Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

181 (number)

From Wikipedia, the free encyclopedia
Natural number
← 180181 182 →
Cardinalone hundred eighty-one
Ordinal181st
(one hundred eighty-first)
Factorizationprime
Prime42nd
Divisors1, 181
Greek numeralΡΠΑ´
Roman numeralCLXXXI,clxxxi
Binary101101012
Ternary202013
Senary5016
Octal2658
Duodecimal13112
HexadecimalB516

181 (one hundred [and] eighty-one) is thenatural number following180 and preceding182.

In mathematics

[edit]

181 isprime, and apalindromic,[1]strobogrammatic,[2] anddihedral number[3] indecimal. 181 is aChen prime.[4]

181 is atwin prime with179,[5] equal to the sum offive consecutive prime numbers:[6]29 +31 +37 +41 +43.

181 is the difference oftwo consecutivesquare numbers 912 – 902,[7] as well as the sum of two consecutive squares: 92 + 102.[8]

As acentered polygonal number,[9] 181 is:

181 is also a centered (hexagram)star number,[11] as in the game ofChinese checkers.

Specifically, 181 is the42nd prime number[13] and16thfull reptend prime indecimal,[14] where multiples of itsreciprocal1181{\displaystyle {\tfrac {1}{181}}} inside aprime reciprocal magic square repeat180 digits with amagic sumM{\displaystyle M} of810; this value is one less than811, the141st prime number and49th full reptend prime (or equivalentlylong prime) in decimal whose reciprocalrepeats 810 digits. While the first full non-normal prime reciprocal magic square is based on119{\displaystyle {\tfrac {1}{19}}} with a magic constant of81 from a18×18{\displaystyle 18\times 18} square,[15] a normal19×19{\displaystyle 19\times 19}magic square has a magic constantM19=19×181{\displaystyle M_{19}=19\times 181};[16] the next such full, prime reciprocal magic square is based on multiples of the reciprocal of383 (alsopalindromic).[17][a]

181 is anundulating number internary andnonarynumeral systems, while indecimal it is the28thundulating prime.[18]

References

[edit]
  1. ^Where the full reptend index of 181 is 16 = 42, the such index of 811 is 49 = 72. Note, also, that282 is 141 × 2.
  1. ^Sloane, N. J. A. (ed.)."Sequence A002385 (Palindromic primes: prime numbers whose decimal expansion is a palindrome.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  2. ^Sloane, N. J. A. (ed.)."Sequence A007597 (Strobogrammatic primes.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  3. ^Sloane, N. J. A. (ed.)."Sequence A134996 (Dihedral calculator primes: p, p upside down, p in a mirror, p upside-down-and-in-a-mirror are all primes.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  4. ^Sloane, N. J. A. (ed.)."Sequence A109611 (Chen primes: primes p such that p + 2 is either a prime or a semiprime.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-05-26.
  5. ^Sloane, N. J. A. (ed.)."Sequence A006512 (Greater of twin primes.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  6. ^Sloane, N. J. A. (ed.)."Sequence A034964 (Sums of five consecutive primes.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  7. ^Sloane, N. J. A. (ed.)."Sequence A024352 (Numbers which are the difference of two positive squares, c^2 - b^2 with 1 less than or equal to b less than c.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  8. ^abSloane, N. J. A. (ed.)."Sequence A001844 (Centered square numbers: a(n) equal to 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z is Y+1) ordered by increasing Z; then sequence gives Z values.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-05-26.
  9. ^abSloane, N. J. A. (ed.)."Centered polygonal numbers".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  10. ^Sloane, N. J. A. (ed.)."Sequence A005891 (Centered pentagonal numbers: (5n^2+5n+2)/2; crystal ball sequence for 3.3.3.4.4. planar net.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-05-26.
  11. ^abSloane, N. J. A. (ed.)."Sequence A003154 (Centered 12-gonal numbers. Also star numbers: 6*n*(n-1) + 1.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-05-26.
  12. ^Sloane, N. J. A. (ed.)."Sequence A069131 (Centered 18-gonal numbers.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-05-26.
  13. ^Sloane, N. J. A. (ed.)."Sequence A000040 (The prime numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  14. ^Sloane, N. J. A. (ed.)."Sequence A001913 (Full reptend primes: primes with primitive root 10.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  15. ^Andrews, William Symes (1917).Magic Squares and Cubes(PDF). Chicago, IL:Open Court Publishing Company. pp. 176, 177.ISBN 9780486206585.MR 0114763.OCLC 1136401.Zbl 1003.05500.{{cite book}}:ISBN / Date incompatibility (help)
  16. ^Sloane, N. J. A. (ed.)."Sequence A006003 (a(n) equal to n*(n^2 + 1)/2.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.
  17. ^Sloane, N. J. A. (ed.)."Sequence A072359 (Primes p such that the p-1 digits of the decimal expansion of k/p (for k equal to 1,2,3,...,p-1) fit into the k-th row of a magic square grid of order p-1.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-09-04.
  18. ^Sloane, N. J. A. (ed.)."Sequence A032758 (Undulating primes (digits alternate).)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-11-02.

External links

[edit]
Wikimedia Commons has media related to181 (number).


0 to 199
200 to 399
400 to 999
1000s and 10,000s
1000s
10,000s
100,000s to 10,000,000,000,000s
Retrieved from "https://en.wikipedia.org/w/index.php?title=181_(number)&oldid=1318530251"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp