Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

1 42 polytope

From Wikipedia, the free encyclopedia
Uniform 8 dimensional polytope

421

142

241

Rectified 421

Rectified 142

Rectified 241

Birectified 421

Trirectified 421
Orthogonal projections in E6Coxeter plane

In 8-dimensionalgeometry, the142 is auniform 8-polytope, constructed within the symmetry of theE8 group.

ItsCoxeter symbol is142, describing its bifurcatingCoxeter-Dynkin diagram, with a single ring on the end of the 1-node sequences.

Therectified 142 is constructed by points at the mid-edges of the142 and is the same as the birectified 241, and the quadrirectified 421.

These polytopes are part of a family of 255 (28 − 1) convexuniform polytopes in 8 dimensions, made ofuniform polytope facets andvertex figures, defined by all non-empty combinations of rings in thisCoxeter-Dynkin diagram:.

142 polytope

[edit]
142
TypeUniform 8-polytope
Family1k2 polytope
Schläfli symbol{3,34,2}
Coxeter symbol142
Coxeter diagrams
7-faces2400:
240132
2160141
6-faces106080:
6720122
30240131
69120{35}
5-faces725760:
60480112
181440121
483840{34}
4-faces2298240:
241920102
604800111
1451520{33}
Cells3628800:
1209600101
2419200{32}
Faces2419200{3}
Edges483840
Vertices17280
Vertex figuret2{36}
Petrie polygon30-gon
Coxeter groupE8, [34,2,1]
Propertiesconvex

The142 is composed of 2400 facets: 240132 polytopes, and 21607-demicubes (141). Itsvertex figure is abirectified 7-simplex.

This polytope, along with thedemiocteract, cantessellate 8-dimensional space, represented by the symbol152, and Coxeter-Dynkin diagram:.

Alternate names

[edit]
  • E. L. Elte (1912) excluded this polytope from his listing of semiregular polytopes, because it has more than two types of 6-faces, but under his naming scheme it would be called V17280 for its 17280 vertices.[1]
  • Coxeter named it142 for its bifurcatingCoxeter-Dynkin diagram, with a single ring on the end of the 1-node branch.
  • Diacositetraconta-dischiliahectohexaconta-zetton (acronym: bif) - 240-2160 facetted polyzetton (Jonathan Bowers)[2]

Coordinates

[edit]

The 17280 vertices can be defined as sign and location permutations of:

All sign combinations (32): (280×32=8960 vertices)

(4, 2, 2, 2, 2, 0, 0, 0)

Half of the sign combinations (128): ((1+8+56)×128=8320 vertices)

(2, 2, 2, 2, 2, 2, 2, 2)
(5, 1, 1, 1, 1, 1, 1, 1)
(3, 3, 3, 1, 1, 1, 1, 1)

The edge length is 22 in this coordinate set, and the polytope radius is 42.

Construction

[edit]

It is created by aWythoff construction upon a set of 8hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from itsCoxeter-Dynkin diagram:.

Removing the node on the end of the 2-length branch leaves the7-demicube, 141,.

Removing the node on the end of the 4-length branch leaves the132,.

Thevertex figure is determined by removing the ringed node and ringing the neighboring node. This makes thebirectified 7-simplex, 042,.

Seen in aconfiguration matrix, the element counts can be derived by mirror removal and ratios ofCoxeter group orders.[3]

Configuration matrix
E8k-facefkf0f1f2f3f4f5f6f7k-figureNotes
A7( )f017280564202805607028042056168168285628882r{36}E8/A7 = 192*10!/8! = 17280
A4A2A1{ }f12483840151530530301030151015353{3}x{3,3,3}E8/A4A2A1 = 192*10!/5!/2/2 = 483840
A3A2A1{3}f233241920024186412468142{3.3}v{ }E8/A3A2A1 = 192*10!/4!/3!/2 = 2419200
A3A3110f34641209600*14046064041{3,3}v( )E8/A3A3 = 192*10!/4!/4! = 1209600
A3A2A1464*241920002316336132{3}v{ }E8/A3A2A1 = 192*10!/4!/3!/2 = 2419200
A4A3120f45101050241920**40060040{3,3}E8/A4A3 = 192*10!/4!/4! = 241920
D4A21118243288*604800*13033031{3}v( )E8/D4A2 = 192*10!/8/4!/3! = 604800
A4A1A11205101005**145152002214122{ }v{ }E8/A4A1A1 = 192*10!/5!/2/2 = 1451520
D5A2121f5168016080401610060480**30030{3}E8/D5A2 = 192*10!/16/5!/3! = 40480
D5A11680160408001016*181440*12021{ }v( )E8/D5A1 = 192*10!/16/5!/2 = 181440
A5A113061520015006**48384002112E8/A5A1 = 192*10!/6!/2 = 483840
E6A1122f672720216010801080216270216272706720**20{ }E8/E6A1 = 192*10!/72/6!/2 = 6720
D61313224064016048006019201232*30240*11E8/D6 = 192*10!/32/6! = 30240
A6A1140721350350021007**6912002E8/A6A1 = 192*10!/7!/2 = 69120
E7132f757610080403202016030240403275601209675615122016561260240*( )E8/E7 = 192*10!/72/8! = 240
D714164672224056022400280134408444801464*2160E8/D7 = 192*10!/64/7! = 2160

Projections

[edit]
E8
[30]
E7
[18]
E6
[12]

(1)

(1,3,6)

(8,16,24,32,48,64,96)
[20][24][6]

(1,2,3,4,5,6,7,8,10,11,12,14,16,18,19,20)
The projection of142 to theE8 Coxeter plane (aka. the Petrie projection) with polytope radius42{\displaystyle 4{\sqrt {2}}} is shown below with 483,840 edges of length22{\displaystyle 2{\sqrt {2}}} culled 53% on the interior to only 226,444:

Orthographic projections are shown for the sub-symmetries of E8: E7, E6, B8, B7, B6, B5, B4, B3, B2, A7, and A5Coxeter planes, as well as two more symmetry planes of order 20 and 24. Vertices are shown as circles, colored by their order of overlap in each projective plane.

D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]

(32,160,192,240,480,512,832,960)

(72,216,432,720,864,1080)

(8,16,24,32,48,64,96)
D6 / B5 / A4
[10]
D7 / B6
[12]
D8 / B7 / A6
[14]
B8
[16/2]
A5
[6]
A7
[8]
w = (0, 1,φ, 0, −1,φ,0,0) }} The 17280 projected 142 polytope vertices are sorted and tallied by their 3D norm generating the increasingly transparent hulls for each set of tallied norms. Notice the last two outer hulls are a combination of two overlapped Dodecahedrons (40) and a Nonuniform Rhombicosidodecahedron (60).

Related polytopes and honeycombs

[edit]
1k2 figures inn dimensions
SpaceFiniteEuclideanHyperbolic
n345678910
Coxeter
group
E3=A2A1E4=A4E5=D5E6E7E8E9 =E~8{\displaystyle {\tilde {E}}_{8}} = E8+E10 =T¯8{\displaystyle {\bar {T}}_{8}} = E8++
Coxeter
diagram
Symmetry
(order)
[3−1,2,1][30,2,1][31,2,1][[32,2,1]][33,2,1][34,2,1][35,2,1][36,2,1]
Order121201,920103,6802,903,040696,729,600
Graph--
Name1−1,2102112122132142152162

Rectified 142 polytope

[edit]
Rectified 142
TypeUniform 8-polytope
Schläfli symbolt1{3,34,2}
Coxeter symbol0421
Coxeter diagrams
7-faces19680
6-faces382560
5-faces2661120
4-faces9072000
Cells16934400
Faces16934400
Edges7257600
Vertices483840
Vertex figure{3,3,3}×{3}×{}
Coxeter groupE8, [34,2,1]
Propertiesconvex

Therectified 142 is named from being arectification of the 142 polytope, with vertices positioned at the mid-edges of the 142. It can also be called a0421 polytope with the ring at the center of 3 branches of length 4, 2, and 1.

Alternate names

[edit]
  • 0421 polytope
  • Birectified 241 polytope
  • Quadrirectified 421 polytope
  • Rectified diacositetraconta-dischiliahectohexaconta-zetton as a rectified 240-2160 facetted polyzetton (acronym: buffy) (Jonathan Bowers)[4]

Construction

[edit]

It is created by aWythoff construction upon a set of 8hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from itsCoxeter-Dynkin diagram:.

Removing the node on the end of the 1-length branch leaves thebirectified 7-simplex,

Removing the node on the end of the 2-length branch leaves thebirectified 7-cube,.

Removing the node on the end of the 3-length branch leaves therectified 132,.

Thevertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the5-cell-triangle duoprism prism,.

Seen in aconfiguration matrix, the element counts can be derived by mirror removal and ratios ofCoxeter group orders.[3]

Configuration matrix
E8k-facefkf0f1f2f3f4f5f6f7k-figure
A4A2A1( )f0483840303015601015603060520306030301020303015610101563523{3,3,3}x{3,3}x{}
A3A1A1{ }f127257600214128461481264461284164821412
A3A2{3}f2334838400**1140014460046640064410411
A3A2A133*2419200*02040108060401204060801402
A2A2A133**96768000021301263313663133621312
A3A30200f3464001209600****14000046000064000410
0110612440*1209600***10400040600060400401
A3A2612404**4838400**01130013330033310311
A3A2A1612044***2419200*00203010603030601302
A3A1A1020046004****725760000021201242112421212
A4A30210f410302010055000241920*****40000060000400
A4A210302001050500*967680****13000033000310
D4A20111249632323208880**604800***10300030300301
A4A1021010301002000505***2903040**01120012210211
A4A1A110300102000055****1451520*00202010401202
A4A10300510001000005*****290304000021101221112
D5A20211f58048032016016080808040016161000060480*****30000300{3}
A5A1022020906006015030015060600*483840****12000210{ }v()
D5A1021180480160160320040808080001016160**181440***10200201
A503101560200600015030000606***967680**01110111( )v( )v()
A5A11560020600001530000066****483840*00201102{ }v()
04006150020000015000006*****48384000021012
E6A10221f672064804320216043201080108021601080108021643227043221602772270006720****200{ }
A603203521014002103501050105021042021070700*138240***110
D603112401920640640192001604804809600060192192192001232320**30240**101
A60410211053501400035010500021042000707***138240*011
A6A1211050351400003510500002142000077****69120002
E70321f710080120960806404032012096020160201606048030240604804032120967560241921209612096756403215124032201605657612600240**( )
A7042056420280056070028004200560168016802805602808080*17280*
D704116726720224022408960056022402240672000280134413442688008444844844800146464**2160

Projections

[edit]

Orthographic projections are shown for the sub-symmetries of B6, B5, B4, B3, B2, A7, and A5Coxeter planes. Vertices are shown as circles, colored by their order of overlap in each projective plane.

(Planes for E8: E7, E6, B8, B7, [24] are not shown for being too large to display.)


D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
D6 / B5 / A4
[10]
D7 / B6
[12]
[6]
A5
[6]
A7
[8]
 
[20]

See also

[edit]

Notes

[edit]
  1. ^Elte, E. L. (1912),The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
  2. ^Klitzing,(o3o3o3x *c3o3o3o3o - bif).
  3. ^abCoxeter, Regular Polytopes, 11.8 Gosset figures in six, seven, and eight dimensions, p. 202–203
  4. ^Klitzing,(o3o3x3o *c3o3o3o3o - buffy).

References

[edit]
  • H. S. M. Coxeter,Regular Polytopes, 3rd Edition, Dover, New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,wiley.com,ISBN 978-0-471-01003-6
    • (Paper 24) H.S.M. Coxeter,Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • Klitzing, Richard."8D Uniform polytopes (polyzetta) with acronyms". o3o3o3x *c3o3o3o3o - bif, o3o3x3o *c3o3o3o3o - buffy
Fundamental convexregular anduniform polytopes in dimensions 2–10
FamilyAnBnI2(p) /DnE6 /E7 /E8 /F4 /G2Hn
Regular polygonTriangleSquarep-gonHexagonPentagon
Uniform polyhedronTetrahedronOctahedronCubeDemicubeDodecahedronIcosahedron
Uniform polychoronPentachoron16-cellTesseractDemitesseract24-cell120-cell600-cell
Uniform 5-polytope5-simplex5-orthoplex5-cube5-demicube
Uniform 6-polytope6-simplex6-orthoplex6-cube6-demicube122221
Uniform 7-polytope7-simplex7-orthoplex7-cube7-demicube132231321
Uniform 8-polytope8-simplex8-orthoplex8-cube8-demicube142241421
Uniform 9-polytope9-simplex9-orthoplex9-cube9-demicube
Uniform 10-polytope10-simplex10-orthoplex10-cube10-demicube
Uniformn-polytopen-simplexn-orthoplexn-cuben-demicube1k22k1k21n-pentagonal polytope
Topics:Polytope familiesRegular polytopeList of regular polytopes and compoundsPolytope operations
Retrieved from "https://en.wikipedia.org/w/index.php?title=1_42_polytope&oldid=1325072740"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp