethaia.51 (3):406–423.Bibcode:2018Letha..51..406R.doi:10.1111/let.12253.
  323. ^Tatsuya Hayashi; William N. Krebs; Megumi Saito-Kato; Yoshihiro Tanimura (2018)."The turnover of continental planktonic diatoms near the middle/late Miocene boundary and their Cenozoic evolution".PLOS ONE.13 (6) e0198003.Bibcode:2018PLoSO..1398003H.doi:10.1371/journal.pone.0198003.PMC 5988279.PMID 29870528.
  324. ^Samantha J. Gibbs; Rosie M. Sheward; Paul R. Bown; Alex J. Poulton; Sarah A. Alvarez (2018)."Warm plankton soup and red herrings: calcareous nannoplankton cellular communities and the Palaeocene–Eocene Thermal Maximum".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.376 (2130) 20170075.Bibcode:2018RSPTA.37670075G.doi:10.1098/rsta.2017.0075.PMC 6127380.PMID 30177560.
  325. ^abcLiubov Bragina; Nikita Bragin (2018). "Family Pseudoaulophacidae (Radiolaria) from the Upper Cretaceous (Coniacian-Maastrichtian) of Cyprus".Revue de Micropaléontologie.61 (2):55–79.Bibcode:2018RvMic..61...55B.doi:10.1016/j.revmic.2018.03.002.S2CID 134356824.
  326. ^abSol Noetinger; Mercedes di Pasquo; Daniel Starck (2018). "Middle-Upper Devonian palynofloras from Argentina, systematic and correlation".Review of Palaeobotany and Palynology.257:95–116.Bibcode:2018RPaPa.257...95N.doi:10.1016/j.revpalbo.2018.07.009.hdl:11336/93134.S2CID 134590587.
  327. ^Ke Pang; Qing Tang; Lei Chen; Bin Wan; Changtai Niu; Xunlai Yuan; Shuhai Xiao (2018)."Nitrogen-fixing heterocystous Cyanobacteria in the Tonian period".Current Biology.28 (4): 616–622.e1.Bibcode:2018CBio...28E.616P.doi:10.1016/j.cub.2018.01.008.PMID 29398221.S2CID 3397505.
  328. ^M. L. Droser; S. D. Evans; P. W. Dzaugis; E. B. Hughes; J. G. Gehling (2020). "Attenborites janeae: a new enigmatic organism from the Ediacara Member (Rawnsley Quartzite), South Australia".Australian Journal of Earth Sciences.67 (6):915–921.Bibcode:2020AuJES..67..915D.doi:10.1080/08120099.2018.1495668.S2CID 133787909.
  329. ^abChristine Paillès; Florence Sylvestre; Jaime Escobar; Alain Tonetto; Sybille Rustig; Jean-Charles Mazur (2018)."Cyclotella petenensis andCyclotella cassandrae, two new fossil diatoms from Pleistocene sediments of Lake Petén-Itzá, Guatemala, Central America"(PDF).Phytotaxa.351 (4):247–263.Bibcode:2018Phytx.351..247P.doi:10.11646/phytotaxa.351.4.1.S2CID 90996700.
  330. ^abcdTian Lan; Jie Yang; Xi-guang Zhang; Jin-bo Hou (2018). "A new macroalgal assemblage from the Xiaoshiba Biota (Cambrian Series 2, Stage 3) of southern China".Palaeogeography, Palaeoclimatology, Palaeoecology.499:35–44.Bibcode:2018PPP...499...35L.doi:10.1016/j.palaeo.2018.02.029.S2CID 134928746.
  331. ^Mostafa Falahatgar; Daniel Vachard; Mehdi Sarfi (2018). "Revision of the Lower Viséan (MFZ11) calcareous algae and archaediscoid foraminifers of the Sari area (central Alborz, Iran)".Geobios.51 (2):107–121.Bibcode:2018Geobi..51..107F.doi:10.1016/j.geobios.2018.02.005.
  332. ^abcJohn S. Peel (2018)."An epiphytacean-Girvanella (Cyanobacteria) symbiosis from the Cambrian (Series 3, Drumian) of North Greenland (Laurentia)".Bulletin of Geosciences.93 (3):327–336.doi:10.3140/bull.geosci.1705.S2CID 51885844.
  333. ^Charlotte G. Kenchington; Frances S. Dunn; Philip R. Wilby (2018)."Modularity and overcompensatory growth in Ediacaran rangeomorphs demonstrate early adaptations for coping with environmental pressures".Current Biology.28 (20): 3330–3336.e2.Bibcode:2018CBio...28E3330K.doi:10.1016/j.cub.2018.08.036.PMID 30293718.S2CID 52933769.
  334. ^Corentin Loron; Małgorzata Moczydłowska (2018). "Tonian (Neoproterozoic) eukaryotic and prokaryotic organic-walled microfossils from the upper Visingsö Group, Sweden".Palynology.42 (2):220–254.Bibcode:2018Paly...42..220L.doi:10.1080/01916122.2017.1335656.S2CID 133730200.
  335. ^Peter A. Siver (2018). "Mallomonas aperturae sp. nov. (Synurophyceae) reveals that the complex cell architecture observed on modern synurophytes was well established by the middle Eocene".Phycologia.57 (3):273–279.Bibcode:2018Phyco..57..273S.doi:10.2216/17-112.1.S2CID 91141704.
  336. ^abPeter A. Siver (2018). "Mallomonas skogstadii sp. nov. andM. bakeri sp. nov.: two new fossil species from the middle Eocene representing extinct members of the section Heterospinae?".Cryptogamie, Algologie.39 (4):511–524.Bibcode:2018CrypA..39..511S.doi:10.7872/crya/v39.iss4.2018.511.S2CID 92407855.
  337. ^Duncan McLean; David J. Bodman; Peter Lucas; Janine L. Pendleton (2018). "Anincertae sedis organic-walled microfossil from the Mississippian (Early Carboniferous): Kirby Misperton-1 borehole, North Yorkshire, UK".Proceedings of the Yorkshire Geological Society.62 (1):51–57.Bibcode:2018PYGS...62...51M.doi:10.1144/pygs2017-398.
  338. ^P. W. Dzaugis; S. D. Evans; M. L. Droser; J. G. Gehling; I. V. Hughes (2020)."Stuck in the mat:Obamus coronatus, a new benthic organism from the Ediacara Member, Rawnsley Quartzite, South Australia".Australian Journal of Earth Sciences.67 (6):897–903.Bibcode:2020AuJES..67..897D.doi:10.1080/08120099.2018.1479306.S2CID 134887346.
  339. ^Leigh Anne Riedman; Susannah M. Porter; Clive R. Calver (2018). "Vase-shaped microfossil biostratigraphy with new data from Tasmania, Svalbard, Greenland, Sweden and the Yukon".Precambrian Research.319:19–36.Bibcode:2018PreR..319...19R.doi:10.1016/j.precamres.2017.09.019.S2CID 133746303.
  340. ^Vandana Prasad; Anjum Farooqui; Srikanta Murthy; Omprakash S. Sarate; Sunil Bajpai (2018). "Palynological assemblage from the Deccan Volcanic Province, central India: Insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India".Cretaceous Research.86:186–198.Bibcode:2018CrRes..86..186P.doi:10.1016/j.cretres.2018.03.004.S2CID 134729292.
  341. ^P. N. Kolosov; L. S. Sofroneeva (2018). "New Vendian saarinid microorganisms from the Siberian Platform".Paleontological Journal.52 (6):589–592.Bibcode:2018PalJ...52..589K.doi:10.1134/S0031030118060060.S2CID 91829874.
  342. ^V.G. Vorob'eva; V.N. Sergeev (2018)."Stellarossica gen. nov. and the infragroup Keltmiides infragroup. nov.: extremely large acanthomorph acritarchs from the Vendian of Siberia and the East European Platform".Paleontological Journal.52 (5):563–573.Bibcode:2018PalJ...52..563V.doi:10.1134/S0031030118040147.S2CID 91776722.
  343. ^Lei-Ming Yin; B.P. Singh; O.N. Bhargava; Yuan-Long Zhao; R.S. Negi; Fan-Wei Meng; C.A. Sharma (2018). "Palynomorphs from the Cambrian Series 3, Parahio valley (Spiti), Northwest Himalaya".Palaeoworld.27 (1):30–41.doi:10.1016/j.palwor.2017.05.004.
  344. ^Dianne Edwards; Rosmarie Honegger; Lindsey Axe; Jennifer L. Morris (2018)."Anatomically preserved Silurian 'nematophytes' from the Welsh Borderland (UK)"(PDF).Botanical Journal of the Linnean Society.187 (2):272–291.doi:10.1093/botlinnean/boy022.
  345. ^abFan Yang; Shujian Qin; Weiming Ding; Yihe Xu; Bing Shen (2018)."New discovery of macroscopic algae fossils from Shibantan bituminous limestone of Dengying Formation in the Yangtze Gorges area, South China".Acta Scientiarum Naturalium Universitatis Pekinensis.54 (3):563–572.doi:10.13209/j.0479-8023.2017.093.
  346. ^Sean McMahon; John Parnell (2018)."The deep history of Earth's biomass".Journal of the Geological Society.175 (5):716–720.Bibcode:2018JGSoc.175..716M.doi:10.1144/jgs2018-061.hdl:2164/12379.S2CID 134552701.
  347. ^Holly C. Betts; Mark N. Puttick; James W. Clark; Tom A. Williams; Philip C. J. Donoghue; Davide Pisani (2018)."Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin".Nature Ecology & Evolution.2 (10):1556–1562.Bibcode:2018NatEE...2.1556B.doi:10.1038/s41559-018-0644-x.PMC 6152910.PMID 30127539.
  348. ^Ana Gutiérrez-Preciado; Aurélien Saghaï; David Moreira; Yvan Zivanovic; Philippe Deschamps; Purificación López-García (2018)."Functional shifts in microbial mats recapitulate early Earth metabolic transitions".Nature Ecology & Evolution.2 (11):1700–1708.Bibcode:2018NatEE...2.1700G.doi:10.1038/s41559-018-0683-3.PMC 6217971.PMID 30297749.
  349. ^Nina A. Kamennaya; Marcin Zemla; Laura Mahoney; Liang Chen; Elizabeth Holman; Hoi-Ying Holman; Manfred Auer; Caroline M. Ajo-Franklin; Christer Jansson (2018)."HighpCO2-induced exopolysaccharide-rich ballasted aggregates of planktonic cyanobacteria could explain Paleoproterozoic carbon burial".Nature Communications.9 (1) 2116.Bibcode:2018NatCo...9.2116K.doi:10.1038/s41467-018-04588-9.PMC 5974010.PMID 29844378.
  350. ^Indrani Mukherjee; Ross R. Large; Ross Corkrey; Leonid V. Danyushevsky (2018)."The Boring Billion, a slingshot for Complex Life on Earth".Scientific Reports.8 (1) 4432.Bibcode:2018NatSR...8.4432M.doi:10.1038/s41598-018-22695-x.PMC 5849639.PMID 29535324.
  351. ^Leigh Anne Riedman; Peter M. Sadler (2018)."Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils".Precambrian Research.319:6–18.Bibcode:2018PreR..319....6R.doi:10.1016/j.precamres.2017.10.008.S2CID 134938306.
  352. ^Simon A. F. Darroch; Marc Laflamme; Peter J. Wagner (2018). "High ecological complexity in benthic Ediacaran communities".Nature Ecology & Evolution.2 (10):1541–1547.Bibcode:2018NatEE...2.1541D.doi:10.1038/s41559-018-0663-7.PMID 30224815.S2CID 52288217.
  353. ^Thomas H. Boag; Richard G. Stockey; Leanne E. Elder; Pincelli M. Hull; Erik A. Sperling (2018)."Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution".Proceedings of the Royal Society B: Biological Sciences.285 (1893) 20181724.doi:10.1098/rspb.2018.1724.PMC 6304043.PMID 30963899.
  354. ^Rachel Wood; Frederick Bowyer; Amelia Penny; Simon W. Poulton (2018)."Did anoxia terminate Ediacaran benthic communities? Evidence from early diagenesis".Precambrian Research.313:134–147.Bibcode:2018PreR..313..134W.doi:10.1016/j.precamres.2018.05.011.hdl:20.500.11820/6429281e-53f6-4566-a6a8-ecc5540abadf.S2CID 135328721.
  355. ^Evans, S. D.; Dzaugi, P. W.; Droser, M. L.; Gehling, J. G. (2018). "You can get anything you want from Alice's Restaurant Bed: exceptional preservation and an unusual fossil assemblage from a newly excavated bed (Ediacara Member, Nilpena, South Australia)".Australian Journal of Earth Sciences.67 (6):873–883.doi:10.1080/08120099.2018.1470110.
  356. ^Ulf Linnemann; Maria Ovtcharova; Urs Schaltegger; Andreas Gärtner; Michael Hautmann; Gerd Geyer; Patricia Vickers-Rich; Tom Rich; Birgit Plessen; Mandy Hofmann; Johannes Zieger; Rita Krause; Les Kriesfeld; Jeff Smith (2018)."New high-resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion"(PDF).Terra Nova.31 (1):49–58.Bibcode:2019TeNov..31...49L.doi:10.1111/ter.12368.S2CID 134022425.
  357. ^Bradley Deline; Jennifer M. Greenwood; James W. Clark; Mark N. Puttick; Kevin J. Peterson; Philip C. J. Donoghue (2018)."Evolution of metazoan morphological disparity".Proceedings of the National Academy of Sciences of the United States of America.115 (38):E8909 –E8918.Bibcode:2018PNAS..115E8909D.doi:10.1073/pnas.1810575115.PMC 6156614.PMID 30181261.
  358. ^Russell D. C. Bicknell; John R. Paterson (2018). "Reappraising the early evidence of durophagy and drilling predation in the fossil record: implications for escalation and the Cambrian Explosion".Biological Reviews.93 (2):754–784.doi:10.1111/brv.12365.PMID 28967704.S2CID 4700493.
  359. ^Xiangkuan Zhao; Xinqiang Wang; Xiaoying Shi; Dongjie Tang; Qing Shi (2018). "Stepwise oxygenation of early Cambrian ocean controls early metazoan diversification".Palaeogeography, Palaeoclimatology, Palaeoecology.504:86–103.Bibcode:2018PPP...504...86Z.doi:10.1016/j.palaeo.2018.05.009.S2CID 133732928.
  360. ^A. D. Muscente; Anirudh Prabhu; Hao Zhong; Ahmed Eleish; Michael B. Meyer; Peter Fox; Robert M. Hazen; Andrew H. Knoll (2018)."Quantifying ecological impacts of mass extinctions with network analysis of fossil communities".Proceedings of the National Academy of Sciences of the United States of America.115 (20):5217–5222.Bibcode:2018PNAS..115.5217M.doi:10.1073/pnas.1719976115.PMC 5960297.PMID 29686079.
  361. ^Carl J. Reddin; Ádám T. Kocsis; Wolfgang Kiessling (2018). "Climate change and the latitudinal selectivity of ancient marine extinctions".Paleobiology.45 (1):70–84.doi:10.1017/pab.2018.34.S2CID 91932969.
  362. ^Ádám T. Kocsis; Carl J. Reddin; Wolfgang Kiessling (2018)."The biogeographical imprint of mass extinctions".Proceedings of the Royal Society B: Biological Sciences.285 (1878) 20180232.doi:10.1098/rspb.2018.0232.PMC 5966600.PMID 29720415.
  363. ^Christopher D. Whalen; Derek E. G. Briggs (2018)."The Palaeozoic colonization of the water column and the rise of global nekton".Proceedings of the Royal Society B: Biological Sciences.285 (1883) 20180883.doi:10.1098/rspb.2018.0883.PMC 6083262.PMID 30051837.
  364. ^Carl J. Reddin; Ádám T. Kocsis; Wolfgang Kiessling (2018). "Marine invertebrate migrations trace climate change over 450 million years".Global Ecology and Biogeography.27 (6):704–713.Bibcode:2018GloEB..27..704R.doi:10.1111/geb.12732.S2CID 90890673.
  365. ^Richard Hofmann; Melanie Tietje; Martin Aberhan (2018)."Diversity partitioning in Phanerozoic benthic marine communities".Proceedings of the National Academy of Sciences of the United States of America.116 (1):79–83.Bibcode:2019PNAS..116...79H.doi:10.1073/pnas.1814487116.PMC 6320541.PMID 30559194.
  366. ^Peter Wagner; Roy E. Plotnick; S. Kathleen Lyons (2018)."Evidence for trait-based dominance in occupancy among fossil taxa and the decoupling of macroecological and macroevolutionary success".The American Naturalist.192 (3):E120 –E138.Bibcode:2018ANat..192E.120W.doi:10.1086/697642.PMID 30125228.S2CID 52049376.
  367. ^Yukio Isozaki; Thomas Servais (2018). "The Hirnantian (Late Ordovician) and end-Guadalupian (Middle Permian) mass-extinction events compared".Lethaia.51 (2):173–186.Bibcode:2018Letha..51..173I.doi:10.1111/let.12252.
  368. ^Magdalena N. Georgieva; Crispin T. S. Little; Russell J. Bailey; Alexander D. Ball; Adrian G. Glover (2018)."Microbial-tubeworm associations in a 440 million year old hydrothermal vent community".Proceedings of the Royal Society B: Biological Sciences.285 (1891) 20182004.doi:10.1098/rspb.2018.2004.PMC 6253371.PMID 30429307.
  369. ^Benjamin K. A. Otoo; Jennifer A. Clack; Timothy R. Smithson; Carys E. Bennett; Timothy I. Kearsey; Michael I. Coates (2018)."A fish and tetrapod fauna from Romer's Gap preserved in Scottish Tournaisian floodplain deposits".Palaeontology.62 (2):225–253.doi:10.1111/pala.12395.S2CID 134566755.
  370. ^Emma M. Dunne; Roger A. Close; David J. Button; Neil Brocklehurst; Daniel D. Cashmore; Graeme T. Lloyd; Richard J. Butler (2018)."Diversity change during the rise of tetrapods and the impact of the 'Carboniferous rainforest collapse'".Proceedings of the Royal Society B: Biological Sciences.285 (1872) 20172730.doi:10.1098/rspb.2017.2730.PMC 5829207.PMID 29436503.
  371. ^Neil Brocklehurst; Emma M. Dunne; Daniel D. Cashmore; Jӧrg Frӧbisch (2018)."Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea".Nature Communications.9 (1) 5216.Bibcode:2018NatCo...9.5216B.doi:10.1038/s41467-018-07623-x.PMC 6284015.PMID 30523258.
  372. ^Rebecca E. O'Connor; Michael N. Romanov; Lucas G. Kiazim; Paul M. Barrett; Marta Farré; Joana Damas; Malcolm Ferguson-Smith; Nicole Valenzuela; Denis M. Larkin; Darren K. Griffin (2018)."Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and non-avian dinosaurs".Nature Communications.9 (1) 1883.Bibcode:2018NatCo...9.1883O.doi:10.1038/s41467-018-04267-9.PMC 5962605.PMID 29784931.
  373. ^Neil Brocklehurst (2018)."An examination of the impact of Olson's extinction on tetrapods from Texas".PeerJ.6 e4767.doi:10.7717/peerj.4767.PMC 5958880.PMID 29780669.
  374. ^Michael O. Day; Roger B. J. Benson; Christian F. Kammerer; Bruce S. Rubidge (2018)."Evolutionary rates of mid-Permian tetrapods from South Africa and the role of temporal resolution in turnover reconstruction".Paleobiology.44 (3):347–367.Bibcode:2018Pbio...44..347D.doi:10.1017/pab.2018.17.S2CID 92094370.
  375. ^Massimo Bernardi; Fabio Massimo Petti; Michael J. Benton (2018)."Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction".Proceedings of the Royal Society B: Biological Sciences.285 (1870) 20172331.doi:10.1098/rspb.2017.2331.PMC 5784198.PMID 29321300.
  376. ^Yuangeng Huang; Zhong-Qiang Chen; Paul B. Wignall; Stephen E. Grasby; Laishi Zhao; Xiangdong Wang; Kunio Kaiho (2018)."Biotic responses to volatile volcanism and environmental stresses over the Guadalupian-Lopingian (Permian) transition"(PDF).Geology.47 (2):175–178.doi:10.1130/G45283.1.S2CID 134834892.
  377. ^Peter D. Roopnarine; K.D. Angielczyk; A. Weik; A. Dineen (2019)."Ecological persistence, incumbency and reorganization in the Karoo Basin during the Permian-Triassic transition".Earth-Science Reviews.189:244–263.Bibcode:2019ESRv..189..244R.doi:10.1016/j.earscirev.2018.10.014.S2CID 133779523.
  378. ^Justin L. Penn; Curtis Deutsch; Jonathan L. Payne; Erik A. Sperling (2018)."Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction".Science.362 (6419) eaat1327.Bibcode:2018Sci...362.1327P.doi:10.1126/science.aat1327.PMID 30523082.S2CID 54456989.
  379. ^Yong Lei; Jun Shen; Thomas J. Algeo; Thomas Servais; Qinglai Feng; Jianxin Yu (2019). "Phytoplankton (acritarch) community changes during the Permian-Triassic transition in South China".Palaeogeography, Palaeoclimatology, Palaeoecology.519:84–94.Bibcode:2019PPP...519...84L.doi:10.1016/j.palaeo.2018.09.033.S2CID 133815297.
  380. ^William J. Foster; Silvia Danise; Gregory D. Price; Richard J. Twitchett (2018)."Paleoecological analysis of benthic recovery after the Late Permian mass extinction event in eastern Lombardy, Italy".PALAIOS.33 (6):266–281.Bibcode:2018Palai..33..266F.doi:10.2110/palo.2017.079.S2CID 54006839.
  381. ^Morgane Brosse; Hugo Bucher; Aymon Baud; Åsa M. Frisk; Nicolas Goudemand; Hans Hagdorn; Alexander Nützel; David Ware; Michael Hautmann (2018). "New data from Oman indicate benthic high biomass productivity coupled with low taxonomic diversity in the aftermath of the Permian–Triassic Boundary mass extinction".Lethaia.52 (2):165–187.doi:10.1111/let.12281.S2CID 135442906.
  382. ^Xiong Duan; Zhiqiang Shi; Yanlong Chen; Lan Chen; Bin Chen; Lijie Wang; Lu Han (2018)."Early Triassic Griesbachian microbial mounds in the Upper Yangtze Region, southwest China: Implications for biotic recovery from the latest Permian mass extinction".PLOS ONE.13 (8) e0201012.Bibcode:2018PLoSO..1301012D.doi:10.1371/journal.pone.0201012.PMC 6082531.PMID 30089141.
  383. ^Haijun Song; Paul B. Wignall; Alexander M. Dunhill (2018)."Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction".Science Advances.4 (10) eaat5091.Bibcode:2018SciA....4.5091S.doi:10.1126/sciadv.aat5091.PMC 6179380.PMID 30324133.
  384. ^Xu Dai; Haijun Song; Paul B. Wignall; Enhao Jia; Ruoyu Bai; Fengyu Wang; Jing Chen; Li Tian (2018)."Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction"(PDF).GSA Bulletin.130 (11–12):2015–2030.Bibcode:2018GSAB..130.2015D.doi:10.1130/B31969.1.S2CID 134620954.
  385. ^Jonathan Rolland; Daniele Silvestro; Dolph Schluter;Antoine Guisan; Olivier Broennimann; Nicolas Salamin (2018). "The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity".Nature Ecology & Evolution.2 (3):459–464.Bibcode:2018NatEE...2..459R.doi:10.1038/s41559-017-0451-9.PMID 29379185.S2CID 3336951.
  386. ^Hao Lu; Da-Yong Jiang; Ryosuke Motani; Pei-Gang Ni; Zuo-Yu Sun; Andrea Tintori; Shi-Zhen Xiao; Min Zhou; Cheng Ji; Wan-Lu Fu (2018). "Middle Triassic Xingyi Fauna: Showing turnover of marine reptiles from coastal to oceanic environments".Palaeoworld.27 (1):107–116.doi:10.1016/j.palwor.2017.05.005.
  387. ^Alexander M. Dunhill; William J. Foster; James Sciberras; Richard J. Twitchett (2018)."Impact of the Late Triassic mass extinction on functional diversity and composition of marine ecosystems".Palaeontology.61 (1):133–148.Bibcode:2018Palgy..61..133D.doi:10.1111/pala.12332.S2CID 55284356.
  388. ^Alexander M. Dunhill; William J. Foster; Sandro Azaele; James Sciberras; Richard J. Twitchett (2018)."Modelling determinants of extinction across two Mesozoic hyperthermal events".Proceedings of the Royal Society B: Biological Sciences.285 (1889) 20180404.doi:10.1098/rspb.2018.0404.PMC 6234883.PMID 30355705.
  389. ^Mario Giordano; Camilla Olivieri; Simona Ratti; Alessandra Norici; John A. Raven; Andrew H. Knoll (2018). "A tale of two eras: Phytoplankton composition influenced by oceanic paleochemistry".Geobiology.16 (5):498–506.Bibcode:2018Gbio...16..498G.doi:10.1111/gbi.12290.hdl:11566/255641.PMID 29851212.S2CID 44073379.
  390. ^Victoria M. Arbour; Lindsay E. Zanno (2018)."The evolution of tail weaponization in amniotes".Proceedings of the Royal Society B: Biological Sciences.285 (1871) 20172299.doi:10.1098/rspb.2017.2299.PMC 5805935.PMID 29343599.
  391. ^Geerat J. Vermeij; Ryosuke Motani (2018). "Land to sea transitions in vertebrates: the dynamics of colonization".Paleobiology.44 (2):237–250.Bibcode:2018Pbio...44..237V.doi:10.1017/pab.2017.37.S2CID 91116726.
  392. ^Davide Foffa; Mark T. Young; Stephen L. Brusatte (2018)."Filling the Corallian gap: New information on Late Jurassic marine reptile faunas from England".Acta Palaeontologica Polonica.63 (2):287–313.doi:10.4202/app.00455.2018.hdl:20.500.11820/729f4cac-6217-4a21-b22c-8683b38c733b.S2CID 52254345.
  393. ^Davide Foffa; Mark T. Young; Thomas L. Stubbs; Kyle G. Dexter; Stephen L. Brusatte (2018)."The long-term ecology and evolution of marine reptiles in a Jurassic seaway"(PDF).Nature Ecology & Evolution.2 (10):1548–1555.Bibcode:2018NatEE...2.1548F.doi:10.1038/s41559-018-0656-6.hdl:20.500.11820/789aa9d0-076f-41bc-bd78-213a3313ebbe.PMID 30177805.S2CID 52147976.
  394. ^Joseph A. Frederickson; Thomas R. Lipka; Richard L. Cifelli (2018)."Faunal composition and paleoenvironment of the Arundel Clay (Potomac Formation; Early Cretaceous), Maryland, USA".Palaeontologia Electronica.21 (2): Article number 21.2.31A.doi:10.26879/847.
  395. ^Sandra Barrios-de Pedro; Francisco José Poyato-Ariza; José Joaquín Moratalla; Ángela D. Buscalioni (2018)."Exceptional coprolite association from the Early Cretaceous continental Lagerstätte of Las Hoyas, Cuenca, Spain".PLOS ONE.13 (5) e0196982.Bibcode:2018PLoSO..1396982B.doi:10.1371/journal.pone.0196982.PMC 5965836.PMID 29791478.
  396. ^Sandra Barrios-de Pedro; Ángela D. Buscalioni (2018)."Scrutinizing Barremian coprolite inclusions to record digestive strategies".Annales Societatis Geologorum Poloniae.88 (2):203–221.doi:10.14241/asgp.2018.014.
  397. ^Yingyan Mao; Kun Liang; Yitong Su; Jianguo Li; Xin Rao; Hua Zhang; Fangyuan Xia; Yanzhe Fu; Chenyang Cai; Diying Huang (2018). "Various amberground marine animals on Burmese amber with discussions on its age".Palaeoentomology.1 (1):91–103.Bibcode:2018Plegy...1...91M.doi:10.11646/palaeoentomology.1.1.11.S2CID 68048811.
  398. ^Haviv M. Avrahami; Terry A. Gates; Andrew B. Heckert; Peter J. Makovicky; Lindsay E. Zanno (2018)."A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America".PeerJ.6 e5883.doi:10.7717/peerj.5883.PMC 6241397.PMID 30479889.
  399. ^Nathan A. Jud; Michael D. D'Emic; Scott A. Williams; Josh C. Mathews; Katie M. Tremaine; Janok Bhattacharya (2018)."A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous)".Science Advances.4 (9) eaar8568.Bibcode:2018SciA....4.8568J.doi:10.1126/sciadv.aar8568.PMC 6157959.PMID 30263954.
  400. ^Joshua D. Laird; Christina L. Belanger (2018). "Quantifying successional change and ecological similarity among Cretaceous and modern cold-seep faunas".Paleobiology.45 (1):114–135.doi:10.1017/pab.2018.41.S2CID 91267997.
  401. ^Christopher M. Lowery; Timothy J. Bralower; Jeremy D. Owens; Francisco J. Rodríguez-Tovar; Heather Jones; Jan Smit; Michael T. Whalen; Phillipe Claeys; Kenneth Farley; Sean P. S. Gulick;Joanna V. Morgan; Sophie Green; Elise Chenot; Gail L. Christeson; Charles S. Cockell; Marco J. L. Coolen; Ludovic Ferrière; Catalina Gebhardt; Kazuhisa Goto; David A. Kring; Johanna Lofi; Rubén Ocampo-Torres; Ligia Perez-Cruz; Annemarie E. Pickersgill; Michael H. Poelchau; Auriol S. P. Rae; Cornelia Rasmussen; Mario Rebolledo-Vieyra; Ulrich Riller; Honami Sato; Sonia M. Tikoo; Naotaka Tomioka; Jaime Urrutia-Fucugauchi; Johan Vellekoop; Axel Wittmann; Long Xiao; Kosei E. Yamaguchi; William Zylberman (2018)."Rapid recovery of life at ground zero of the end-Cretaceous mass extinction".Nature.558 (7709):288–291.Bibcode:2018Natur.558..288L.doi:10.1038/s41586-018-0163-6.PMC 6058194.PMID 29849143.
  402. ^George Poinar (2018). "Vertebrate pathogens vectored by ancient hematophagous arthropods".Historical Biology: An International Journal of Paleobiology.32 (7):888–901.doi:10.1080/08912963.2018.1545018.S2CID 91497974.
  403. ^David A. Grimaldi; David Sunderlin; Georgene A. Aaroe; Michelle R. Dempsky; Nancy E. Parker; George Q. Tillery; Jaclyn G. White; Phillip Barden; Paul C. Nascimbene; Christopher J. Williams (2018)."Biological inclusions in amber from the Paleogene Chickaloon Formation of Alaska".American Museum Novitates (3908):1–37.doi:10.1206/3908.1.hdl:2246/6909.S2CID 91866682.
  404. ^Geerat J. Vermeij; Roxanne Banker; Lena R. Capece; Emilia Sakai Hernandez; Sydney O. Salley; Veronica Padilla Vriesman; Barbara E. Wortham (2018)."The coastal North Pacific: Origins and history of a dominant marine biota".Journal of Biogeography.46 (1):1–18.doi:10.1111/jbi.13471.S2CID 91257553.
  405. ^Maia Bukhsianidze; Kakhaber Koiava (2018)."Synopsis of the terrestrial vertebrate faunas from the Middle Kura Basin (Eastern Georgia and Western Azerbaijan, South Caucasus)".Acta Palaeontologica Polonica.63 (3):441–461.doi:10.4202/app.00499.2018.S2CID 56242572.
  406. ^Andrea Villa; Hugues-Alexandre Blain; Lars W. van den Hoek Ostende; Massimo Delfino (2018)."Fossil amphibians and reptiles from Tegelen (Province of Limburg) and the early Pleistocene palaeoclimate of The Netherlands".Quaternary Science Reviews.187:203–219.Bibcode:2018QSRv..187..203V.doi:10.1016/j.quascirev.2018.03.020.hdl:2318/1664966.
  407. ^Neil T. Roach; Andrew Du; Kevin G. Hatala; Kelly R. Ostrofsky; Jonathan S. Reeves; David R. Braun; John W.K. Harris; Anna K. Behrensmeyer; Brian G. Richmond (2018)."Pleistocene animal communities of a 1.5 million-year-old lake margin grassland and their relationship toHomo erectus paleoecology".Journal of Human Evolution.122:70–83.Bibcode:2018JHumE.122...70R.doi:10.1016/j.jhevol.2018.04.014.PMID 29970233.S2CID 49681563.
  408. ^Geoff M. Smith; Karen Ruebens; Sabine Gaudzinski-Windheuser; Teresa E. Steele (2019). "Subsistence strategies throughout the African Middle Pleistocene: Faunal evidence for behavioral change and continuity across the Earlier to Middle Stone Age transition".Journal of Human Evolution.127:1–20.Bibcode:2019JHumE.127....1S.doi:10.1016/j.jhevol.2018.11.011.PMID 30777352.S2CID 73469724.
  409. ^Asier Gómez-Olivencia; Nohemi Sala; Carmen Núñez-Lahuerta; Alfred Sanchis; Mikel Arlegi; Joseba Rios-Garaizar (2018)."First data of Neandertal bird and carnivore exploitation in the Cantabrian Region (Axlor; Barandiaran excavations; Dima, Biscay, Northern Iberian Peninsula)".Scientific Reports.8 (1) 10551.Bibcode:2018NatSR...810551G.doi:10.1038/s41598-018-28377-y.PMC 6043621.PMID 30002396.
  410. ^Thomas Sutikna; Matthew W. Tocheri; J. Tyler Faith; Jatmiko; Rokus Due Awe; Hanneke J. M.Meijer; E. Wahyu Saptomo; Richard G. Roberts (2018)."The spatio-temporal distribution of archaeological and faunal finds at Liang Bua (Flores, Indonesia) in light of the revised chronology forHomo floresiensis".Journal of Human Evolution.124:52–74.Bibcode:2018JHumE.124...52S.doi:10.1016/j.jhevol.2018.07.001.PMID 30173885.S2CID 52145882.
  411. ^Marco F. Raczka; Mark B. Bush; Paulo Eduardo De Oliveira (2018). "The collapse of megafaunal populations in southeastern Brazil".Quaternary Research.89 (1):103–118.Bibcode:2018QuRes..89..103R.doi:10.1017/qua.2017.60.S2CID 134333714.
  412. ^John Dodson; Judith H. Field (2018). "What does the occurrence ofSporormiella (Preussia) spores mean in Australian fossil sequences?".Journal of Quaternary Science.33 (4):380–392.Bibcode:2018JQS....33..380D.doi:10.1002/jqs.3020.S2CID 133737405.
  413. ^Elizabeth S. Jeffers; Nicki J. Whitehouse; Adrian Lister; Gill Plunkett; Phil Barratt; Emma Smyth; Philip Lamb; Michael W. Dee; Stephen J. Brooks; Katherine J. Willis; Cynthia A. Froyd; Jenny E. Watson; Michael B. Bonsall (2018)."Plant controls on Late Quaternary whole ecosystem structure and function"(PDF).Ecology Letters.21 (6):814–825.Bibcode:2018EcolL..21..814J.doi:10.1111/ele.12944.PMID 29601664.S2CID 4493047.
  414. ^Mauro Galetti; Marcos Moleón; Pedro Jordano; Mathias M. Pires; Paulo R. Guimarães Jr.; Thomas Pape; Elizabeth Nichols; Dennis Hansen; Jens M. Olesen; Michael Munk; Jacqueline S. de Mattos; Andreas H. Schweiger; Norman Owen-Smith; Christopher N. Johnson; Robert J. Marquis; Jens-Christian Svenning (2018)."Ecological and evolutionary legacy of megafauna extinctions"(PDF).Biological Reviews.93 (2):845–862.doi:10.1111/brv.12374.PMID 28990321.S2CID 4762203.
  415. ^Daniel H. Mann; Pamela Groves; Benjamin V. Gaglioti; Beth A. Shapiro (2018)."Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis".Biological Reviews.94 (1):328–352.doi:10.1111/brv.12456.PMC 7379602.PMID 30136433.S2CID 52072606.
  416. ^Frederik V. Seersholm; Theresa L. Cole; Alicia Grealy; Nicolas J. Rawlence; Karen Greig; Michael Knapp; Michael Stat; Anders J. Hansen; Luke J. Easton; Lara Shepherd; Alan J. D. Tennyson; R. Paul Scofield; Richard Walter; Michael Bunce (2018)."Subsistence practices, past biodiversity, and anthropogenic impacts revealed by New Zealand-wide ancient DNA survey".Proceedings of the National Academy of Sciences of the United States of America.115 (30):7771–7776.Bibcode:2018PNAS..115.7771S.doi:10.1073/pnas.1803573115.PMC 6065006.PMID 29987016.
  417. ^Jamie R. Wood; Francisca P. Díaz; Claudio Latorre; Janet M. Wilmshurst; Olivia R. Burge; Rodrigo A. Gutiérrez (2018)."Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile".Scientific Reports.8 (1) 17208.Bibcode:2018NatSR...817208W.doi:10.1038/s41598-018-35299-2.PMC 6249261.PMID 30464240.
  418. ^Robert S. Sansom; Peter G. Choate; Joseph N. Keating; Emma Randle (2018)."Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees".Biology Letters.14 (6) 20180263.doi:10.1098/rsbl.2018.0263.PMC 6030593.PMID 29925561.
  419. ^Daniele Silvestro; Rachel C. M. Warnock; Alexandra Gavryushkina; Tanja Stadler (2018)."Closing the gap between palaeontological and neontological speciation and extinction rate estimates".Nature Communications.9 (1) 5237.Bibcode:2018NatCo...9.5237S.doi:10.1038/s41467-018-07622-y.PMC 6286320.PMID 30532040.
  420. ^Kevin Padian (2018)."Measuring and comparing extinction events: Reconsidering diversity crises and concepts".Integrative and Comparative Biology.58 (6):1191–1203.doi:10.1093/icb/icy084.PMID 29945185.
  421. ^Dominic J. Bennett; Mark D. Sutton; Samuel T. Turvey (2018)."Quantifying the living fossil concept".Palaeontologia Electronica.21 (1): Article number: 21.1.14A.Bibcode:2018PalEl..21..750B.doi:10.26879/750.hdl:10044/1/60906.S2CID 53372593.
  422. ^Asefeh Golreihan; Christian Steuwe; Lineke Woelders; Arne Deprez; Yasuhiko Fujita; Johan Vellekoop; Rudy Swennen; Maarten B. J. Roeffaers (2018)."Improving preservation state assessment of carbonate microfossils in paleontological research using label-free stimulated Raman imaging".PLOS ONE.13 (7) e0199695.Bibcode:2018PLoSO..1399695G.doi:10.1371/journal.pone.0199695.PMC 6040746.PMID 29995961.
  423. ^Fredrik K. Mürer; Sophie Sanchez; Michelle Álvarez-Murga; Marco Di Michiel; Franz Pfeiffer; Martin Bech; Dag W. Breiby (2018)."3D maps of mineral composition and hydroxyapatite orientation in fossil bone samples obtained by X-ray diffraction computed tomography".Scientific Reports.8 (1) 10052.Bibcode:2018NatSR...810052M.doi:10.1038/s41598-018-28269-1.PMC 6030225.PMID 29968761.
  424. ^Maria E. McNamara; Jonathan S. Kaye; Michael J. Benton; Patrick J. Orr; Valentina Rossi; Shosuke Ito; Kazumasa Wakamatsu (2018)."Non-integumentary melanosomes can bias reconstructions of the colours of fossil vertebrates".Nature Communications.9 (1) 2878.Bibcode:2018NatCo...9.2878M.doi:10.1038/s41467-018-05148-x.PMC 6056411.PMID 30038333.
  425. ^Jasmina Wiemann; Matteo Fabbri; Tzu-Ruei Yang; Koen Stein; P. Martin Sander; Mark A. Norell; Derek E. G. Briggs (2018)."Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers".Nature Communications.9 (1) 4741.Bibcode:2018NatCo...9.4741W.doi:10.1038/s41467-018-07013-3.PMC 6226439.PMID 30413693.
  426. ^Thiago F. Rangel; Neil R. Edwards; Philip B. Holden; José Alexandre F. Diniz-Filho; William D. Gosling; Marco Túlio P. Coelho; Fernanda A. S. Cassemiro; Carsten Rahbek; Robert K. Colwell (2018)."Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves"(PDF).Science.361 (6399) eaar5452.Bibcode:2018Sci...361R5452R.doi:10.1126/science.aar5452.PMID 30026200.S2CID 51701215.
  427. ^Ian G. Brennan; J. Scott Keogh (2018)."Miocene biome turnover drove conservative body size evolution across Australian vertebrates".Proceedings of the Royal Society B: Biological Sciences.285 (1889) 20181474.doi:10.1098/rspb.2018.1474.PMC 6234893.PMID 30333208.
  428. ^Rafał Nawrot; Daniele Scarponi; Michele Azzarone; Troy A. Dexter; Kristopher M. Kusnerik; Jacalyn M. Wittmer; Alessandro Amorosi; Michał Kowalewski (2018)."Stratigraphic signatures of mass extinctions: ecological and sedimentary determinants".Proceedings of the Royal Society B: Biological Sciences.285 (1886) 20181191.doi:10.1098/rspb.2018.1191.PMC 6158527.PMID 30209225.
  429. ^Peter J. Wagner (2018)."Early bursts of disparity and the reorganization of character integration".Proceedings of the Royal Society B: Biological Sciences.285 (1891) 20181604.doi:10.1098/rspb.2018.1604.PMC 6253373.PMID 30429302.
  430. ^Geerat J. Vermeij (2018)."Comparative biogeography: innovations and the rise to dominance of the North Pacific biota".Proceedings of the Royal Society B: Biological Sciences.285 (1891) 20182027.doi:10.1098/rspb.2018.2027.PMC 6253370.PMID 30429310.
  431. ^Neil Brocklehurst; Jörg Fröbisch (2018)."The definition of bioregions in palaeontological studies of diversity and biogeography affects interpretations: Palaeozoic tetrapods as a case study".Frontiers in Earth Science.6 200.Bibcode:2018FrEaS...6..200B.doi:10.3389/feart.2018.00200.
  432. ^C. R. Marshall; S. Finnegan; E. C. Clites; P. A. Holroyd; N. Bonuso; C. Cortez; E. Davis; G. P. Dietl; P. S. Druckenmiller; R. C. Eng; C. Garcia; K. Estes-Smargiassi; A. Hendy; K. A. Hollis; H. Little; E. A. Nesbitt; P. Roopnarine; L. Skibinski; J. Vendetti; L. D. White (2018)."Quantifying the dark data in museum fossil collections as palaeontology undergoes a second digital revolution".Biology Letters.14 (9) 20180431.doi:10.1098/rsbl.2018.0431.PMC 6170754.PMID 30185609.
  433. ^Lauren Sallan; Matt Friedman; Robert S. Sansom; Charlotte M. Bird; Ivan J. Sansom (2018)."The nearshore cradle of early vertebrate diversification"(PDF).Science.362 (6413):460–464.Bibcode:2018Sci...362..460S.doi:10.1126/science.aar3689.PMID 30361374.S2CID 53089922.
  434. ^Asier Gómez-Olivencia; Alon Barash; Daniel García-Martínez; Mikel Arlegi; Patricia Kramer; Markus Bastir; Ella Been (2018)."3D virtual reconstruction of the Kebara 2 Neandertal thorax".Nature Communications.9 (1): 4387.Bibcode:2018NatCo...9.4387G.doi:10.1038/s41467-018-06803-z.PMC 6207772.PMID 30377294.
  435. ^Tanya M. Smith; Christine Austin; Daniel R. Green; Renaud Joannes-Boyau; Shara Bailey; Dani Dumitriu; Stewart Fallon; Rainer Grün; Hannah F. James; Marie-Hélène Moncel; Ian S. Williams; Rachel Wood; Manish Arora (2018)."Wintertime stress, nursing, and lead exposure in Neanderthal children".Science Advances.4 (10) eaau9483.Bibcode:2018SciA....4.9483S.doi:10.1126/sciadv.aau9483.PMC 6209393.PMID 30402544.
  436. ^Jasmina Wiemann; Tzu-Ruei Yang; Mark A. Norell (2018)."Dinosaur egg colour had a single evolutionary origin".Nature.563 (7732):555–558.Bibcode:2018Natur.563..555W.doi:10.1038/s41586-018-0646-5.PMID 30464264.S2CID 53188171.
  437. ^Martin Qvarnström; Piotr Szrek;Per E. Ahlberg; Grzegorz Niedźwiedzki (2018)."Non-marine palaeoenvironment associated to the earliest tetrapod tracks".Scientific Reports.8 (1) 1074.Bibcode:2018NatSR...8.1074Q.doi:10.1038/s41598-018-19220-5.PMC 5773519.PMID 29348562.
  438. ^Heitor Francischini; Paula Dentzien-Dias; Spencer G. Lucas; Cesar L. Schultz (2018)."Tetrapod tracks in Permo–Triassic eolian beds of southern Brazil (Paraná Basin)".PeerJ.6 e4764.doi:10.7717/peerj.4764.PMC 5961629.PMID 29796341.
  439. ^Ray Stanford; Martin G. Lockley; Compton Tucker; Stephen Godfrey; Sheila M. Stanford (2018)."A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland".Scientific Reports.8 (1) 741.Bibcode:2018NatSR...8..741S.doi:10.1038/s41598-017-18619-w.PMC 5792599.PMID 29386519.
  440. ^Chloe L. Stanton; Christopher T. Reinhard; James F. Kasting; Nathaniel E. Ostrom; Joshua A. Haslun; Timothy W. Lyons; Jennifer B. Glass (2018)."Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration".Geobiology.16 (6):597–609.Bibcode:2018Gbio...16..597S.doi:10.1111/gbi.12311.PMID 30133143.S2CID 52055337.
  441. ^Sarah P. Slotznick; Nicholas L. Swanson-Hysell; Erik A. Sperling (2018)."Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy".Proceedings of the National Academy of Sciences of the United States of America.115 (51):12938–12943.Bibcode:2018PNAS..11512938S.doi:10.1073/pnas.1813493115.PMC 6304936.PMID 30509974.
  442. ^Peter W. Crockford; Justin A. Hayles; Huiming Bao; Noah J. Planavsky; Andrey Bekker; Philip W. Fralick; Galen P. Halverson; Thi Hao Bui; Yongbo Peng; Boswell A. Wing (2018)."Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity".Nature.559 (7715):613–616.Bibcode:2018Natur.559..613C.doi:10.1038/s41586-018-0349-y.PMID 30022163.S2CID 49869017.
  443. ^Donald E. Canfield; Shuichang Zhang; Anja B. Frank; Xiaomei Wang; Huajian Wang; Jin Su; Yuntao Ye; Robert Frei (2018)."Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen".Nature Communications.9 (1) 2871.Bibcode:2018NatCo...9.2871C.doi:10.1038/s41467-018-05263-9.PMC 6054612.PMID 30030422.
  444. ^Kazumi Ozaki; Christopher T. Reinhard; Eiichi Tajika (2019)."A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance".Geobiology.17 (1):3–11.arXiv:1907.13567.Bibcode:2019arXiv190713567O.doi:10.1111/gbi.12317.PMC 6585969.PMID 30281196.
  445. ^Yebo Liu; Zheng-Xiang Li; Sergei A. Pisarevsky; Uwe Kirscher; Ross N. Mitchell; J. Camilla Stark; Chris Clark; Martin Hand (2018)."First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications".Scientific Reports.8 (1) 16403.Bibcode:2018NatSR...816403L.doi:10.1038/s41598-018-34748-2.PMC 6219563.PMID 30401799.
  446. ^C. Brenhin Keller; Jon M. Husson; Ross N. Mitchell; William F. Bottke; Thomas M. Gernon; Patrick Boehnke; Elizabeth A. Bell; Nicholas L. Swanson-Hysell; Shanan E. Peters (2018)."Neoproterozoic glacial origin of the Great Unconformity".Proceedings of the National Academy of Sciences of the United States of America.116 (4):1136–1145.Bibcode:2019PNAS..116.1136B.doi:10.1073/pnas.1804350116.PMC 6347685.PMID 30598437.
  447. ^Kelden Pehr; Gordon D. Love; Anton Kuznetsov; Victor Podkovyrov; Christopher K. Junium; Leonid Shumlyanskyy; Tetyana Sokur; Andrey Bekker (2018)."Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica".Nature Communications.9 (1) 1807.Bibcode:2018NatCo...9.1807P.doi:10.1038/s41467-018-04195-8.PMC 5935690.PMID 29728614.
  448. ^Romain C. Gougeon; M. Gabriela Mángano; Luis A. Buatois; Guy M. Narbonne; Brittany A. Laing (2018)."Early Cambrian origin of the shelf sediment mixed layer".Nature Communications.9 (1) 1909.Bibcode:2018NatCo...9.1909G.doi:10.1038/s41467-018-04311-8.PMC 5953921.PMID 29765030.
  449. ^Sebastiaan van de Velde; Benjamin J. W. Mills; Filip J. R. Meysman; Timothy M. Lenton; Simon W. Poulton (2018)."Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing".Nature Communications.9 (1) 2554.Bibcode:2018NatCo...9.2554V.doi:10.1038/s41467-018-04973-4.PMC 6028391.PMID 29967319.
  450. ^Thomas Servais; David A.T. Harper (2018)."The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration"(PDF).Lethaia.51 (2):151–164.Bibcode:2018Letha..51..151S.doi:10.1111/let.12259.S2CID 135307811.
  451. ^Jiaheng Shen; Ann Pearson; Gregory A. Henkes; Yi Ge Zhang; Kefan Chen; Dandan Li; Scott D. Wankel; Stanley C. Finney; Yanan Shen (2018). "Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation".Nature Geoscience.11 (7):510–514.Bibcode:2018NatGe..11..510S.doi:10.1038/s41561-018-0141-5.S2CID 133854468.
  452. ^Grzegorz Racki; Michał Rakociński; Leszek Marynowski; Paul B. Wignall (2018)."Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?"(PDF).Geology.46 (6):543–546.Bibcode:2018Geo....46..543R.doi:10.1130/G40233.1.
  453. ^Catherine Girard; Jean-Jacques Cornée; Michael M. Joachimski; Anne-Lise Charruault; Anne-Béatrice Dufour; Sabrina Renaud (2018)."Paleogeographic differences in temperature, water depth and conodont biofacies during the Late Devonian"(PDF).Palaeogeography, Palaeoclimatology, Palaeoecology.549 108852.doi:10.1016/j.palaeo.2018.06.046.S2CID 134155041.
  454. ^Aaron M. Martinez; Diana L. Boyer; Mary L. Droser; Craig Barrie; Gordon D. Love (2018)."A stable and productive marine microbial community was sustained through the end-Devonian Hangenberg Crisis within the Cleveland Shale of the Appalachian Basin, United States".Geobiology.17 (1):27–42.doi:10.1111/gbi.12314.PMID 30248226.S2CID 52811336.
  455. ^L. M. E. Percival; J. H. F. L. Davies; U. Schaltegger; D. De Vleeschouwer; A.-C. Da Silva; K. B. Föllmi (2018)."Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction".Scientific Reports.8 (1) 9578.Bibcode:2018NatSR...8.9578P.doi:10.1038/s41598-018-27847-7.PMC 6014997.PMID 29934550.
  456. ^Pia A. Viglietti; Roger M.H. Smith; Bruce S. Rubidge (2018). "Changing palaeoenvironments and tetrapod populations in theDaptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction".Journal of African Earth Sciences.138:102–111.Bibcode:2018JAfES.138..102V.doi:10.1016/j.jafrearsci.2017.11.010.
  457. ^Li Tian; Jinnan Tong; Yifan Xiao; Michael J. Benton; Huyue Song; Haijun Song; Lei Liang; Kui Wu; Daoliang Chu; Thomas J. Algeo (2019)."Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin (South China)".Palaeogeography, Palaeoclimatology, Palaeoecology.519:23–36.Bibcode:2019PPP...519...23T.doi:10.1016/j.palaeo.2018.05.011.hdl:1983/fbd7b0d5-ae23-4d61-900a-3cd566d298e3.S2CID 135112454.
  458. ^Michael W. Broadley; Peter H. Barry; Chris J. Ballentine; Lawrence A. Taylor; Ray Burgess (2018)."End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles".Nature Geoscience.11 (9):682–687.Bibcode:2018NatGe..11..682B.doi:10.1038/s41561-018-0215-4.S2CID 133833819.
  459. ^He Sun; Yilin Xiao; Yongjun Gao; Guijie Zhang; John F. Casey; Yanan Shen (2018)."Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary".Proceedings of the National Academy of Sciences of the United States of America.115 (15):3782–3787.Bibcode:2018PNAS..115.3782S.doi:10.1073/pnas.1711862115.PMC 5899431.PMID 29581278.
  460. ^Shu-Zhong Shen; Jahandar Ramezani; Jun Chen; Chang-Qun Cao; Douglas H. Erwin; Hua Zhang; Lei Xiang; Shane D. Schoepfer; Charles M. Henderson; Quan-Feng Zheng; Samuel A. Bowring; Yue Wang; Xian-Hua Li; Xiang-Dong Wang; Dong-Xun Yuan; Yi-Chun Zhang; Lin Mu; Jun Wang; Ya-Sheng Wu (2018). "A sudden end-Permian mass extinction in South China".GSA Bulletin.131 (1–2):205–223.Bibcode:2019GSAB..131..205S.doi:10.1130/B31909.1.S2CID 134291243.
  461. ^Max C. Langer; Jahandar Ramezani; Átila A.S. Da Rosa (2018). "U-Pb age constraints on dinosaur rise from south Brazil".Gondwana Research.57:133–140.Bibcode:2018GondR..57..133L.doi:10.1016/j.gr.2018.01.005.
  462. ^Dennis V. Kent; Paul E. Olsen; Cornelia Rasmussen; Christopher Lepre; Roland Mundil; Randall B. Irmis; George E. Gehrels; Dominique Giesler; John W. Geissman; William G. Parker (2018)."Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years".Proceedings of the National Academy of Sciences of the United States of America.115 (24):6153–6158.Bibcode:2018PNAS..115.6153K.doi:10.1073/pnas.1800891115.PMC 6004457.PMID 29735684.
  463. ^Thea H. Heimdal; Henrik. H. Svensen; Jahandar Ramezani; Karthik Iyer; Egberto Pereira; René Rodrigues; Morgan T. Jones; Sara Callegaro (2018)."Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis".Scientific Reports.8 (1) 141.Bibcode:2018NatSR...8..141H.doi:10.1038/s41598-017-18629-8.PMC 5760721.PMID 29317730.
  464. ^Tamara L. Fletcher; Patrick T. Moss; Steven W. Salisbury (2018)."The palaeoenvironment of the Upper Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, Queensland, Australia".PeerJ.6 e5513.doi:10.7717/peerj.5513.PMC 6130253.PMID 30210941.
  465. ^Sarah J. Widlansky; William C. Clyde; Patrick M. O'Connor; Eric M. Roberts; Nancy J. Stevens (2018)."Paleomagnetism of the Cretaceous Galula Formation and implications for vertebrate evolution".Journal of African Earth Sciences.139:403–420.Bibcode:2018JAfES.139..403W.doi:10.1016/j.jafrearsci.2017.11.029.
  466. ^Phil R. Bell; Federico Fanti; Lachlan J. Hart; Luke A. Milan; Stephen J. Craven; Thomas Brougham; Elizabeth Smith (2019). "Revised geology, age, and vertebrate diversity of the dinosaur-bearing Griman Creek Formation (Cenomanian), Lightning Ridge, New South Wales, Australia".Palaeogeography, Palaeoclimatology, Palaeoecology.514:655–671.Bibcode:2019PPP...514..655B.doi:10.1016/j.palaeo.2018.11.020.hdl:11585/651841.S2CID 134264936.
  467. ^Victoria F. Crystal; Erica S.J. Evans; Henry Fricke; Ian M. Miller; Joseph J.W. Sertich (2019). "Late Cretaceous fluvial hydrology and dinosaur behavior in southern Utah, USA: Insights from stable isotopes of biogenic carbonate".Palaeogeography, Palaeoclimatology, Palaeoecology.516:152–165.Bibcode:2019PPP...516..152C.doi:10.1016/j.palaeo.2018.11.022.S2CID 135118646.
  468. ^Prosenjit Ghosh; K. Prasanna; Yogaraj Banerjee; Ian S. Williams; Michael K. Gagan; Atanu Chaudhuri; Satyam Suwas (2018)."Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse".Scientific Reports.8 (1) 8482.Bibcode:2018NatSR...8.8482G.doi:10.1038/s41598-018-26272-0.PMC 5981374.PMID 29855487.
  469. ^Joseph S. Byrnes; Leif Karlstrom (2018)."Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism".Science Advances.4 (2) eaao2994.Bibcode:2018SciA....4.2994B.doi:10.1126/sciadv.aao2994.PMC 5810608.PMID 29441360.
  470. ^K. G. MacLeod; P. C. Quinton; J. Sepúlveda; M. H. Negra (2018)."Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia)".Science.360 (6396):1467–1469.Bibcode:2018Sci...360.1467M.doi:10.1126/science.aap8525.PMID 29794216.S2CID 206664436.
  471. ^Johan Vellekoop; Lineke Woelders; Niels A.G.M. van Helmond; Simone Galeotti; Jan Smit; Caroline P. Slomp; Henk Brinkhuis; Philippe Claeys; Robert P. Speijer (2018)."Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact".Geology.46 (8):683–686.Bibcode:2018Geo....46..683V.doi:10.1130/G45000.1.S2CID 134506332.
  472. ^S. J. Batenburg; S. Voigt; O. Friedrich; A. H. Osborne; A. Bornemann; T. Klein; L. Pérez-Díaz; M. Frank (2018)."Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth".Nature Communications.9 (1) 4954.Bibcode:2018NatCo...9.4954B.doi:10.1038/s41467-018-07457-7.PMC 6251870.PMID 30470783.
  473. ^Liao Chang; Richard J. Harrison; Fan Zeng; Thomas A. Berndt; Andrew P. Roberts; David Heslop; Xiang Zhao (2018)."Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene–Eocene Thermal Maximum".Nature Communications.9 (1) 4007.Bibcode:2018NatCo...9.4007C.doi:10.1038/s41467-018-06472-y.PMC 6167317.PMID 30275540.
  474. ^Jeffrey T. Kiehl; Christine A. Shields; Mark A. Snyder; James C. Zachos; Mathew Rothstein (2018)."Greenhouse- and orbital-forced climate extremes during the early Eocene".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.376 (2130) 20170085.Bibcode:2018RSPTA.37670085K.doi:10.1098/rsta.2017.0085.PMC 6127382.PMID 30177566.
  475. ^Margot J. Cramwinckel; Matthew Huber; Ilja J. Kocken; Claudia Agnini; Peter K. Bijl; Steven M. Bohaty; Joost Frieling; Aaron Goldner; Frederik J. Hilgen; Elizabeth L. Kip; Francien Peterse; Robin van der Ploeg; Ursula Röhl; Stefan Schouten; Appy Sluijs (2018). "Synchronous tropical and polar temperature evolution in the Eocene".Nature.559 (7714):382–386.Bibcode:2018Natur.559..382C.doi:10.1038/s41586-018-0272-2.hdl:1874/366626.PMID 29967546.S2CID 49556944.
  476. ^Robin van der Ploeg; David Selby; Margot J. Cramwinckel; Yang Li; Steven M. Bohaty; Jack J. Middelburg; Appy Sluijs (2018)."Middle Eocene greenhouse warming facilitated by diminished weathering feedback".Nature Communications.9 (1) 2877.Bibcode:2018NatCo...9.2877V.doi:10.1038/s41467-018-05104-9.PMC 6056486.PMID 30038400.
  477. ^Tao Su; Robert A. Spicer; Shi-Hu Li; He Xu; Jian Huang; Sarah Sherlock; Yong-Jiang Huang; Shu-Feng Li; Li Wang; Lin-Bo Jia; Wei-Yu-Dong Deng; Jia Liu; Cheng-Long Deng; Shi-Tao Zhang; Paul J. Valdes; Zhe-Kun Zhou (2018)."Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet".National Science Review.6 (3):495–504.doi:10.1093/nsr/nwy062.PMC 8291530.PMID 34691898.
  478. ^Keke Ai; Gongle Shi; Kexin Zhang; Junliang Ji; Bowen Song; Tianyi Shen; Shuangxing Guo (2019). "The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane".Palaeogeography, Palaeoclimatology, Palaeoecology.515:143–151.Bibcode:2019PPP...515..143A.doi:10.1016/j.palaeo.2018.04.017.S2CID 134696755.
  479. ^Kaarel Mänd; Karlis Muehlenbachs; Ryan C. McKellar; Alexander P. Wolfe; Kurt O. Konhauser (2018). "Distinct origins for Rovno and Baltic ambers: Evidence from carbon and hydrogen stable isotopes".Palaeogeography, Palaeoclimatology, Palaeoecology.505:265–273.Bibcode:2018PPP...505..265M.doi:10.1016/j.palaeo.2018.06.004.S2CID 49567887.
  480. ^Jennifer Kasbohm; Blair Schoene (2018)."Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum".Science Advances.4 (9) eaat8223.Bibcode:2018SciA....4.8223K.doi:10.1126/sciadv.aat8223.PMC 6154988.PMID 30255148.
  481. ^Jon J. Smith; Elijah Turner; Andreas Möller; R. M. Joeckel; Rick E. Otto (2018)."First U-Pb zircon ages for late Miocene Ashfall Konservat-Lagerstätte and Grove Lake ashes from eastern Great Plains, USA".PLOS ONE.13 (11) e0207103.Bibcode:2018PLoSO..1307103S.doi:10.1371/journal.pone.0207103.PMC 6224108.PMID 30408086.
  482. ^Dirk Simon; Dan Palcu; Paul Meijer; Wout Krijgsman (2018). "The sensitivity of middle Miocene paleoenvironments to changing marine gateways in Central Europe".Geology.47 (1):35–38.Bibcode:2019Geo....47...35S.doi:10.1130/G45698.1.hdl:1874/378164.S2CID 134633409.
  483. ^Thomas Denk; Constantin M. Zohner; Guido W. Grimm; Susanne S. Renner (2018). "Plant fossils reveal major biomes occupied by the late Miocene Old-World Pikermian fauna".Nature Ecology & Evolution.2 (12):1864–1870.Bibcode:2018NatEE...2.1864D.doi:10.1038/s41559-018-0695-z.PMID 30374173.S2CID 53106568.
  484. ^Daniel De Miguel; Beatriz Azanza; Jorge Morales (2018). "Regional impacts of global climate change: a local humid phase in central Iberia in a late Miocene drying world".Palaeontology.62 (1):77–92.Bibcode:2019Palgy..62...77D.doi:10.1111/pala.12382.S2CID 133968515.
  485. ^J. Tyler Faith (2018). "Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel".Palaeogeography, Palaeoclimatology, Palaeoecology.490:571–578.Bibcode:2018PPP...490..571F.doi:10.1016/j.palaeo.2017.11.045.
  486. ^Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; Thure E. Cerling (2018). "Diet and evaporation sensitivity in African ungulates: A comment on Faith (2018)".Palaeogeography, Palaeoclimatology, Palaeoecology.506:250–251.Bibcode:2018PPP...506..250B.doi:10.1016/j.palaeo.2018.02.022.S2CID 135094022.
  487. ^J. Tyler Faith (2018). "We need to critically evaluate our assumptions: Reply to Blumenthal et al. (2018)".Palaeogeography, Palaeoclimatology, Palaeoecology.506:252–253.Bibcode:2018PPP...506..252F.doi:10.1016/j.palaeo.2018.02.023.S2CID 134698793.
  488. ^Laurent A. F. Frantz; Anna Rudzinski; Abang Mansyursyah Surya Nugraha; Allowen Evin; James Burton; Ardern Hulme-Beaman; Anna Linderholm; Ross Barnett; Rodrigo Vega; Evan K. Irving-Pease; James Haile; Richard Allen; Kristin Leus; Jill Shephard; Mia Hillyer; Sarah Gillemot; Jeroen van den Hurk; Sharron Ogle; Cristina Atofanei; Mark G. Thomas; Friederike Johansson; Abdul Haris Mustari; John Williams; Kusdiantoro Mohamad; Chandramaya Siska Damayanti; Ita Djuwita Wiryadi; Dagmar Obbles; Stephano Mona; Hally Day; Muhammad Yasin; Stefan Meker; Jimmy A. McGuire; Ben J. Evans; Thomas von Rintelen; Simon Y. W. Ho; Jeremy B. Searle; Andrew C. Kitchener; Alastair A. Macdonald; Darren J. Shaw; Robert Hall; Peter Galbusera; Greger Larson (2018)."Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events".Proceedings of the Royal Society B: Biological Sciences.285 (1876) 20172566.doi:10.1098/rspb.2017.2566.PMC 5904307.PMID 29643207.
  489. ^Kathlyn M. Stewart; Scott J. Rufolo (2018)."Kanapoi revisited: Paleoecological and biogeographical inferences from the fossil fish".Journal of Human Evolution.140 102452.doi:10.1016/j.jhevol.2018.01.008.PMID 29602541.S2CID 4505213.
  490. ^Sev Kender;Ana Christina Ravelo; Savannah Worne; George E. A. Swann; Melanie J. Leng; Hirofumi Asahi; Julia Becker; Henrieka Detlef; Ivano W. Aiello; Dyke Andreasen; Ian R. Hall (2018)."Closure of the Bering Strait caused Mid-Pleistocene Transition cooling".Nature Communications.9 (1) 5386.Bibcode:2018NatCo...9.5386K.doi:10.1038/s41467-018-07828-0.PMC 6300599.PMID 30568245.
  491. ^Manuel Domínguez-Rodrigo; Enrique Baquedano (2018)."Distinguishing butchery cut marks from crocodile bite marks through machine learning methods".Scientific Reports.8 (1) 5786.Bibcode:2018NatSR...8.5786D.doi:10.1038/s41598-018-24071-1.PMC 5893542.PMID 29636550.
  492. ^Faysal Bibi; Michael Pante; Antoine Souron; Kathlyn Stewart; Sara Varela; Lars Werdelin; Jean-Renaud Boisserie; Mikael Fortelius; Leslea Hlusko; Jackson Njau; Ignacio de la Torre (2018)."Paleoecology of the Serengeti during the Oldowan-Acheulean transition at Olduvai Gorge, Tanzania: The mammal and fish evidence".Journal of Human Evolution.120:48–75.Bibcode:2018JHumE.120...48B.doi:10.1016/j.jhevol.2017.10.009.hdl:10138/303935.PMID 29191415.S2CID 33617735.
  493. ^Roberts, Patrick; Stewart, Mathew; Alagaili, Abdulaziz N.; Breeze, Paul; Candy, Ian; Drake, Nick; Groucutt, Huw S.; Scerri, Eleanor M. L.;Lee-Thorp, Julia; Louys, Julien; Zalmout, Iyad S.; Al-Mufarreh, Yahya S. A.; Zech, Jana; Alsharekh, Abdullah M.; al Omari, Abdulaziz; Nicole Boivin; Michael Petraglia (2018). "Fossil herbivore stable isotopes reveal middle Pleistocene hominin palaeoenvironment in 'Green Arabia'".Nature Ecology & Evolution.2 (12):1871–1878.Bibcode:2018NatEE...2.1871R.doi:10.1038/s41559-018-0698-9.hdl:10072/382068.PMID 30374171.S2CID 53099270.
  494. ^Richard Potts; Anna K. Behrensmeyer; J. Tyler Faith; Christian A. Tryon; Alison S. Brooks; John E. Yellen; Alan L. Deino; Rahab Kinyanjui; Jennifer B. Clark; Catherine Haradon; Naomi E. Levin; Hanneke J. M. Meijer; Elizabeth G. Veatch; R. Bernhart Owen; Robin W. Renaut (2018)."Environmental dynamics during the onset of the Middle Stone Age in eastern Africa".Science.360 (6384):86–90.Bibcode:2018Sci...360...86P.doi:10.1126/science.aao2200.PMID 29545506.S2CID 206662634.
  495. ^Alan L. Deino; Anna K. Behrensmeyer; Alison S. Brooks; John E. Yellen; Warren D. Sharp; Richard Potts (2018)."Chronology of the Acheulean to Middle Stone Age transition in eastern Africa".Science.360 (6384):95–98.Bibcode:2018Sci...360...95D.doi:10.1126/science.aao2216.PMID 29545510.S2CID 3895578.
  496. ^Finn A. Viehberg; Janna Just; Jonathan R. Dean; Bernd Wagner; Sven Oliver Franz; Nicole Klasen; Thomas Kleinen; Patrick Ludwig; Asfawossen Asrat; Henry F. Lamb; Melanie J. Leng; Janet Rethemeyer; Antoni E. Milodowski; Martin Claussen; Frank Schäbitz (2018)."Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa forHomo sapiens expansion".Quaternary Science Reviews.202:139–153.Bibcode:2018QSRv..202..139V.doi:10.1016/j.quascirev.2018.09.008.hdl:21.11116/0000-0002-4B3E-6.S2CID 134622062.
  497. ^Chad L. Yost; Lily J. Jackson; Jeffery R. Stone; Andrew S. Cohen (2018)."Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ~74 ka Toba supereruption".Journal of Human Evolution.116:75–94.Bibcode:2018JHumE.116...75Y.doi:10.1016/j.jhevol.2017.11.005.PMID 29477183.
  498. ^Jennifer R. Jones; Michael P. Richards; Lawrence G. Straus; Hazel Reade; Jesús Altuna; Koro Mariezkurrena; Ana B. Marín-Arroyo (2018)."Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones".Scientific Reports.8 (1) 14842.Bibcode:2018NatSR...814842J.doi:10.1038/s41598-018-32493-0.PMC 6172272.PMID 30287834.
  499. ^Matthew J. Wooller; Émilie Saulnier-Talbot; Ben A. Potter; Soumaya Belmecheri; Nancy Bigelow; Kyungcheol Choy; Les C. Cwynar; Kimberley Davies; Russell W. Graham; Joshua Kurek; Peter Langdon; Andrew Medeiros; Ruth Rawcliffe; Yue Wang; John W. Williams (2018)."A new terrestrial palaeoenvironmental record from the Bering Land Bridge and context for human dispersal".Royal Society Open Science.5 (6) 180145.Bibcode:2018RSOS....580145W.doi:10.1098/rsos.180145.PMC 6030284.PMID 30110451.
  500. ^Anja S. Studer; Daniel M. Sigman; Alfredo Martínez-García; Lena M. Thöle; Elisabeth Michel; Samuel L. Jaccard; Jörg A. Lippold; Alain Mazaud; Xingchen T. Wang; Laura F. Robinson; Jess F. Adkins; Gerald H. Haug (2018)."Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise"(PDF).Nature Geoscience.11 (10):756–760.Bibcode:2018NatGe..11..756S.doi:10.1038/s41561-018-0191-8.hdl:1983/59f1368d-42cb-4ae9-a700-45e6b18dfd7c.S2CID 134793252.
  501. ^Yannick Garcin; Pierre Deschamps; Guillemette Ménot; Geoffroy de Saulieu; Enno Schefuß; David Sebag; Lydie M. Dupont; Richard Oslisly; Brian Brademann; Kevin G. Mbusnum; Jean-Michel Onana; Andrew A. Ako; Laura S. Epp; Rik Tjallingii; Manfred R. Strecker; Achim Brauerd; Dirk Sachse (2018)."Early anthropogenic impact on Western Central African rainforests 2,600 y ago".Proceedings of the National Academy of Sciences of the United States of America.115 (13):3261–3266.Bibcode:2018PNAS..115.3261G.doi:10.1073/pnas.1715336115.PMC 5879660.PMID 29483260.
  502. ^Bernard Clist; Koen Bostoen; Pierre de Maret; Manfred K. H. Eggert; Alexa Höhn; Christophe Mbida Mindzié; Katharina Neumann; Dirk Seidensticker (2018)."Did human activity really trigger the late Holocene rainforest crisis in Central Africa?".Proceedings of the National Academy of Sciences of the United States of America.115 (21):E4733 –E4734.Bibcode:2018PNAS..115E4733C.doi:10.1073/pnas.1805247115.PMC 6003455.PMID 29739887.
  503. ^Yannick Garcin; Pierre Deschamps; Guillemette Ménot; Geoffroy de Saulieu; Enno Schefuß; David Sebag; Lydie M. Dupont; Richard Oslisly; Brian Brademann; Kevin G. Mbusnum; Jean-Michel Onana; Andrew A. Ako; Laura S. Epp; Rik Tjallingii; Manfred R. Strecker; Achim Brauerd; Dirk Sachse (2018)."Reply to Clist et al.: Human activity is the most probable trigger of the late Holocene rainforest crisis in Western Central Africa".Proceedings of the National Academy of Sciences of the United States of America.115 (21):E4735 –E4736.Bibcode:2018PNAS..115E4735G.doi:10.1073/pnas.1805582115.PMC 6003483.PMID 29739892.
  504. ^P. Giresse; J. Maley; C. Doumenge; N. Philippon; G. Mahé; A. Chepstow-Lusty; J. Aleman; M. Lokonda; H. Elenga (2018)."Paleoclimatic changes are the most probable causes of the rainforest crises 2,600 y ago in Central Africa".Proceedings of the National Academy of Sciences of the United States of America.115 (29):E6672 –E6673.Bibcode:2018PNAS..115E6672G.doi:10.1073/pnas.1807615115.PMC 6055146.PMID 29970425.
  505. ^Yannick Garcin; Pierre Deschamps; Guillemette Ménot; Geoffroy de Saulieu; Enno Schefuß; David Sebag; Lydie M. Dupont; Richard Oslisly; Brian Brademann; Kevin G. Mbusnum; Jean-Michel Onana; Andrew A. Ako; Laura S. Epp; Rik Tjallingii; Manfred R. Strecker; Achim Brauerd; Dirk Sachse (2018)."Reply to Giresse et al.: No evidence for climate variability during the late Holocene rainforest crisis in Western Central Africa".Proceedings of the National Academy of Sciences of the United States of America.115 (29):E6674 –E6675.Bibcode:2018PNAS..115E6674G.doi:10.1073/pnas.1808481115.PMC 6055198.PMID 29970424.
  506. ^Connor Nolan; Jonathan T. Overpeck; Judy R. M. Allen; Patricia M. Anderson; Julio L. Betancourt; Heather A. Binney; Simon Brewer; Mark B. Bush; Brian M. Chase; Rachid Cheddadi; Morteza Djamali; John Dodson; Mary E. Edwards; William D. Gosling; Simon Haberle; Sara C. Hotchkiss; Brian Huntley; Sarah J. Ivory; A. Peter Kershaw; Soo-Hyun Kim; Claudio Latorre; Michelle Leydet; Anne-Marie Lézine; Kam-Biu Liu; Yao Liu; A. V. Lozhkin; Matt S. McGlone; Robert A. Marchant; Arata Momohara; Patricio I. Moreno; Stefanie Müller;Bette L. Otto-Bliesner; Caiming Shen; Janelle Stevenson; Hikaru Takahara; Pavel E. Tarasov; John Tipton; Annie Vincens; Chengyu Weng; Qinghai Xu; Zhuo Zheng; Stephen T. Jackson (2018)."Past and future global transformation of terrestrial ecosystems under climate change"(PDF).Science.361 (6405):920–923.Bibcode:2018Sci...361..920N.doi:10.1126/science.aan5360.PMID 30166491.S2CID 52131254.
  507. ^Eleni Asouti; Maria Ntinou; Ceren Kabukcu (2018)."The impact of environmental change on Palaeolithic and Mesolithic plant use and the transition to agriculture at Franchthi Cave, Greece".PLOS ONE.13 (11) e0207805.Bibcode:2018PLoSO..1307805A.doi:10.1371/journal.pone.0207805.PMC 6245798.PMID 30458046.
  508. ^Kurt H. Kjær; Nicolaj K. Larsen; Tobias Binder; Anders A. Bjørk; Olaf Eisen; Mark A. Fahnestock; Svend Funder; Adam A. Garde; Henning Haack; Veit Helm; Michael Houmark-Nielsen; Kristian K. Kjeldsen; Shfaqat A. Khan; Horst Machguth; Iain McDonald; Mathieu Morlighem; Jérémie Mouginot; John D. Paden; Tod E. Waight; Christian Weikusat; Eske Willerslev; Joseph A. MacGregor (2018)."A large impact crater beneath Hiawatha Glacier in northwest Greenland".Science Advances.4 (11) eaar8173.Bibcode:2018SciA....4.8173K.doi:10.1126/sciadv.aar8173.PMC 6235527.PMID 30443592.
  509. ^Matthew C. Koehler; Roger Buick; Michael A. Kipp; Eva E. Stüeken; Jonathan Zaloumis (2018)."Transient surface ocean oxygenation recorded in the ~2.66-Ga Jeerinah Formation, Australia".Proceedings of the National Academy of Sciences of the United States of America.115 (30):7711–7716.Bibcode:2018PNAS..115.7711K.doi:10.1073/pnas.1720820115.PMC 6065012.PMID 29987010.
  510. ^Kan Zhang; Xiangkun Zhu; Rachel A. Wood; Yao Shi; Zhaofu Gao; Simon W. Poulton (2018)."Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes"(PDF).Nature Geoscience.11 (5):345–350.Bibcode:2018NatGe..11..345Z.doi:10.1038/s41561-018-0111-y.hdl:20.500.11820/e1499fdf-fa88-4756-bf51-8c40b6986024.S2CID 134531162.
  511. ^Wang Zheng; Geoffrey J. Gilleaudeau; Linda C. Kah; Ariel D. Anbar (2018)."Mercury isotope signatures record photic zone euxinia in the Mesoproterozoic ocean".Proceedings of the National Academy of Sciences of the United States of America.115 (42):10594–10599.Bibcode:2018PNAS..11510594Z.doi:10.1073/pnas.1721733115.PMC 6196510.PMID 30275325.
  512. ^Xianguo Lang; Bing Shen; Yongbo Peng; Shuhai Xiao; Chuanming Zhou; Huiming Bao; Alan Jay Kaufman; Kangjun Huang; Peter W. Crockford; Yonggang Liu; Wenbo Tang; Haoran Ma (2018)."Transient marine euxinia at the end of the terminal Cryogenian glaciation".Nature Communications.9 (1) 3019.Bibcode:2018NatCo...9.3019L.doi:10.1038/s41467-018-05423-x.PMC 6070556.PMID 30068999.
  513. ^P. M. Myrow; M. P. Lamb; R. C. Ewing (2018)."Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth".Science.360 (6389):649–651.Bibcode:2018Sci...360..649M.doi:10.1126/science.aap8612.PMID 29674430.S2CID 4982439.
  514. ^Feifei Zhang; Shuhai Xiao; Brian Kendall; Stephen J. Romaniello; Huan Cui; Mike Meyer; Geoffrey J. Gilleaudeau; Alan J. Kaufman; Ariel D. Anbar (2018)."Extensive marine anoxia during the terminal Ediacaran Period".Science Advances.4 (6) eaan8983.Bibcode:2018SciA....4.8983Z.doi:10.1126/sciadv.aan8983.PMC 6010336.PMID 29938217.
  515. ^Guang-Yi Wei; Noah J. Planavsky; Lidya G. Tarhan; Xi Chen; Wei Wei; Da Li; Hong-Fei Ling (2018). "Marine redox fluctuation as a potential trigger for the Cambrian explosion".Geology.46 (7):587–590.Bibcode:2018Geo....46..587W.doi:10.1130/G40150.1.S2CID 243897354.
  516. ^Dan Wang; Hong-Fei Ling; Ulrich Struck; Xiang-Kun Zhu; Maoyan Zhu; Tianchen He; Ben Yang; Antonia Gamper; Graham A. Shields (2018)."Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition".Nature Communications.9 (1) 2575.Bibcode:2018NatCo...9.2575W.doi:10.1038/s41467-018-04980-5.PMC 6030108.PMID 29968714.
  517. ^Thomas W. Hearing; Thomas H. P. Harvey; Mark Williams; Melanie J. Leng; Angela L. Lamb; Philip R. Wilby; Sarah E. Gabbott; Alexandre Pohl; Yannick Donnadieu (2018)."An early Cambrian greenhouse climate".Science Advances.4 (5) eaar5690.Bibcode:2018SciA....4.5690H.doi:10.1126/sciadv.aar5690.PMC 5942912.PMID 29750198.
  518. ^Emma U. Hammarlund; M. Paul Smith; Jan A. Rasmussen; Arne T. Nielsen; Donald E. Canfield; David A. T. Harper (2018)."The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low-oxygen environments and ecosystems".Geobiology.17 (1):12–26.doi:10.1111/gbi.12315.PMC 6586032.PMID 30264482.
  519. ^Kalev G. Hantsoo; Alan J. Kaufman; Huan Cui; Rebecca E. Plummer; Guy M. Narbonne (2018)."Effects of bioturbation on carbon and sulfur cycling across the Ediacaran–Cambrian transition at the GSSP in Newfoundland, Canada"(PDF).Canadian Journal of Earth Sciences.55 (11):1240–1252.Bibcode:2018CaJES..55.1240H.doi:10.1139/cjes-2017-0274.S2CID 135135109.
  520. ^Karl Karlstrom; James Hagadorn; George Gehrels; William Matthews; Mark Schmitz; Lauren Madronich; Jacob Mulder; Mark Pecha; Dominique Giesler; Laura Crossey (2018). "Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons".Nature Geoscience.11 (6):438–443.Bibcode:2018NatGe..11..438K.doi:10.1038/s41561-018-0131-7.S2CID 134377178.
  521. ^Uri Ryb; John M. Eiler (2018)."Oxygen isotope composition of the Phanerozoic ocean and a possible solution to the dolomite problem".Proceedings of the National Academy of Sciences of the United States of America.115 (26):6602–6607.Bibcode:2018PNAS..115.6602R.doi:10.1073/pnas.1719681115.PMC 6042145.PMID 29891710.
  522. ^Jisuo Jin; Renbin Zhan; Rongchang Wu (2018)."Equatorial cold-water tongue in the Late Ordovician".Geology.46 (9):759–762.Bibcode:2018Geo....46..759J.doi:10.1130/G45302.1.S2CID 51920389.
  523. ^Rick Bartlett; Maya Elrick; James R. Wheeley; Victor Polyak; André Desrochers; Yemane Asmerom (2018)."Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates".Proceedings of the National Academy of Sciences of the United States of America.115 (23):5896–5901.Bibcode:2018PNAS..115.5896B.doi:10.1073/pnas.1802438115.PMC 6003337.PMID 29784792.
  524. ^Caineng Zou; Zhen Qiu; Simon W. Poulton; Dazhong Dong; Hongyan Wang; Daizhao Chen; Bin Lu; Zhensheng Shi; Huifei Tao (2018)."Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction"(PDF).Geology.46 (6):535–538.Bibcode:2018Geo....46..535Z.doi:10.1130/G40121.1.S2CID 135039656.
  525. ^Feifei Zhang; Stephen J. Romaniello; Thomas J. Algeo; Kimberly V. Lau; Matthew E. Clapham; Sylvain Richoz; Achim D. Herrmann; Harrison Smith; Micha Horacek; Ariel D. Anbar (2018)."Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction".Science Advances.4 (4) e1602921.Bibcode:2018SciA....4.2921Z.doi:10.1126/sciadv.1602921.PMC 5895439.PMID 29651454.
  526. ^Theodore R. Them II; Benjamin C. Gill; Andrew H. Caruthers; Angela M. Gerhardt; Darren R. Gröcke; Timothy W. Lyons; Selva M. Marroquín; Sune G. Nielsen; João P. Trabucho Alexandre; Jeremy D. Owens (2018)."Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction".Proceedings of the National Academy of Sciences of the United States of America.115 (26):6596–6601.Bibcode:2018PNAS..115.6596T.doi:10.1073/pnas.1803478115.PMC 6042096.PMID 29891692.
  527. ^Alejandro R. Gómez Dacal; Sebastián M. Richiano; Lucía E. Gómez Peral; Luis A. Spalletti; Alcides N. Sial; Daniel G. Poiré (2019). "Evidence of warm seas in high latitudes of southern South America during the Early Cretaceous".Cretaceous Research.95:8–20.Bibcode:2019CrRes..95....8G.doi:10.1016/j.cretres.2018.10.021.S2CID 134078999.
  528. ^S. Bernard; D. Daval; P. Ackerer; S. Pont; A. Meibom (2017)."Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes".Nature Communications.8 (1) 1134.Bibcode:2017NatCo...8.1134B.doi:10.1038/s41467-017-01225-9.PMC 5656689.PMID 29070888.
  529. ^David Evans; Marcus P. S. Badger; Gavin L. Foster; Michael J. Henehan; Caroline H. Lear; James C. Zachos (2018)."No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record".Nature Communications.9 (1) 2875.Bibcode:2018NatCo...9.2875E.doi:10.1038/s41467-018-05303-4.PMC 6056492.PMID 30038330.
  530. ^S. Bernard; D. Daval; P. Ackerer; S. Pont; A. Meibom (2018)."Reply to 'No substantial long-term bias in the Cenozoic benthic foraminifera oxygen-isotope record'".Nature Communications.9 (1) 2874.Bibcode:2018NatCo...9.2874B.doi:10.1038/s41467-018-05304-3.PMC 6056461.PMID 30038223.
  531. ^Weiqi Yao; Adina Paytan; Ulrich G. Wortmann (2018)."Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum".Science.361 (6404):804–806.Bibcode:2018Sci...361..804Y.doi:10.1126/science.aar8658.PMID 30026315.S2CID 206666570.
  532. ^Christopher K. Junium; Alexander J. Dickson; Benjamin T. Uveges (2018)."Perturbation to the nitrogen cycle during rapid Early Eocene global warming".Nature Communications.9 (1) 3186.Bibcode:2018NatCo...9.3186J.doi:10.1038/s41467-018-05486-w.PMC 6085358.PMID 30093725.
  533. ^Tali L. Babila; Donald E. Penman; Bärbel Hönisch; D. Clay Kelly; Timothy J. Bralower; Yair Rosenthal; James C. Zachos (2018)."Capturing the global signature of surface ocean acidification during the Palaeocene–Eocene Thermal Maximum".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.376 (2130) 20170072.Bibcode:2018RSPTA.37670072B.doi:10.1098/rsta.2017.0072.PMC 6127385.PMID 30177558.
  534. ^David Evans; Navjit Sagoo; Willem Renema; Laura J. Cotton; Wolfgang Müller; Jonathan A. Todd; Pratul Kumar Saraswati; Peter Stassen; Martin Ziegler; Paul N. Pearson; Paul J. Valdes; Hagit P. Affek (2018)."Eocene greenhouse climate revealed by coupled clumped isotope-Mg/Ca thermometry".Proceedings of the National Academy of Sciences of the United States of America.115 (6):1174–1179.Bibcode:2018PNAS..115.1174E.doi:10.1073/pnas.1714744115.PMC 5819407.PMID 29358374.
  535. ^Zhonghui Liu; Yuxin He; Yiqing Jiang; Huanye Wang; Weiguo Liu; Steven M. Bohaty; Paul A. Wilson (2018)."Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean"(PDF).Nature Geoscience.11 (9):656–660.Bibcode:2018NatGe..11..656L.doi:10.1038/s41561-018-0182-9.S2CID 133776130.
  536. ^Guillem Mas; Agnès Maillard; Josep A. Alcover; Joan J. Fornós; Pere Bover; Enric Torres-Roig (2018). "Terrestrial colonization of the Balearic Islands: New evidence for the Mediterranean sea-level drawdown during the Messinian Salinity Crisis".Geology.46 (6):527–530.Bibcode:2018Geo....46..527M.doi:10.1130/G40260.1.
  537. ^Aaron Micallef; Angelo Camerlenghi; Daniel Garcia-Castellanos; Daniel Cunarro Otero; Marc-André Gutscher; Giovanni Barreca; Daniele Spatola; Lorenzo Facchin; Riccardo Geletti; Sebastian Krastel; Felix Gross; Morelia Urlaub (2018)."Evidence of the Zanclean megaflood in the eastern Mediterranean Basin".Scientific Reports.8 (1) 1078.Bibcode:2018NatSR...8.1078M.doi:10.1038/s41598-018-19446-3.PMC 5773550.PMID 29348516.
  538. ^Jody M. Webster; Juan Carlos Braga; Marc Humblet; Donald C. Potts; Yasufumi Iryu; Yusuke Yokoyama; Kazuhiko Fujita; Raphael Bourillot; Tezer M. Esat; Stewart Fallon; William G. Thompson; Alexander L. Thomas; Hironobu Kan; Helen V. McGregor; Gustavo Hinestrosa; Stephen P. Obrochta; Bryan C. Lougheed (2018)."Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years"(PDF).Nature Geoscience.11 (6):426–432.Bibcode:2018NatGe..11..426W.doi:10.1038/s41561-018-0127-3.hdl:20.500.11820/920d9bf3-2233-464d-8890-6bce999804b7.S2CID 134502712.
  539. ^Yusuke Yokoyama; Tezer M. Esat; William G. Thompson; Alexander L. Thomas; Jody M. Webster; Yosuke Miyairi; Chikako Sawada; Takahiro Aze; Hiroyuki Matsuzaki; Jun'ichi Okuno; Stewart Fallon; Juan-Carlos Braga; Marc Humblet; Yasufumi Iryu; Donald C. Potts; Kazuhiko Fujita; Atsushi Suzuki; Hironobu Kan (2018)."Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum".Nature.559 (7715):603–607.Bibcode:2018Natur.559..603Y.doi:10.1038/s41586-018-0335-4.hdl:20.500.11820/55cd176c-f726-4d88-b424-003f30c31214.PMID 30046076.S2CID 50781626.
  540. ^Stephen R. Meyers; Alberto Malinverno (2018)."Proterozoic Milankovitch cycles and the history of the solar system".Proceedings of the National Academy of Sciences of the United States of America.115 (25):6363–6368.Bibcode:2018PNAS..115.6363M.doi:10.1073/pnas.1717689115.PMC 6016783.PMID 29866837.
  541. ^Kazumi Ozaki; Eiichi Tajika; Peng K. Hong; Yusuke Nakagawa; Christopher T. Reinhard (2018). "Effects of primitive photosynthesis on Earth's early climate system".Nature Geoscience.11 (1):55–59.arXiv:1907.12995.Bibcode:2018NatGe..11...55O.doi:10.1038/s41561-017-0031-2.S2CID 51896428.
  542. ^Eric J. Bellefroid; Ashleigh v. S. Hood; Paul F. Hoffman; Matthew D. Thomas; Christopher T. Reinhard; Noah J. Planavsky (2018)."Constraints on Paleoproterozoic atmospheric oxygen levels".Proceedings of the National Academy of Sciences of the United States of America.115 (32):8104–8109.Bibcode:2018PNAS..115.8104B.doi:10.1073/pnas.1806216115.PMC 6094116.PMID 30038009.
  543. ^Scott MacLennan; Yuem Park; Nicholas Swanson-Hysell; Adam Maloof; Blair Schoene; Mulubrhan Gebreslassie; Eliel Antilla; Tadele Tesema; Mulugeta Alene; Bereket Haileab (2018)."The arc of the Snowball: U-Pb dates constrain the Islay anomaly and the initiation of the Sturtian glaciation".Geology.46 (6):539–542.Bibcode:2018Geo....46..539M.doi:10.1130/G40171.1.S2CID 52888739.
  544. ^Caitlyn R. Witkowski; Johan W. H. Weijers; Brian Blais; Stefan Schouten; Jaap S. Sinninghe Damsté (2018)."Molecular fossils from phytoplankton reveal secularPco2 trend over the Phanerozoic".Science Advances.4 (11) eaat4556.Bibcode:2018SciA....4.4556W.doi:10.1126/sciadv.aat4556.PMC 6261654.PMID 30498776.
  545. ^Alexander J. Krause; Benjamin J. W. Mills; Shuang Zhang; Noah J. Planavsky; Timothy M. Lenton; Simon W. Poulton (2018)."Stepwise oxygenation of the Paleozoic atmosphere".Nature Communications.9 (1) 4081.Bibcode:2018NatCo...9.4081K.doi:10.1038/s41467-018-06383-y.PMC 6172248.PMID 30287825.
  546. ^Page C. Quinton; Laura Speir; James Miller; Raymond Ethington; Kenneth G. MacLeod (2018). "Extreme heat in the Early Ordovician".PALAIOS.33 (8):353–360.Bibcode:2018Palai..33..353Q.doi:10.2110/palo.2018.031.S2CID 133931760.
  547. ^Cheng Huang; Michael M. Joachimski; Yiming Gong (2018). "Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δ18OPO4 record from South China".Earth and Planetary Science Letters.495:174–184.Bibcode:2018E&PSL.495..174H.doi:10.1016/j.epsl.2018.05.016.S2CID 133886379.
  548. ^Sandra R. Schachat; Conrad C. Labandeira; Matthew R. Saltzman; Bradley D. Cramer; Jonathan L. Payne; C. Kevin Boyce (2018)."PhanerozoicpO2 and the early evolution of terrestrial animals".Proceedings of the Royal Society B: Biological Sciences.285 (1871) 20172631.doi:10.1098/rspb.2017.2631.PMC 5805952.PMID 29367401.
  549. ^Benjamin A. Black; Ryan R. Neely; Jean-François Lamarque; Linda T. Elkins-Tanton; Jeffrey T. Kiehl; Christine A. Shields; Michael J. Mills; Charles Bardeen (2018)."Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing"(PDF).Nature Geoscience.11 (12):949–954.Bibcode:2018NatGe..11..949B.doi:10.1038/s41561-018-0261-y.S2CID 133632594.
  550. ^Dai Jing; Sun Bainian (2018). "Early Cretaceous atmospheric CO2 estimates based on stomatal index ofPseudofrenelopsis papillosa (Cheirolepidiaceae) from southeast China".Cretaceous Research.85:232–242.Bibcode:2018CrRes..85..232J.doi:10.1016/j.cretres.2017.08.011.
  551. ^Laiming Zhang; Chengshan Wang; Paul B. Wignall; Tobias Kluge; Xiaoqiao Wan; Qian Wang; Yuan Gao (2018)."Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China"(PDF).Geology.46 (3):271–274.Bibcode:2018Geo....46..271Z.doi:10.1130/G39992.1.
  552. ^Shelby L. Lyons; Allison A. Baczynski; Tali L. Babila; Timothy J. Bralower; Elizabeth A. Hajek; Lee R. Kump; Ellen G. Polites; Jean M. Self-Trail; Sheila M. Trampush; Jamie R. Vornlocher; James C. Zachos; Katherine H. Freeman (2018). "Palaeocene–Eocene Thermal Maximum prolonged by fossil carbon oxidation".Nature Geoscience.12 (1):54–60.Bibcode:2019NatGe..12...54L.doi:10.1038/s41561-018-0277-3.S2CID 134346753.
  553. ^B. D. A. Naafs; M. Rohrssen; G. N. Inglis; O. Lähteenoja; S. J. Feakins; M. E. Collinson; E. M. Kennedy; P. K. Singh; M. P. Singh; D. J. Lunt; R. D. Pancost (2018)."High temperatures in the terrestrial mid-latitudes during the early Palaeogene".Nature Geoscience.11 (10):766–771.Bibcode:2018NatGe..11..766N.doi:10.1038/s41561-018-0199-0.hdl:1983/82e93473-2a5d-4a6d-9ca1-da5ebf433d8b.S2CID 135045515.
  554. ^J. X. Li; L. P. Yue; A. P. Roberts; A. M. Hirt; F. Pan; Lin Guo; Y. Xu; R. G. Xi; Lei Guo; X. K. Qiang; C. C. Gai; Z. X. Jiang; Z. M. Sun; Q. S. Liu (2018)."Global cooling and enhanced Eocene Asian mid-latitude interior aridity".Nature Communications.9 (1) 3026.Bibcode:2018NatCo...9.3026L.doi:10.1038/s41467-018-05415-x.PMC 6072711.PMID 30072688.
  555. ^Vera A. Korasidis; Malcolm W. Wallace; Barbara E. Wagstaff; Robert S. Hill (2019). "Terrestrial cooling record through the Eocene-Oligocene transition of Australia".Global and Planetary Change.173:61–72.Bibcode:2019GPC...173...61K.doi:10.1016/j.gloplacha.2018.12.007.S2CID 135354421.
  556. ^Liliana Londoño; Dana L. Royer; Carlos Jaramillo; Jaime Escobar; David A. Foster; Andrés L. Cárdenas-Rozo; Aaron Wood (2018). "Early Miocene CO2 estimates from a Neotropical fossil leaf assemblage exceed 400 ppm".American Journal of Botany.105 (11):1929–1937.Bibcode:2018AmJB..105.1929L.doi:10.1002/ajb2.1187.hdl:10784/26743.PMID 30418663.S2CID 53277803.
  557. ^Yul Altolaguirre; José M. Postigo-Mijarra; Eduardo Barrón; José S. Carrión; Suzanne A.G. Leroy; Angela A. Bruch (2019). "An environmental scenario for the earliest hominins in the Iberian Peninsula: Early Pleistocene palaeovegetation and palaeoclimate".Review of Palaeobotany and Palynology.260:51–64.Bibcode:2019RPaPa.260...51A.doi:10.1016/j.revpalbo.2018.10.008.S2CID 134333102.
  558. ^Thibaut Caley; Thomas Extier; James A. Collins; Enno Schefuß; Lydie Dupont; Bruno Malaizé; Linda Rossignol; Antoine Souron; Erin L. McClymont; Francisco J. Jimenez-Espejo; Carmen García-Comas; Frédérique Eynaud; Philippe Martinez; Didier M. Roche; Stephan J. Jorry; Karine Charlier; Mélanie Wary; Pierre-Yves Gourves; Isabelle Billy; Jacques Giraudeau (2018)."A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa"(PDF).Nature.560 (7716):76–79.Bibcode:2018Natur.560...76C.doi:10.1038/s41586-018-0309-6.PMID 29988081.S2CID 49668495.
  559. ^Silvia H. Ascari; Jackson K. Njau; Peter E. Sauer; P. David Polly; Yongbo Peng (2018). "Fossil herbivores and crocodiles as paleoclimatic indicators of environmental shifts from Bed I and Bed II times of the Olduvai Gorge, Tanzania".Palaeogeography, Palaeoclimatology, Palaeoecology.511:550–557.Bibcode:2018PPP...511..550A.doi:10.1016/j.palaeo.2018.09.021.S2CID 96425484.
  560. ^R. Bernhart Owen; Veronica M. Muiruri; Tim K. Lowenstein; Robin W. Renaut; Nathan Rabideaux; Shangde Luo; Alan L. Deino; Mark J. Sier; Guillaume Dupont-Nivet; Emma P. McNulty; Kennie Leet; Andrew Cohen; Christopher Campisano; Daniel Deocampo; Chuan-Chou Shen; Anne Billingsley; Anthony Mbuthia (2018)."Progressive aridification in East Africa over the last half million years and implications for human evolution".Proceedings of the National Academy of Sciences of the United States of America.115 (44):11174–11179.Bibcode:2018PNAS..11511174B.doi:10.1073/pnas.1801357115.PMC 6217406.PMID 30297412.
  561. ^Henry F. Lamb; C. Richard Bates; Charlotte L. Bryant; Sarah J. Davies; Dei G. Huws; Michael H. Marshall; Helen M. Roberts (2018)."150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa".Scientific Reports.8 (1) 1077.Bibcode:2018NatSR...8.1077L.doi:10.1038/s41598-018-19601-w.PMC 5773494.PMID 29348464.
  562. ^J. Sakari Salonen; Karin F. Helmens; Jo Brendryen; Niina Kuosmanen; Minna Väliranta; Simon Goring; Mikko Korpela; Malin Kylander; Annemarie Philip; Anna Plikk; Hans Renssen; Miska Luoto (2018)."Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian".Nature Communications.9 (1) 2851.Bibcode:2018NatCo...9.2851S.doi:10.1038/s41467-018-05314-1.PMC 6054633.PMID 30030443.
  563. ^P. C. Tzedakis; R. N. Drysdale; V. Margari; L. C. Skinner; L. Menviel; R. H. Rhodes; A. S. Taschetto; D. A. Hodell; S. J. Crowhurst; J. C. Hellstrom; A. E. Fallick; J. O. Grimalt; J. F. McManus; B. Martrat; Z. Mokeddem; F. Parrenin; E. Regattieri; K. Roe; G. Zanchetta (2018)."Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial".Nature Communications.9 (1) 4235.Bibcode:2018NatCo...9.4235T.doi:10.1038/s41467-018-06683-3.PMC 6185935.PMID 30315157.
  564. ^D. Wolf; T. Kolb; M. Alcaraz-Castaño; S. Heinrich; P. Baumgart; R. Calvo; J. Sánchez; K. Ryborz; I. Schäfer; M. Bliedtner; R. Zech; L. Zöller; D. Faust (2018)."Climate deteriorations and Neanderthal demise in interior Iberia".Scientific Reports.8 (1) 7048.Bibcode:2018NatSR...8.7048W.doi:10.1038/s41598-018-25343-6.PMC 5935692.PMID 29728579.
  565. ^Michael Staubwasser; Virgil Drăgușin; Bogdan P. Onac; Sergey Assonov; Vasile Ersek; Dirk L. Hoffmann; Daniel Veres (2018)."Impact of climate change on the transition of Neanderthals to modern humans in Europe".Proceedings of the National Academy of Sciences of the United States of America.115 (37):9116–9121.Bibcode:2018PNAS..115.9116S.doi:10.1073/pnas.1808647115.PMC 6140518.PMID 30150388.
  566. ^Alia J. Lesnek; Jason P. Briner; Charlotte Lindqvist; James F. Baichtal; Timothy H. Heaton (2018)."Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas".Science Advances.4 (5) eaar5040.Bibcode:2018SciA....4.5040L.doi:10.1126/sciadv.aar5040.PMC 5976267.PMID 29854947.
  567. ^Robert S. Harbert; Kevin C. Nixon (2018)."Quantitative late Quaternary climate reconstruction from plant macrofossil communities in western North America".Open Quaternary.4 8.doi:10.5334/oq.46.S2CID 197558635.
  568. ^K. D. Burke; J. W. Williams; M. A. Chandler; A. M. Haywood; D. J. Lunt;B. L. Otto-Bliesner (2018)."Pliocene and Eocene provide best analogs for near-future climates".Proceedings of the National Academy of Sciences of the United States of America.115 (52):13288–13293.Bibcode:2018PNAS..11513288B.doi:10.1073/pnas.1809600115.PMC 6310841.PMID 30530685.
Retrieved from "https://en.wikipedia.org/w/index.php?title=2018_in_paleontology&oldid=1318744127"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp