Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

19 equal temperament

From Wikipedia, the free encyclopedia
Musical tuning system with 19 pitches per octave
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "19 equal temperament" – news ·newspapers ·books ·scholar ·JSTOR
(July 2024) (Learn how and when to remove this message)
Figure 1: 19-TET on the syntonic temperament's tuning continuum at P5= 694.737 cents[1]

In music,19 equal temperament, called 19 TET, 19 EDO ("Equal Division of the Octave"), 19-ED2 ("Equal Division of 2:1) or 19ET, is thetempered scale derived by dividing the octave into 19 equal steps (equal frequency ratios). Each step represents a frequency ratio of192, or 63.16 cents (Play).

19 equal temperament keyboard[2]

The fact that traditional western music maps unambiguously onto this scale (unless it presupposes 12-EDO enharmonic equivalences) makes it easier to perform such music in this tuning than in many other tunings.

Joseph Yasser's 19 equal temperament keyboard layout[3]

19 EDO is the tuning of thesyntonic temperament in which the tempered perfect fifth is equal to 694.737 cents, as shown in Figure 1 (look for the label "19 TET"). On anisomorphic keyboard, the fingering of music composed in 19 EDO is precisely the same as it is in any other syntonic tuning (such as12 EDO), so long as the notes are "spelled properly" – that is, with no assumption that the sharp below matches the flat immediately above it (enharmonicity).

The comparison between a standard 12 tone classical guitar and a 19 tone guitar design. This is the preliminary data that Arto Juhani Heino used to develop the "Artone 19" guitar design. The measurements are in millimeters.[4]

History and use

[edit]

Division of the octave into 19 equal-width steps arose naturally out of Renaissance music theory. The ratio of four minor thirds to an octave ( 648 / 625 or 62.565 cents – the"greater" diesis) was almost exactly a nineteenth of an octave. Interest in such a tuning system goes back to the 16th century, when composerGuillaume Costeley used it in his chansonSeigneur Dieu ta pitié of 1558. Costeley understood and desired the circulating aspect of this tuning.

In 1577, music theoristFrancisco de Salinas discussed 1 / 3commameantone, in which the tempered perfect fifth is 694.786 cents. Salinas proposed tuning nineteen tones to the octave to this fifth, which falls within one cent of closing. The fifth of 19 EDO is 694.737 cents, which is less than a twentieth of a cent narrower, imperceptible and less than tuning error, so Salinas' suggestion is, for purposes relating to human hearing, functionally identical to 19 EDO.

In the 19th century, mathematician and music theoristWesley Woolhouse proposed it as a more practical alternative tomeantone temperaments he regarded as better, such as 50 EDO.[2]

The composerJoel Mandelbaum wrote on the properties of the 19 EDO tuning and advocated for its use in his Ph.D. thesis:[5]Mandelbaum argued that it is the only viable system with a number of divisions between 12 and 22, and furthermore, that the next smallest number of divisions resulting in a significant improvement in approximating just intervals is31TET.[5][6]Mandelbaum andJoseph Yasser have written music with 19 EDO.[7]Easley Blackwood stated that 19 EDO makes possible "a substantial enrichment of the tonal repertoire".[8]

Notation

[edit]
Usual pitch notation, promoted byEasley Blackwood[9] andWesley Woolhouse,[2] for 19 equal temperament: Intervals are notated similarly to the12TET intervals that approximate them. Aside from double sharps or double flats, only the note pairs E♯ & F♭ and B♯ & C♭ areenharmonic equivalents (modern sense).[10]
Just intonation intervals approximated in 19 EDO

19-EDO can be represented with the traditional letter names and system of sharps and flats simply by treating flats and sharps as distinct notes, as usual in standard musical practice; however, in 19-EDO the distinction is a real pitch difference, rather than a notational fiction. In 19-EDO only B♯ isenharmonic with C♭, and E♯ with F♭.

This article uses that re-adapted standard notation: Simply using conventionally enharmonic sharps and flats as distinct notes "as usual".

Interval size

[edit]
play diatonic scale in 19 EDO,contrast with diatonic scale in 12 EDO,contrast with just diatonic scale

Here are the sizes of some common intervals and comparison with the ratios arising in theharmonic series; the difference column measures in cents the distance from an exact fit to these ratios.

For reference, the difference from the perfect fifth in the widely used12 TET is 1.955 cents flat, the difference from the major third is 13.686 cents sharp, the minor third is 15.643 cents flat, and the (lost) harmonic minor seventh is 31.174 cents sharp.

Step (cents)63636363636363636363636363636363636363
Note nameAA♯B♭BB♯
C♭
CC♯D♭DD♯E♭EE♯
F♭
FF♯G♭GG♯A♭A
Interval (cents)0631261892533163794425055686326957588218849471011107411371200
Interval nameSize
(steps)
Size
(cents)
MidiJust ratioJust
(cents)
MidiError
(cents)
Octave1912002:112000
Septimal major seventh181136.8427:141137.040.20
Diminished octave181136.8448:251129.33Play+7.51
Major seventh171073.6815:81088.27Play−14.58
Minor seventh161010.539:51017.60Play7.07
Harmonic minor seventh15947.377:4968.83Play−21.46
Septimal major sixth15947.3712:7933.13Play+14.24
Major sixth14884.215:3884.36Play0.15
Minor sixth13821.058:5813.69Play+7.37
Augmented fifth12757.8925:16772.63Play−14.73
Septimal minor sixth12757.8914:9764.927.02
Perfect fifth11694.74Play3:2701.96Play7.22
Greater tridecimal tritone10631.5813:9636.625.04
Greaterseptimal tritone, diminished fifth10631.58Play10:7617.49Play+14.09
Lesserseptimal tritone, augmented fourth9568.42Play7:5582.51−14.09
Lesser tridecimal tritone9568.4218:13563.38+5.04
Perfect fourth8505.26Play4:3498.04Play+7.22
Augmented third7442.11125:96456.99Play−14.88
Tridecimal major third7442.1113:10454.12−10.22
Septimal major third7442.11Play9:7435.08Play+7.03
Major third6378.95Play5:4386.31Play7.36
Inverted 13th harmonic6378.9516:13359.47+19.48
Minor third5315.79Play6:5315.64Play+0.15
Septimal minor third4252.637:6266.87Play−14.24
Tridecimal 5 / 4 tone4252.6315:13247.74+4.89
Septimal whole tone4252.63Play8:7231.17Play+21.46
Whole tone,major tone3189.479:8203.91Play−14.44
Whole tone,minor tone3189.47Play10:9182.40Play+7.07
Greater tridecimal 2 / 3-tone2126.3213:12138.57−12.26
Lesser tridecimal 2 / 3-tone2126.3214:13128.301.98
Septimal diatonic semitone2126.3215:14119.44Play+6.88
Diatonic semitone,just2126.3216:15111.73Play+14.59
Septimal chromatic semitone163.16Play21:2084.46−21.31
Chromatic semitone, just163.1625:2470.67Play7.51
Septimal third-tone163.16Play28:2762.96+0.20

A possible variant of 19-ED2 is 93-ED30, i.e. the division of 30:1 in 93 equal steps, corresponding to a stretching of the octave by 27.58¢, which improves the approximation of most natural ratios.

Scale diagram

[edit]
Circle of fifths in 19 tone equal temperament
Major chord on C in 19 equal temperament: All notes within 8 cents of just intonation (rather than 14 for 12 equal temperament).Play 19 ET,Play just, orPlay 12 ET

Because 19 is aprime number, repeating any fixed interval in this tuning system cycles through all possible notes; just as one may cycle through 12-EDO on thecircle of fifths, since afifth is 7 semitones, and number 7 iscoprime to 12.

Modes

[edit]

Ionian mode (major scale)

[edit]
Key signatureScaleNumber ofsharpsKey signatureScaleNumber offlats
C majorCDEFGAB0 (no sharps or flats)
G majorGABCDEF♯1
D majorDEF♯GABC♯2
A majorABC♯DEF♯G♯3
E majorEF♯G♯ABC♯D♯4
B majorBC♯D♯EF♯G♯A♯5C𝄫 majorC𝄫D𝄫E𝄫F𝄫G𝄫A𝄫B𝄫14
F♯ majorF♯G♯A♯BC♯D♯E♯6G𝄫 majorG𝄫A𝄫B𝄫C𝄫D𝄫E𝄫F♭13
C♯ majorC♯D♯E♯F♯G♯A♯B♯7D𝄫 majorD𝄫E𝄫F♭G𝄫A𝄫B𝄫C♭12
G♯ majorG♯A♯B♯C♯D♯E♯F𝄪8A𝄫 majorA𝄫B𝄫C♭D𝄫E𝄫F♭G♭11
D♯ majorD♯E♯F𝄪G♯A♯B♯C𝄪9E𝄫 majorE𝄫F♭G♭A𝄫B𝄫C♭D♭10
A♯ majorA♯B♯C𝄪D♯E♯F𝄪G𝄪10B𝄫 majorB𝄫C♭D♭E𝄫F♭G♭A♭9
E♯ majorE♯F𝄪G𝄪A♯B♯C𝄪D𝄪11F♭ majorF♭G♭A♭B𝄫C♭D♭E♭8
B♯ majorB♯C𝄪D𝄪E♯F𝄪G𝄪A𝄪12C♭ majorC♭D♭E♭F♭G♭A♭B♭7
F𝄪 majorF𝄪G𝄪A𝄪B♯C𝄪D𝄪E𝄪13G♭ majorG♭A♭B♭C♭D♭E♭F6
C𝄪 majorC𝄪D𝄪E𝄪F𝄪G𝄪A𝄪B𝄪14D♭ majorD♭E♭FG♭A♭B♭C5
A♭ majorA♭B♭CD♭E♭FG4
E♭ majorE♭FGA♭B♭CD3
B♭ majorB♭CDE♭FGA2
F majorFGAB♭CDE1
C majorCDEFGAB0 (no flats or sharps)

Dorian mode

[edit]
Key signatureScaleNumber ofsharpsKey signatureScaleNumber offlats
D DorianDEFGABC0 (no sharps or flats)
A DorianABCDEF♯G1
E DorianEF♯GABC♯D2
B DorianBC♯DEF♯G♯A3
F♯ DorianF♯G♯ABC♯D♯E4
C♯ DorianC♯D♯EF♯G♯A♯B5D𝄫 DorianD𝄫E𝄫F𝄫G𝄫A𝄫B𝄫C𝄫14
G♯ DorianG♯A♯BC♯D♯E♯F♯6A𝄫 DorianA𝄫B𝄫C𝄫D𝄫E𝄫F♭G𝄫13
D♯ DorianD♯E♯F♯G♯A♯B♯C♯7E𝄫 DorianE𝄫F♭G𝄫A𝄫B𝄫C♭D𝄫12
A♯ DorianA♯B♯C♯D♯E♯F𝄪G♯8B𝄫 DorianB𝄫C♭D𝄫E𝄫F♭G♭A𝄫11
E♯ DorianE♯F𝄪G♯A♯B♯C𝄪D♯9F♭ DorianF♭G♭A𝄫B𝄫C♭D♭E𝄫10
B♯ DorianB♯C𝄪D♯E♯F𝄪G𝄪A♯10C♭ DorianC♭D♭E𝄫F♭G♭A♭B𝄫9
F𝄪 DorianF𝄪G𝄪A♯B♯C𝄪D𝄪E♯11G♭ DorianG♭A♭B𝄫C♭D♭E♭F♭8
C𝄪 DorianC𝄪D𝄪E♯F𝄪G𝄪A𝄪B♯12D♭ DorianD♭E♭F♭G♭A♭B♭C♭7
G𝄪 DorianG𝄪A𝄪B♯C𝄪D𝄪E𝄪F𝄪13A♭ DorianA♭B♭C♭D♭E♭FG♭6
D𝄪 DorianD𝄪E𝄪F𝄪G𝄪A𝄪B𝄪C𝄪14E♭ DorianE♭FG♭A♭B♭CD♭5
B♭ DorianB♭CD♭E♭FGA♭4
F DorianFGA♭B♭CDE♭3
C DorianCDE♭FGAB♭2
G DorianGAB♭CDEF1
D DorianDEFGABC0 (no flats or sharps)

Phrygian mode

[edit]
Key signatureScaleNumber ofsharpsKey signatureScaleNumber offlats
E PhrygianEFGABCD0 (no sharps or flats)
B PhrygianBCDEF♯GA1
F♯ PhrygianF♯GABC♯DE2
C♯ PhrygianC♯DEF♯G♯AB3
G♯ PhrygianG♯ABC♯D♯EF♯4
D♯ PhrygianD♯EF♯G♯A♯BC♯5E𝄫 PhrygianE𝄫F𝄫G𝄫A𝄫B𝄫C𝄫D𝄫14
A♯ PhrygianA♯BC♯D♯E♯F♯G♯6B𝄫 PhrygianB𝄫C𝄫D𝄫E𝄫F♭G𝄫A𝄫13
E♯ PhrygianE♯F♯G♯A♯B♯C♯D♯7F♭ PhrygianF♭G𝄫A𝄫B𝄫C♭D𝄫E𝄫12
B♯ PhrygianB♯C♯D♯E♯F𝄪G♯A♯8C♭ PhrygianC♭D𝄫E𝄫F♭G♭A𝄫B𝄫11
F𝄪 PhrygianF𝄪G♯A♯B♯C𝄪D♯E♯9G♭ PhrygianG♭A𝄫B𝄫C♭D♭E𝄫F♭10
C𝄪 PhrygianC𝄪D♯E♯F𝄪G𝄪A♯B♯10D♭ PhrygianD♭E𝄫F♭G♭A♭B𝄫C♭9
G𝄪 PhrygianG𝄪A♯B♯C𝄪D𝄪E♯F𝄪11A♭ PhrygianA♭B𝄫C♭D♭E♭F♭G♭8
D𝄪 PhrygianD𝄪E♯F𝄪G𝄪A𝄪B♯C𝄪12E♭ PhrygianE♭F♭G♭A♭B♭C♭D♭7
A𝄪 PhrygianA𝄪B♯C𝄪D𝄪E𝄪F𝄪G𝄪13B♭ PhrygianB♭C♭D♭E♭FG♭A♭6
E𝄪 PhrygianE𝄪F𝄪G𝄪A𝄪B𝄪C𝄪D𝄪14F PhrygianFG♭A♭B♭CD♭E♭5
C PhrygianCD♭E♭FGA♭B♭4
G PhrygianGA♭B♭CDE♭F3
D PhrygianDE♭FGAB♭C2
A PhrygianAB♭CDEFG1
E PhrygianEFGABCD0 (no flats or sharps)

Lydian mode

[edit]
Key signatureScaleNumber ofsharpsKey signatureScaleNumber offlats
F LydianFGABCDE0 (no sharps or flats)
C LydianCDEF♯GAB1
G LydianGABC♯DEF♯2
D LydianDEF♯G♯ABC♯3
A LydianABC♯D♯EF♯G♯4
E LydianEF♯G♯A♯BC♯D♯5F𝄫 LydianF𝄫G𝄫A𝄫B𝄫C𝄫D𝄫E𝄫14
B LydianBC♯D♯E♯F♯G♯A♯6C𝄫 LydianC𝄫D𝄫E𝄫F♭G𝄫A𝄫B𝄫13
F♯ LydianF♯G♯A♯B♯C♯D♯E♯7G𝄫 LydianG𝄫A𝄫B𝄫C♭D𝄫E𝄫F♭12
C♯ LydianC♯D♯E♯F𝄪G♯A♯B♯8D𝄫 LydianD𝄫E𝄫F♭G♭A𝄫B𝄫C♭11
G♯ LydianG♯A♯B♯C𝄪D♯E♯F𝄪9A𝄫 LydianA𝄫B𝄫C♭D♭E𝄫F♭G♭10
D♯ LydianD♯E♯F𝄪G𝄪A♯B♯C𝄪10E𝄫 LydianE𝄫F♭G♭A♭B𝄫C♭D♭9
A♯ LydianA♯B♯C𝄪D𝄪E♯F𝄪G𝄪11B𝄫 LydianB𝄫C♭D♭E♭F♭G♭A♭8
E♯ LydianE♯F𝄪G𝄪A𝄪B♯C𝄪D𝄪12F♭ LydianF♭G♭A♭B♭C♭D♭E♭7
B♯ LydianB♯C𝄪D𝄪E𝄪F𝄪G𝄪A𝄪13C♭ LydianC♭D♭E♭FG♭A♭B♭6
F𝄪 LydianF𝄪G𝄪A𝄪B𝄪C𝄪D𝄪E𝄪14G♭ LydianG♭A♭B♭CD♭E♭F5
D♭ LydianD♭E♭FGA♭B♭C4
A♭ LydianA♭B♭CDE♭FG3
E♭ LydianE♭FGAB♭CD2
B♭ LydianB♭CDEFGA1
F LydianFGABCDE0 (no flats or sharps)

Mixolydian mode

[edit]
Key signatureScaleNumber ofsharpsKey signatureScaleNumber offlats
G MixolydianGABCDEF0 (no sharps or flats)
D MixolydianDEF♯GABC1
A MixolydianABC♯DEF♯G2
E MixolydianEF♯G♯ABC♯D3
B MixolydianBC♯D♯EF♯G♯A4
F♯ MixolydianF♯G♯A♯BC♯D♯E5G𝄫 MixolydianG𝄫A𝄫B𝄫C𝄫D𝄫E𝄫F𝄫14
C♯ MixolydianC♯D♯E♯F♯G♯A♯B6D𝄫 MixolydianD𝄫E𝄫F♭G𝄫A𝄫B𝄫C𝄫13
G♯ MixolydianG♯A♯B♯C♯D♯E♯F♯7A𝄫 MixolydianA𝄫B𝄫C♭D𝄫E𝄫F♭G𝄫12
D♯ MixolydianD♯E♯F𝄪G♯A♯B♯C♯8E𝄫 MixolydianE𝄫F♭G♭A𝄫B𝄫C♭D𝄫11
A♯ MixolydianA♯B♯C𝄪D♯E♯F𝄪G♯9B𝄫 MixolydianB𝄫C♭D♭E𝄫F♭G♭A𝄫10
E♯ MixolydianE♯F𝄪G𝄪A♯B♯C𝄪D♯10F♭ MixolydianF♭G♭A♭B𝄫C♭D♭E𝄫9
B♯ MixolydianB♯C𝄪D𝄪E♯F𝄪G𝄪A♯11C♭ MixolydianC♭D♭E♭F♭G♭A♭B𝄫8
F𝄪 MixolydianF𝄪G𝄪A𝄪B♯C𝄪D𝄪E♯12G♭ MixolydianG♭A♭B♭C♭D♭E♭F♭7
C𝄪 MixolydianC𝄪D𝄪E𝄪F𝄪G𝄪A𝄪B♯13D♭ MixolydianD♭E♭FG♭A♭B♭C♭6
G𝄪 MixolydianG𝄪A𝄪B𝄪C𝄪D𝄪E𝄪F𝄪14A♭ MixolydianA♭B♭CD♭E♭FG♭5
E♭ MixolydianE♭FGA♭B♭CD♭4
B♭ MixolydianB♭CDE♭FGA♭3
F MixolydianFGAB♭CDE♭2
C MixolydianCDEFGAB♭1
G MixolydianGABCDEF0 (no flats or sharps)

Aeolian mode (natural minor scale)

[edit]
Key signatureScaleNumber ofsharpsKey signatureScaleNumber offlats
A minorABCDEFG0 (no sharps or flats)
E minorEF♯GABCD1
B minorBC♯DEF♯GA2
F♯ minorF♯G♯ABC♯DE3
C♯ minorC♯D♯EF♯G♯AB4
G♯ minorG♯A♯BC♯D♯EF♯5A𝄫 minorA𝄫B𝄫C𝄫D𝄫E𝄫F𝄫G𝄫14
D♯ minorD♯E♯F♯G♯A♯BC♯6E𝄫 minorE𝄫F♭G𝄫A𝄫B𝄫C𝄫D𝄫13
A♯ minorA♯B♯C♯D♯E♯F♯G♯7B𝄫 minorB𝄫C♭D𝄫E𝄫F♭G𝄫A𝄫12
E♯ minorE♯F𝄪G♯A♯B♯C♯D♯8F♭ minorF♭G♭A𝄫B𝄫C♭D𝄫E𝄫11
B♯ minorB♯C𝄪D♯E♯F𝄪G♯A♯9C♭ minorC♭D♭E𝄫F♭G♭A𝄫B𝄫10
F𝄪 minorF𝄪G𝄪A♯B♯C𝄪D♯E♯10G♭ minorG♭A♭B𝄫C♭D♭E𝄫F♭9
C𝄪 minorC𝄪D𝄪E♯F𝄪G𝄪A♯B♯11D♭ minorD♭E♭F♭G♭A♭B𝄫C♭8
G𝄪 minorG𝄪A𝄪B♯C𝄪D𝄪E♯F𝄪12A♭ minorA♭B♭C♭D♭E♭F♭G♭7
D𝄪 minorD𝄪E𝄪F𝄪G𝄪A𝄪B♯C𝄪13E♭ minorE♭FG♭A♭B♭C♭D♭6
A𝄪 minorA𝄪B𝄪C𝄪D𝄪E𝄪F𝄪G𝄪14B♭ minorB♭CD♭E♭FG♭A♭5
F minorFGA♭B♭CD♭E♭4
C minorCDE♭FGA♭B♭3
G minorGAB♭CDE♭F2
D minorDEFGAB♭C1
A minorABCDEFG0 (no flats or sharps)

Locrian mode

[edit]
Key signatureScaleNumber ofsharpsKey signatureScaleNumber offlats
B LocrianBCDEFGA0 (no sharps or flats)
F♯ LocrianF♯GABCDE1
C♯ LocrianC♯DEF♯GAB2
G♯ LocrianG♯ABC♯DEF♯3
D♯ LocrianD♯EF♯G♯ABC♯4
A♯ LocrianA♯BC♯D♯EF♯G♯5B𝄫 LocrianB𝄫C𝄫D𝄫E𝄫F𝄫G𝄫A𝄫14
E♯ LocrianE♯F♯G♯A♯BC♯D♯6F♭ LocrianF♭G𝄫A𝄫B𝄫C𝄫D𝄫E𝄫13
B♯ LocrianB♯C♯D♯E♯F♯G♯A♯7C♭ LocrianC♭D𝄫E𝄫F♭G𝄫A𝄫B𝄫12
F𝄪 LocrianF𝄪G♯A♯B♯C♯D♯E♯8G♭ LocrianG♭A𝄫B𝄫C♭D𝄫E𝄫F♭11
C𝄪 LocrianC𝄪D♯E♯F𝄪G♯A♯B♯9D♭ LocrianD♭E𝄫F♭G♭A𝄫B𝄫C♭10
G𝄪 LocrianG𝄪A♯B♯C𝄪D♯E♯F𝄪10A♭ LocrianA♭B𝄫C♭D♭E𝄫F♭G♭9
D𝄪 LocrianD𝄪E♯F𝄪G𝄪A♯B♯C𝄪11E♭ LocrianE♭F♭G♭A♭B𝄫C♭D♭8
A𝄪 LocrianA𝄪B♯C𝄪D𝄪E♯F𝄪G𝄪12B♭ LocrianB♭C♭D♭E♭F♭G♭A♭7
E𝄪 LocrianE𝄪F𝄪G𝄪A𝄪B♯C𝄪D𝄪13F LocrianFG♭A♭B♭C♭D♭E♭6
B𝄪 LocrianB𝄪C𝄪D𝄪E𝄪F𝄪G𝄪A𝄪14C LocrianCD♭E♭FG♭A♭B♭5
G LocrianGA♭B♭CD♭E♭F4
D LocrianDE♭FGA♭B♭C3
A LocrianAB♭CDE♭FG2
E LocrianEFGAB♭CD1
B LocrianBCDEFGA0 (no flats or sharps)

See also

[edit]

References

[edit]
  1. ^Milne, A.;Sethares, W. A.; Plamondon, J. (Winter 2007)."Isomorphic controllers and dynamic tuning: Invariant fingerings across a tuning continuum".Computer Music Journal.31 (4):15–32.doi:10.1162/comj.2007.31.4.15.S2CID 27906745.
  2. ^abcWoolhouse, W.S.B. (1835).Essay on Musical Intervals, Harmonics, and the Temperament of the Musical Scale, &c. London, UK: J. Souter.
  3. ^Joseph Yasser."A Theory of Evolving Tonality".MusAnim.com.
  4. ^Heino, Arto Juhani."Artone 19 Guitar Design". Heino names the 19 note scaleParvatic.
  5. ^abMandelbaum, M. Joel (1961).Multiple Division of the Octave and the Tonal Resources of 19 Tone Temperament (Thesis).
  6. ^Gamer, C. (Spring 1967). "Some combinational resources of equal-tempered systems".Journal of Music Theory.11 (1):32–59.doi:10.2307/842948.JSTOR 842948.
  7. ^Leedy, Douglas (1991). "A venerable temperament rediscovered".Perspectives of New Music.29 (2): 205.doi:10.2307/833439.JSTOR 833439.
    cited by
    Skinner, Myles Leigh (2007).Toward a Quarter-Tone Syntax: Analyses of selected works by Blackwood, Haba, Ives, and Wyschnegradsky. p. 51, footnote 6.ISBN 9780542998478.
  8. ^Skinner (2007), p. 76.
  9. ^Skinner (2007), p. 52.
  10. ^"19 EDO".TonalSoft.com.

Further reading

[edit]

External links

[edit]
Composers
Three quarter flat.
Three-quarter sharp.
Inventors
Tunings and
scales
Non-octave-
repeating scales
Equal temperament
Just intonation
Concepts and
techniques
Groups and
publications
Compositions
Other topics
Measurement
Just intonation
Temperaments
Equal
Linear
Irregular
Traditional
non-Western
Non-octave
Subdividing
Single ratio
Retrieved from "https://en.wikipedia.org/w/index.php?title=19_equal_temperament&oldid=1322009587"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp